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Summary

The significance of mountain environments for the Earth’s system has been widely rec-

ognized. Due to their particular sensitivity to changes in the climatic system, mountain

regions have gained increasing attention in the global climate change discussion. In

this regard, satellite remote sensing was identified as an important part of the moni-

toring strategies, since it can provide information on various land surface parameters

in these areas on a wide range of spatial and temporal scales.

In this context, this thesis makes a contribution and revises the applicability of two

medium spatial resolution satellite sensors, AVHRR and MODIS, for studies of land sur-

face parameters in mountain regions on various spatial scales. The AVHRR sensor was

chosen in view of its unique value for long-term climate impact studies. The MODIS

sensor, as a newer generation sensor specifically designed for, inter alia, terrestrial

applications, was chosen since it provides the opportunity for observations at higher

spatial and spectral resolution compared to AVHRR. The focus was thereby entirely set

on mountain vegetation as well as snow and ice, as these three land surface types

belong to the most important components of many mountain environments.

However, complex topography significantly affects the quality of satellite data, since

observed targets are displaced depending on their elevation and the viewing geom-

etry at the time of observation. This displacement can be corrected for through the

process of orthorectification. With regard to the generation of satellite-based climate

data records in mountain regions, the benefit obtained from such a correction for

the quality of AVHRR-derived land surface parameter datasets was, therefore, quan-

tified. This was done based on maximum Normalized Difference Vegetation Index

(NDVI) composite data at 1 km, 4 km, 5 km, and 8 km spatial resolution in August

1989, 1990, and 2001 to 2003. Distinct differences between orthorectified and non-

orthorectified NDVI composites were obtained at various spatial scales, even though

they were reduced for coarse resolution data. Apart from large differences at single-

pixel scale, systematic average positive biases were identified in the non-orthorectified

case at regional scale. A validation with accurately georeferenced composite data

from the MODIS sensor revealed the high accuracy of the orthorectified NDVI com-
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posites and emphasized the great importance of orthorectification for data quality

in rugged terrain. Neglecting the terrain displacement effect may lead to important

biases and additional noise in time series at various spatial scales. In addition, un-

certainties due to the AVHRR Global Area Coverage (GAC) sampling scheme were

analyzed with regard to the future use of GAC-based NDVI datasets in studies of veg-

etation photosynthetic activity in mountain regions. Uncertainties due to the GAC

sampling scheme were found to introduce a systematic average positive bias, which

can at least partially explain the systematic average positive biases we observed relative

to our results in AVHRR GAC-based composites from the Global Inventory Modeling

and Mapping Studies (GIMMS) and Polar Pathfinder (PPF) datasets. These results sug-

gest that GAC-based NDVI datasets should be used with caution in future studies of

vegetation dynamics in mountain regions.

With respect to the need for ground validation of satellite-derived surface parame-

ters in mountain regions, the ability to track grassland growth phenology in the Swiss

Alps with AVHRR NDVI time series at 1 km spatial resolution was evaluated. Valida-

tion was performed with in situ measurements at 15 alpine and subalpine grassland

sites for the period from 2001 to 2005. Three grassland growth parameters were in-

vestigated: Melt-Out (MO), Start Of Growth (SOG), and End Of Growth (EOG). We

estimated these phenological dates from yearly NDVI time series by identifying dates,

where certain fractions (thresholds) of the maximum annual NDVI amplitude were

crossed for the first time. For this purpose, the NDVI time series were smoothed using

two common approaches (Fourier adjustment or alternatively Savitzky-Golay filtering).

Additional validation was performed with data from two newer generation sensors,

MODIS and VEGETATION. All remote sensing NDVI time series were highly correlated

with single point ground measurements and showed similar thresholds, and there-

fore accurately represented growth dynamics of alpine grassland. For our purpose,

the Fourier adjustment algorithm created higher quality NDVI time series than the

Savitzky-Golay filter, since latter appeared to be more sensitive to short-term fluctu-

ations in NDVI time series. Findings show that the application of various thresholds

to NDVI time series allows the observation of the temporal progression of vegetation

growth at the selected alpine grassland sites with high consistency. Hence, we believe

these results help to better understand large-scale vegetation growth dynamics above

the tree line in the European Alps.

Finally, with regard to the importance of snow and ice for the hydrological cycle and

the surface energy balance in many mountain environments, interannual variations of

perennial snow and ice (PSI) in nine mountain regions of interest (ROI) were quantified.

For this purpose, we used a novel MODIS dataset processed at the Canada Centre for

Remote Sensing (CCRS). The dataset covers the Arctic circumpolar area at 250 m spa-
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tial resolution in all seven land bands (MODIS bands B1-B7) between 2000 and 2008.

PSI extent was found to undergo significant interannual variations depending on the

ROI. For some ROIs, strong negative relationships between PSI extent and positive

degree-days (threshold 0◦C) during the summer months were obtained, which may in

part be explained by the strong snow-albedo feedback in mountain regions. Further-

more, PSI extent was highly correlated with net glacier mass balances in the European

Alps and Scandinavia, which showed that MODIS-derived PSI extent at 250 m spa-

tial resolution could serve as an indicator of net glacier mass balances in these areas.

Comparison of PSI extent with two commonly used land surface classifications (LSC)

in 2000 and 2005 revealed clear misrepresentation of PSI extent in both LSCs. With

regard to the use of LSCs to set up boundary conditions for climate and land surface

process models, this is a potential source of error to be investigated in future studies.

In summary, it was shown that medium spatial resolution satellite sensors such as the

AVHRR and the MODIS are a valuable source of information for studies of land surface

parameters in mountain regions. Where available at the full spatial resolution of 1 km,

data from the AVHRR uniquely enable the detection and analysis of long-term trends

and variations of land surface features in mountain regions. The novel MODIS process-

ing technology developed at the CCRS can, if the MODIS sensor continues to operate

until the end of 2009, provide a decade-long dataset at a high spatial resolution in

accordance with the requirements of the Global Climate Observing System (GCOS).

Together, these sensor systems bare great potential to increase our understanding of

complex and sensitive mountain environments in the context of the global climate

change discussion.
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Chapter 1

Introduction

1.1 Overview

Mountain regions are an important component of the Earth’s system from a wide

range of environmental and socioeconomic aspects. To name a few, mountain regions

greatly influence the global hydrological cycle (Viviroli et al., 2007), affect large scale

atmospheric circulation patterns (Whiteman, 2000), are characterized by high levels of

biodiversity (Körner and Spehn, 2002), and serve as recreation areas for an increasing

number of people (Godde et al., 2000). In addition, while covering approximately 25%

of the Earth’s continental surface (Kapos et al., 2000), they directly provide resources

essential for living, such as fresh water, to one-fourth of the world’s population and

indirectly to more than half (Beniston et al., 1997). Figure 1.1 gives an impression of

the large continental area covered by mountain areas, which are widely dispersed over

the entire globe (marked in red color). The complexity of the topography was used as

an indicator of mountain regions and extracted from a global digital elevation model

(DEM; see the figure caption for more information).

The importance of mountain regions has, however, only recently been emphasized.

According to Beniston (2003), it was first in 1992 at the United Nations Conference

on Environment and Development (UNCED) in Rio de Janeiro that the importance of

mountain regions was officially recognized and documented in the final agreement,

called ”Agenda 21”, negotiated by the participating governments (United Nations,

1992). In chapter 13 of Agenda 21 this is highlighted as follows (modified from

United Nations, 1992):

Mountains are an important source of water, energy and biological di-

versity. As a major ecosystem representing the complex and interrelated

ecology of our planet, mountain environments are essential to the survival
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of the global ecosystem but are rapidly changing and highly vulnerable to

human and natural ecological imbalance. Hence, the proper management

of mountain resources and socioeconomic development of the people de-

serves immediate action.

As a consequence, studies of mountain environments have become increasingly im-

portant within the ongoing global change discussion. Research frameworks and ini-

tiatives such as the Mountain Research Initiative (MRI) were set up with the aim of

designing strategies to identify signs of global change in mountain environments and

of working towards sustainable resource management at various spatial scales (Becker,

2001). With the International Year of Mountains (IYM) in 2002 additional notice was

attracted to the topic.

There is now global consensus that changes in the climatic system projected for the

future will significantly affect mountain environments and, as a direct consequence,

surrounding low-lands depending on mountain-based resources (Christensen et al.,

2007). These concerns are affirmed with regard to mountain regions repeatedly being

Figure 1.1: Continental areas characterized by complex topography (marked in red) based

on a 1 km spatial resolution digital elevation model (DEM) aggregated to 0.1◦. Five mor-

phometric features (peak, ridge, pass, channel, and pit) were combined in one class (red)

to represent mountain regions. These were determined by calculating the slope and cur-

vatures of the surface. Spatially homogeneous high elevation areas such as Greenland

and Antarctica are not considered by this approach. The DEM was downloaded from

http://www.ngdc.noaa.gov/mgg/topo/globe.html; date: August 20, 2009. Image design by

F. Hüsler.
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described as particularly sensitive to such changes (Huber et al., 2005). Moreover,

modifications in general temperature and precipitation patterns may be enhanced in

mountain areas such as the European Alps (Giorgi et al., 1997; Wanner et al., 1997),

the Andes (Urrutia and Vuille, 2009), or the Rocky Mountains (Fyfe and Flato, 1999).

The enhanced sensitivity to changes in the climatic system makes mountain regions

highly suitable for climate change impact studies: strong altitudinal gradients lead to

a sequence of different climatic zones on small horizontal scales, which is otherwise

only observed over scales of hundreds to thousands of kilometers. As a result, global

change phenomena occur and may be studied at relatively small spatial scales (Benis-

ton, 2003). In addition, due to mountain regions being widely dispersed over the

globe, comparative studies can provide valuable information on varying responses of

different (mountain) regions to changes in the climate system.

Among a multitude of possible climate change effects, modifications in the hydro-

logical cycle are predicted to become particularly strong due to the involvement of

seasonal snow cover and glaciers: as key players in the hydrological cycle in many

mountain regions, snow cover and glaciers naturally serve as a storage for water in the

frozen state and buffer seasonal and interannual water shortage in mountains and far

beyond (Viviroli et al., 2003; Diaz et al., 2003). As a result, minor (future) changes in

temperature, determining whether precipitation falls as snow or rain in certain areas

or elevation zones, will significantly affect seasonal run-off patterns by changing the

amount of water temporarily retained in these reservoirs. Modified seasonal run-off

patterns, again, are likely going to – and have already been observed to – have se-

vere environmental and socioeconomic consequences in some regions (Barnett et al.,

2005). Furthermore, snow cover and glaciers exert large influence on climate at vari-

ous spatial scales because of the typically high albedo and cooling of the atmosphere

(Groisman and Davies, 1999; Kotlarski, 2007; UNEP, 2007) and thus directly or indi-

rectly act on other components of mountain ecosystems and vice versa. For example,

snow cover largely affects mountain vegetation through the influence of the physi-

cal snowpack characteristics on micro-environmental conditions of many alpine plant

species (Pauli et al., 2003) and determines the boundary conditions for the annual

growth cycle (Cayan et al., 2001). The latter effect is of particular importance with re-

gard to future climate change scenarios: changes in snow cover duration, i.e. changes

in the start (and/or possibly end) of the growing season, likely result in modifications

of the species composition in alpine plant habitat zones, since various plant species

react differently to altered growth conditions (Keller et al., 2005). Similarly, climate

change is known to affect the growing season length in areas not dominated by sea-

sonal snow cover due to the close dependence of plant phenology on air temperature

variations (Menzel and Fabian, 1999; Stöckli and Vidale, 2004). Accurate knowledge
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about the on- and offset of seasonal vegetation growth is generally a prerequisite for

the assessment of land surface–atmosphere interactions (Sellers et al., 1996b,a), be-

cause vegetation significantly influences the surface energy budget mainly through the

contributions of evapotranspiration and albedo (Bonan, 2000). Moreover, vegetation

cover plays a key role in providing nourishment resources for mountain population,

livestock farming, and wild animals, as well as in helping to reduce soil erosion and to

decrease the risk of natural hazards such as landslides (Beniston, 2003).

Together, vegetation, snow, and glaciers represent critical components of many moun-

tain environments that are strongly involved in cycles of energy and matter through

a large number of complex feedback mechanisms on various spatial scales (Denman

et al., 2007; Lemke et al., 2007). In this respect, studies of past, present, and future

variations of these land surface types in mountain areas are essential and deserve par-

ticular attention within the ongoing global climate change discussion. The following

section (Section 1.2) gives an overview of different monitoring methodologies, which

all aim at increasing our understanding of sensitive mountain environments. The fo-

cus is thereby entirely set on vegetation, snow, and glaciers due to their importance

for many mountain regions as addressed above. For a comprehensive overview of

possible climate change impacts from a wide range of other environmental as well as

socioeconomic aspects, the author refers to Huber et al. (2005) and Beniston (2003).

1.2 Quantifying environmental changes in mountain re-

gions

Each of the three subsequently discussed approaches, in situ observations, modelling,

and satellite observations, has its own strengths and weaknesses. Exploiting the ad-

vantages of each methodology will increase our knowledge of sensitive mountain

environments.

1.2.1 In situ measurements

In situ observations can, where available, provide valuable information on various sur-

face parameters in mountain areas. Regarding vegetation systems, in situ data include

information on the phenology of plant species (obtained from phenological networks;

Studer et al., 2005), on changes in their abundance over time (Grabherr et al., 1994;

Walther et al., 2005), on their behavior under certain climatic conditions (Signabieux

and Feller, 2008), on the involvement of vegetation in ecosystem fluxes of energy and

matter (Rogiers et al., 2008), or on vegetation biomass (Yang et al., 2009). Combin-
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ing in situ data on snow cover, temperature, precipitation, and vegetation growth can

give interesting insights into possible future patterns of alpine vegetation dynamics

(Jonas et al., 2008, see also Chapter 4). Other possible applications of in situ mea-

surements in mountain environments include the assessment of long-term variability

of snow cover (Stähli and Gustafsson, 2006), the evaluation of the spatial variability in

snow water equivalent (Anderton et al., 2004), or, in synergy with space borne obser-

vations, the mapping of snow depth (Foppa et al., 2007b). In the context of glacier

monitoring, in situ data primarily provide information on the mass and surface energy

balance of glaciers, which can be used to quantify the dynamic response of glaciers

to changing climatic conditions (Zemp et al., 2009). Furthermore, in situ data may be

used as input for high resolution RCMs as described below, or used as a source of

validation for surface parameters retrieved from satellite data (cf. Chapter 4).

Even though in situ datasets in mountain regions extend back in time (e.g. pheno-

logical networks in the Swiss Alps back to 1951; Studer et al., 2005), their usefulness

may be limited due to the sparse spatial coverage often observed for measurement

networks: while measurement networks for variables such as snow cover are relatively

dense in some mountain regions, e.g. the European Alps, this is certainly not the case

in other, more remote, areas such as the Himalaya. Another drawback is their limited

explanatory power in the spatial domain. Given the topographical complexity with

abruptly changing climatic conditions due to slope, aspect, and elevation variations,

data obtained at a measurement site may only be representative at local scale, i.e. of

the site itself and its immediate surroundings. Measured parameters can be interpo-

lated between the sites, but this will likely lead to errors due to the virtual impossibility

to capture the highly variable mountain environments.

1.2.2 Modelling approaches

Information provided here follows considerations made by Bugmann et al. (2007), who

provide a review of modelling methodologies for biophysical impact studies in moun-

tain biosphere reserves. Modelling approaches may be separated into two classes:

models providing scenarios for global change over large time scales (e.g. climate

models), and models to project the impacts of these scenarios to the behavior of a

mountain environment and its major components.

As for the climate models, projections of future climate change specific for moun-

tain regions are of major importance. The problem is, however, that in Global and

even Regional Circulation Models (GCM and RCM, respectively) topography is greatly

smoothed and, as a result, the spatial information is too coarse to adequately reflect

small-scale processes governing climatic conditions in many mountains (Christensen
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et al., 2007). In order to reduce limitations due to the complex topography, statistical

downscaling techniques may be used to obtain climate change information for moun-

tainous areas (Hanssen-Bauer et al., 2005). For the simulation of specific processes

such as precipitation and surface runoff, RCMs at very high spatial resolutions of only

a few kilometers are available (e.g. Walser and Schär, 2004), but their use for simu-

lations at large spatiotemporal scales is limited due to computational considerations

(Christensen et al., 2007).

Concerning the impact modelling, there is a wide variety of models available. Veg-

etation systems may be modelled in terms of vegetation cover dynamics (Bugmann,

2001), growth phenology with regard to the determination of the start and end of

the growing season (Stöckli et al., 2008), species distribution (Hirzel et al., 2002), or

also annual net primary productivity of mountain ecosystems and its correlation with

precipitation and temperature variations (Fagre et al., 2005). For snow cover, they

range from simple models, relating snow melt to air temperature (Rango and Martinec,

1995), to complex models, which attempt to describe physical surface processes on

local to regional scales (Bartelt and Lehning, 2002). Finally, regarding glacier systems,

impact models commonly aim at describing the glacier mass balance or the dynamic

response of the glacier’s spatial extent to climatic conditions (Oerlemans, 2001).

While these models provide valuable insight into various environmental processes, par-

ticularly on large time scales (e.g. >100 years), they may still rely on a set of assump-

tions and auxiliary data from in situ measurements or remote sensing.

1.2.3 Satellite observations

As mentioned earlier, methodologies using in situ data are concerned with the prob-

lem of measurement network densities and potentially low representativeness of the

measurements in the spatial domain. Modelling approaches are either limited by the

coarse model resolution, underlying model assumptions, or by exceeding computa-

tional requirements for large scale applications at high spatial resolution. Finally, while

satellite remote sensing (hereafter referred to as ’remote sensing’) cannot replace mod-

elling or field based research, it certainly complements these methodologies and con-

tributes significantly to the understanding of various phenomena to be studied on a

wide range of temporal and spatial scales.1 It was, therefore, defined as a key compo-

nent of global climate monitoring by the World Meteorological Organization (WMO,

2004). The major advantage of remote sensing is that it can provide information on

1As a complement to spaceborne remote sensing, airborne and terrestrial remote sensing systems may

be used for some applications. The discussion of the contributions made by these systems is, however,

beyond the scope of this work.
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surface parameters even in remote and hardly accessible mountain areas (Weiss and

Walsh, 2009).

Regarding the monitoring of vegetation parameters, sensors such as the Landsat The-

matic Mapper (TM) with a high spatial resolution (30 m) can provide information

on vegetation communities and other land cover characteristics (Frank, 1988). The

problem of high spatial resolution sensors is their low ground track repeat cycle (e.g.

16 days for Landsat TM). This is the reason why their use for the monitoring of possibly

rapidly changing surface parameters, such as vegetation photosynthetic activity after

snow melt in spring and early summer, is limited. Medium spatial resolution satellite

sensors with higher temporal (ideally daily) but lower spatial resolution (≥250 m) are,

therefore, preferred for investigations of the temporal progression of seasonal vege-

tation development, e.g. using time series of the Normalized Difference Vegetation

Index (NDVI; Tucker and Sellers, 1986, see Chapters 3 and 4). Similarly, these sen-

sors are employed for the analysis of possibly transient phenomena such as mountain

snow cover (Foppa et al., 2004; Tekeli et al., 2005, Chapter 5), even though high

spatial resolution sensors may be used for validation purposes (Foppa et al., 2007a).

With respect to the monitoring of mountain glaciers, sensors such as the Advanced

Spaceborne Thermal Emission and Reflection Radiometer (ASTER) with a high spatial

resolution (max. 15 m), again, are the data source of choice and are, for example,

used to establish global glacier inventories as part of the Global Land Ice Measure-

ments from Space (GLIMS) initiative (Kargel et al., 2005).

The use of remote sensing data for studies of land surface parameters in mountain

regions implies, however, considerable difficulties, since significant topography is a

well known source of uncertainty in satellite data. To meet the requirements in terms

of data geometric and radiometric accuracy defined by the Global Climate Observing

System (GCOS) for systematic satellite observations (GCOS, 2006, Appendix 2), addi-

tional attention during data processing and analysis is required. This will be the topic

of Chapter 2, where challenges imposed on remote sensing applications in mountain

regions are discussed in more detail.

In the context of the global climate change discussion, it is particularly interesting

to quantify and analyze long-term variations of surface parameters on large spatial

scales. The sensor, which can uniquely provide long-term coverage (1981−present)

at medium spatial (1 km) and high temporal resolution (daily) is the Advanced Very

High Resolution Radiometer (AVHRR) onboard the National Oceanic and Atmospheric

Association (NOAA) Polar Orbiting Environmental Satellites (POES) and the European

Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) Meteorolog-

ical Operational-A (METOP-A) satellite. Even though AVHRR was originally designed
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for meteorological and oceanographic purposes, its usefulness for other, e.g. terres-

trial, applications became apparent shortly after launch (Justice et al., 1985; Gutman,

1988; Liu et al., 1986). The AVHRR sensor has since then proven to be an invaluable

source of information for long-term investigations in various fields of research. It will

by the end of the projected operation time in 2020 provide a nearly 40 years long

time series for the use in climate impact studies. Given the importance to quantify

long-term variation of various surface parameters in mountain regions, the AVHRR

sensor system was selected as a basic data source for this thesis (see Section 2.3 for a

description of the AVHRR sensor system).

In view of to the need for improved satellite data for terrestrial applications, new

medium spatial resolution sensors tailored for global change research were launched

during the past decade. As an example, the Moderate Resolution Imaging Spectro-

radiometer (MODIS) has been operational since 2000 and has provided interesting

insight into the Earth’s system as a whole, with emphasis on interactions between the

atmosphere, land, and oceans (Barnes et al., 1998). In addition to a vast range of pos-

sible applications, MODIS data may extend or complement AVHRR time series or serve

as a source of validation of recent AVHRR data with regard to the long-term analysis

of AVHRR-based long-term climate data records (see Chapter 4). The MODIS sensor

was therefore, chosen as the second basic data source of this thesis (see Section 2.4

for a description of the MODIS sensor system).

1.3 Aims of the PhD thesis

As outlined above, remote sensing data can provide valuable information for studies

of surface parameters in mountain regions. Imbedded in this context, the overall aim

of the thesis is

to revise the applicability of AVHRR and MODIS imagery for studies of

land surface parameters in mountain regions on various spatial scales and

to make a contribution to the understanding of sensitive mountain regions

in the context of the global climate change discussion.

In more detail, the aims of the thesis may be summarized as follows:

• at local and regional scale: to quantify the impact of topography on the quality

of long-term AVHRR climate data records with regard to the GCOS geolocation

accuracy requirements, and to emphasize the necessity to correct for it. This may

represent an important step towards the generation of high quality long-term

climate data records for mountain regions based on AVHRR data archives.
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• at local scale: to extract information on the seasonal progression of alpine grass-

land growth from time series of AVHRR data, and to perform a validation with

newer generation satellite sensors as well as with in situ measurements of vege-

tation development. This should enhance our confidence in the use of medium

spatial resolution sensors for such applications in rugged terrain and improve our

understanding of vegetation phenology with regard to the analysis of long-term

vegetation data in complex alpine environments.

• at regional to hemispherical scale: to use novel MODIS data at 250 m spatial

resolution to quantify interannual variability of perennial snow and ice cover in

several mountain regions within the Arctic circumpolar area. This should provide

interesting insight into variations of these two key players of mountain environ-

ments, particularly with respect to their involvement in the hydrological cycle

and interactions with regional climate.

Achieving these aims using the two selected sensor systems will help to increase our

understanding of sensitive mountain environments with regard to the projected future

climate change scenarios.

1.4 Outline of the PhD thesis

Following above considerations, the thesis is structured as follows:

• Chapter 1 gave a general introduction to the scientific background and frame-

work of this thesis. In particular, the importance of mountain regions in the

global environment was highlighted. Methodologies available to study these

sensitive environments were presented with a focus on vegetation, snow, and

ice.

• The focus of Chapter 2 will be on a number of issues relevant for the processing

and the interpretation of remote sensing data in mountain regions. In addition,

an overview of the sensor systems employed in this thesis, AVHRR and MODIS,

will be given, together with a description of the datasets utilized.

• Chapter 3 presents the results of a methodological study at local to regional

scale in the Mackenzie mountain range in Northwestern Canada, namely the

quantification of the influence of geometric distortions on the quality of long-

term AVHRR NDVI data. The necessity to correct for these distortions is em-

phasized with regard to the generation of high quality long-term climate data

records in accordance with geolocation accuracy requirements defined by GCOS.
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In addition, the applicability of two commonly used AVHRR datasets for studies

of mountain regions is revised.

• Given the need to validate satellite derived surface parameters with ground-

measurements, Chapter 4 describes a comparative study of satellite and ground

based phenology at 15 alpine grassland sites in the Swiss Alps. Time series of

AVHRR NDVI data are compared to in situ measurements of alpine grassland

growth to obtain information on the quality of the satellite-derived parameter

at local scale. Two additional, newer generation, satellite sensors are used for

validation in this study: MODIS and Système Pour l’Observation de la Terre (SPOT)

VEGETATION. This study is relevant with regard to the analysis of long-term vari-

ations in vegetation photosynthetic activity in the European Alps.

• In view of the importance of snow and ice for many mountain environments,

interannual variations of perennial snow and ice extent in nine mountain regions

of interest are quantified in Chapter 5 based on MODIS data. The dataset used

covers the Arctic circumpolar area between 2000 and 2008 at 250 m spatial

resolution. In addition, MODIS data are employed to validate the spatial extent

of perennial snow and ice in two common land cover classifications. This is of

particular importance with regard to the application of land cover classification

to set up boundary conditions in climate and land surface process models.

• An overall summary of the results obtained within this project is provided in

Chapter 6, together with concluding remarks and an overview of forthcoming

steps.
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Rogiers, N., F. Conen, M. Furger, R. Stöckli, and W. Eugster (2008). Impact of past

and present land-management on the C-balance of a grassland in the Swiss Alps.

Global Change Biology 14 (11), 2613–2625.

Sellers, P. J., S. O. Los, C. J. Tucker, C. O. Justice, D. A. Dazlich, G. J. Collatz, and D. A.

Randall (1996a). A Revised Land Surface Parametrization (SiB2) for Atmospheric

GCMs. Part II. The Generation of Global Fields of Terrestrial Biophysical Parameters

from Satellite Data. Journal of Climate 9, 706–737.

Sellers, P. J., D. Randall, G. Collatz, J. A. Berry, C. B. Field, D. A. Datzlich, C. Zhang,

G. D. Collelo, and L. Bounoua (1996b). A Revised Land Surface Parametrization

(SiB2) for Atmospheric GCMs. Part I: Model Formulation. Journal of Climate 9, 676

– 705.

Signabieux, C. and U. Feller (2008). Effects of an extended drought period on grass-

lands at various altitudes in Switzerland: a field study. In J. F. Allen, E. Gantt, J. H.



Introduction 15

Golbeck, and B. Osmond (eds.), Photosynthesis. Energy from the Sun. 14th Interna-

tional Congress on Photosynthesis, pp. 1375–1378. Springer.

Stähli, M. and D. Gustafsson (2006). Long-term investigations of the snow cover in a

subalpine semi-forested catchment. Hydrological Processes 20, 411–428.
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Chapter 2

Observing mountains from space

2.1 General considerations

Remote sensing of land surface parameters in mountain regions does not differ from

remote sensing elsewhere with respect to a basic underlying principle: land surface

types may be discriminated based on their inherent spectral and emittance proper-

ties in certain portions of the electromagnetic spectrum (Lillesand et al., 2004). The

benefit obtained from a remote sensing sensor thereby largely depends on its spec-

tral resolution, which determines the sensor’s capability to resolve spectral features

of land surfaces. Figure 2.1 displays the optical properties of various Earth surfaces

in the range between 0.4 µm and 2.0 µm, which covers most of the solar reflective

part of the electromagnetic spectrum. As a reference, the spectral characteristics of

the sensor systems used in this study, AVHRR and MODIS, are listed in Tables 2.1 and

2.2, respectively. Photosynthetically active vegetation (Figure 2.1, a), for example, is

characterized by very low reflectance values in the red part of the electromagnetic

spectrum (ca. 0.7 µm) due to the absorption of solar radiation by the leaf pigments

involved in photosynthesis, and by increased reflectance in the near infrared portion

of the spectrum (ca. 0.9 µm) due to reflection of incoming solar radiation at the leaf

internal structures (Gitelson and Merzlyak, 1996). In contrast, snow and ice covered

surfaces (Figure 2.1, c) are typically characterized by strong reflectance in the visible

part of the spectrum (ca. 0.4-0.7 µm) and low reflectance in the short wave infrared

part (ca. 1.5 µm; Dozier and Painter, 2004). Such differences in the reflective proper-

ties of a surface between certain wavelengths can be employed to compute spectral

indices that give an indication of the abundance of a given land cover type within the

area covered by a pixel. With regard to the monitoring of terrestrial vegetation, the

Normalized Difference Vegetation Index (NDVI; Tucker, 1979) is the most commonly

used index and serves as a measure of photosynthetic activity within a certain area (cf.

17
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Figure 2.1: Spectral signatures of different Earth surfaces. (a) Photosynthetically active vegeta-

tion, (b) salt flat, (c) snow, (d) water, (e) soil, and optically thick clouds (f). Given the importance

to detect clouds in land surface applications, the spectral properties of an optically thick cloud

are also provided (adopted and modified from Wildeisen, 2008, and references therein).

Chapters 3 and 4). Concerning observations of snow and ice covered surfaces, the

Normalized Difference Snow Index (NDSI; Salomonson and Appel, 2004) exploits the

distinct spectral properties of snow and ice as described above and can be regarded

as a measure of these land cover types within the sensor’s field of view (cf. Chapter

5). Uncertainties arise in the mixed-pixel case in spatially heterogeneous mountain

regions, i.e. if spectral signatures of various land cover types are combined within

a single pixel. Methodologies have been developed to account for the mixed signal

(Rosenthal and Dozier, 1996) and applied to medium resolution satellite data to ob-

tain information on a certain land cover parameter at sub-pixel scale (e.g. Foppa et al.,

2004, for snow cover).

In addition to the spectral resolution, the spatial resolution is a critical factor governing

the usefulness of a sensor for the monitoring of a given land surface parameter in

mountain regions. While sensors at high spatial resolution are commonly used for

studies of small-scale geographic features in substantial detail, coarse spatial resolution

sensors are employed to observe relatively large geographic areas (Weiss and Walsh,

2009). As previously addressed in Section 1.2.3, the decision on which sensor to use

for a certain application, however, often comes along with a trade-off between the
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spatial resolution of the sensor and the temporal resolution of the sensor system, as

high spatial resolution sensors are generally characterized by low ground track repeat

cycles and vice versa. The AVHRR and MODIS sensors both belong to the category of

medium spatial resolution sensors and are characterized by high temporal resolution.

This limits their use for observations of small geographic features, but increases their

chance to observe a geographic location under cloud free conditions and to capture

rapidly changing or transient land surface phenomena. A more detailed description of

the characteristics of the AVHRR and the MODIS is included in Sections 2.3 and 2.4,

respectively.

Despite the basic principles of remote sensing being the same in mountain regions and

in other environments, the impact of complex topography on the quality of AVHRR and

MODIS data (and remote sensing data in general) may require additional attention

during data processing and interpretation. A short overview of possible impacts of

complex topography follows in Section 2.2 as well as in Chapter 3.

2.2 Challenges due to complex topography

Impacts of complex topography on satellite data may be divided into direct and indi-

rect effects. Direct effects include geometric distortions due to elevated topography

(Voigt, 2000; Running et al., 1994) and radiometric distortions resulting from aspect-

dependent illumination and reflectance conditions (Weiss and Walsh, 2009). Geo-

metric distortions are present in satellite imagery as a consequence of the intertwined

effects of surface elevation and observation geometry. They are characterized by the

displacement of observed, elevated, targets in the direction of the sensor’s scan line.

In order to ensure that identical geographic locations are compared at a certain im-

age coordinate in a time series of satellite images, this terrain displacement should be

corrected for through the process of orthorectification using a DEM. This is of partic-

ular importance with regard to mountain regions often featuring high levels of spatial

heterogeneity with rapidly changing land cover types on short horizontal distances.

Chapter 3 describes the problem of terrain-induced geometric distortions in AVHRR

imagery in more detail and discusses the orthorectification and its impact on climate

data records based on AVHRR NDVI data.

Radiometric distortions result from the surface angular anisotropy described by the

bidirectional reflectance distribution function (BRDF) of the Earth’s surface (Li et al.,

1996). While they are also observed over flat terrain, the situation is complicated in

mountain areas because complex topography modifies the relative Sun-target-sensor

geometry (Holben and Justice, 1980). This basically means that observation geometry
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(i.e. zenith and azimuth angles of the Sun and the observing sensor) and terrain slope

affect the radiance measured for a particular ground cover (Burgess et al., 1995).

Other radiometric topographic effects result from the rugged relief surrounding the

area covered by a pixel, which alters the amount of diffuse radiation, creates self-

and cast-shadows by blocking the direct solar beam, and produces reflection from

the neighboring area (Richter, 1998). Methodologies were developed to consider

anisotropy effects, taking into account surface slope (Cihlar et al., 2004) and also

the influence of terrain shadowing effects (Sirguey et al., 2009). Illumination effects

are, however, also reduced by constraining the observation geometry (Luo et al., 2008)

or by calculating spectral indices such as the NDVI from single channel data (Lee and

Kaufman, 1986).

On the other hand, mountain regions are often characterized by persistent cloud cover

due to orographically induced convection (Kästner and Kriebel, 2001), which may

be regarded as an indirect effect of complex topography on the quality of satellite

imagery. In order to obtain information on the cloud contamination of a pixel, cloud

identification schemes are applied to satellite imagery. These are, depending on the

spectral resolution of the sensor and the auxiliary data used, characterized by a varying

degree of complexity (described in more detail in Sections 2.3 and 2.4). Even though

observations affected by cloud cover are ideally recognized by cloud identification

schemes and, therefore, excluded from analyses, supplemental post-processing may

be required to correct time series of land surface parameters such as the NDVI for the

the influence of persistent cloud cover (cf. Chapter 4).

Another factor indirectly affecting the quality of satellite-derived land surface param-

eters in mountain regions is the lack of in situ data for ground validation (Weiss and

Walsh, 2009). In complex and remote mountain areas ground data are often limited in

number and concentrated along local traffic axis. For this reason, in situ measurements

typically do not provide any information on more remote and inaccessible areas of in-

terest, also because of the difficulty to extrapolate measured parameters in spatially

heterogeneous mountain areas as discussed above. In this respect, validation studies

in complex terrain using ground stations widely dispersed over a region of interest

can provide important information about the quality of satellite-derived land surface

parameters in mountain environments (cf. Chapter 4).

Given above considerations, the following sections describe the AVHRR and MODIS

sensor systems as well as the datasets used in this thesis. In addition, an overview

of the most important pre-processing steps is given: calibration, geocoding, and

cloud/scene identification. Information is provided in particular detail for the AVHRR

sensor due to its importance for the RSGB and the in-house processing chain.
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2.3 The AVHRR

The following sections give an overview of the AVHRR sensor system, data archives,

and pre-processing employed in the thesis. More detailed information is presented

in Chapters 3 and 4. General information on the AVHRR sensor system and specific

applications is provided in Cracknell (1997), Kidwell (1998), Goodrum et al. (2000),

and Robel (2009).

2.3.1 Sensor system

The AVHRR sensor is carried onboard the NOAA POES and the EUMETSAT METOP-A

platforms. The latest NOAA satellite, NOAA-19, is the last satellite of the NOAA series.

Nevertheless, continuity until 2020 should be provided by the METOP series, which is

planned to include two more satellites, METOP-B (scheduled launch: April 2011) and

METOP-C (October 2015).

These satellites orbit at approximately 833 km above the Earth’s surface with an incli-

nation angle against the equator of 98.9◦. Satellites need 102 minutes for one orbit

resulting in approximately 14.2 orbits per day. At this altitude the maximum scan

angle of ±55◦ results in a wide-swath of >2600 km for each satellite pass, which

results in daily global coverage. The afternoon satellites are launched in an ascending

(northbound) orbit, with an Equator crossing time (EXT) of ≈1500 (TIROS-N), ≈1430

(NOAA-7, -9), ≈1330 (NOAA-11, -14, -18), or ≈1400 (NOAA-16, -19; Ignatov et al.,

2004). These orbits descend back from north to south on the dark side of the Earth at

≈0300, 0230, 0130, or 0200, respectively. The morning satellites descend from north

to south at ≈0730, and ascend from south to north in the local evening, at ≈1930.

NOAA-17 and METOP-A are mid-morning satellites, with descending (southbound)

node passing at ≈1000, and ascending (northbound) node occurring at ≈2200. Even

though the NOAA satellites were designed to be Sun-synchronous, their orbits evolve

in time. Orbital drift causes a platform to systematically progress through different

phases of the solar illumination and diurnal cycle of the underlying surface and atmo-

sphere, which should be taken into account when analyzing long-term meteorological

and climatological products (Gutman, 1999).

The AVHRR instrument has an instantaneous field-of-view (IFOV) of 1.41 milliradians

providing a nominal spatial resolution of 1.1 km at the sub-satellite point, however,

spatial resolution decreases significantly with increasing satellite view angle down to

2.4 km×6.5 km at the maximum off-nadir position. The radiometric resolution of the

AVHRR is 10 bit, which results in 1024 levels of discrimination in measured response.

Regarding the spectral resolution, the first version of the AVHRR (AVHRR/1) with four
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Table 2.1: Spectral characteristics of the different AVHRR sensors onboard various platforms.

All values are approximations and might vary from satellite to satellite (Goodrum et al., 2000).

TIROS-N, NOAA-7, -9, NOAA-15, -16, -17,

NOAA-6, -8, -10 -11, -12, -14 -18, -19, Metop-A

Channel AVHRR/1 [µm] AVHRR/2 [µm] AVHRR/3 [µm]

1 0.58-0.68 0.58-0.68 0.58-0.68

2 0.73-1.10 0.73-1.10 0.73-1.0

3A - - 1.59-1.63

3B 3.55-3.93 3.55-3.93 3.55-3.93

4 10.50-11.50 10.30-11.30 10.30-11.30

5 Ch4 repeated 11.50-12.50 11.50-12.50

spectral bands was launched in October 1978 on board of TIROS-N satellite. It was

subsequently improved to a 5-band instrument (AVHRR/2), that was initially carried

on NOAA-7 (launched June 1981) and further through NOAA-14. NOAA-15 to -19

and METOP-A carry an enhanced version of the AVHRR (AVHRR/3) with 6 channels.

On all three AVHRR sensors, channel 1 (2) is sensitive to reflected solar radiation in

the red (near infrared) portion of the electromagnetic spectrum. The bandpass of the

near-infrared channel 2 was narrowed on AVHRR/3 to reduce the impact of water va-

por absorption and to enhance its sensitivity to vegetation reflectance. Channel 3 of

AVHRR/1 and AVHRR/2 is centered at 3.7 µm and is sensitive to both reflected solar

and emitted terrestrial radiation. Modifications were again made to AVHRR/3, where

channel 3 can be switched between 1.6 µm (channel 3A) and 3.7 µm (channel 3B),

depending on the application. However, due to strategic decisions, channel 3A/3B

alteration is only enabled for AVHRR/3 onboard NOAA-17 and METOP-A. The thermal

channels 4 and 5 are designed to measure emitted terrestrial radiation. The spec-

tral characteristics of the AVHRR sensors carried on various platforms are summarized

in Table 2.1. The generation and analysis of long-term AVHRR-based climate data

records from different missions may require a correction for differences in the spec-

tral response function between various AVHRR sensors (Trishchenko et al., 2002b;

Trishchenko, 2009; Swinnen and Veroustraete, 2008, see also Chapter 3).
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2.3.2 Data pre-processing

AVHRR channels 1, 2, and where available 3A are commonly calibrated to top of at-

mosphere (TOA) reflectances, the thermal channels 3B, 4 and 5 to TOA brightness

temperatures. The task of accurately calibrating the AVHRR optical channels is, how-

ever, not straightforward due to the lack of an onboard calibration device for these

channels. Pre-launch calibration coefficients have shown to be inaccurate after launch

and AVHRR optical channels to degrade with time (Rao et al., 1996). As a conse-

quence, several time dependent post-launch calibration methods based on the obser-

vation of radiometrically stable targets such as desert sites, bright clouds, and snow-

and ice-covered polar regions with known reflectance have been proposed (Rao et al.,

1996; Rao and Chen, 1996; Heidinger et al., 2003; Vermote, 1995; Vermote and

Saleous, 2006; Loeb, 1997). However, provided calibration coefficients can vary sig-

nificantly depending on the method, which inevitably results in discrepancies between

datasets calibrated using different calibration coefficients (Swinnen and Veroustraete,

2008). Efforts are currently ongoing, aiming at providing a consistent set of calibra-

tion coefficients for the entire period of AVHRR coverage (personal communication A.

Trishchenko, 2008). Calibration of the thermal channels is somewhat easier due to the

onboard calibration device. Nevertheless, additional refinement is needed to correct

for detector nonlinearities, noise, and solar blackbody contamination (Goodrum et al.,

2000; Walton et al., 1998; Trishchenko, 2002; Trishchenko et al., 2002a). Accurate

calibration is of particular interest with regard to the generation of long-term time

series of AVHRR data for the use in climate studies; insufficient calibration may lead to

artificial trends in AVHRR-based climatological time series (Gutman, 1999).

Regarding georeferencing three major steps should be applied in order to meet high

geolocation accuracy: orbit modelling, refinement using Ground Control Points (GCPs),

and orthorectification (Khlopenkov et al., 2009). Using orbit models to predict the

satellites position, geolocation accuracies of 1–4 km can be achieved (Rosborough

et al., 1994). Errors are observed due to inaccuracies in the orbital parameters, satellite

clock errors, and deviations of the satellite attitude angles (roll, pitch, and yaw) from

the nominal position. In order to improve geolocation accuracy, refinement based on

a set of GCPs is necessary (Moreno and Melia, 1993). Distinct features such as con-

tinental coasts or shorelines of inland lakes are usually selected as GCPs. Geographic

coordinates of the entire image are then adjusted using a polynomial transformation,

which minimizes the error of the image chips in the scene to be rectified relative to

the reference image. Finally, orthorectification as addressed above and in detail in

Chapter 3 should be an integral step of georeferencing to account for the influence
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of surface elevation. More information on the achievement of precise geolocation in

both datasets used in this thesis is provided below.

Cloud identification as addressed above is of critical importance for land surface ap-

plications as it provides information on the contamination of pixels by clouds or cloud

shadows. Several different cloud identification schemes of varying complexity have

been presented for AVHRR during the past decades (e.g. Saunders and Kriebel,

1988; Baum and Trepte, 1999; Dybbroe et al., 2005a,b; Heidinger, 2007; Key, 2002;

Khlopenkov and Trishchenko, 2007). For the discrimination of clouds, the basic princi-

ple is that they are brighter than most surfaces in the solar reflective bands (cf. Figure

2.1), but colder in the thermal bands. Difficulties arise over very bright surfaces such

as snow and arid areas as shown in Figure 2.1 (b, f), or also for low stratiform clouds

in mountain valley inversions, if cloud temperature does not significantly differ from

the one of the (snow covered) Earth’s surface. In this context, some cloud identifica-

tion schemes also include information on the presence of snow in the area covered by

a pixel (Baum and Trepte, 1999; Khlopenkov and Trishchenko, 2007). In support of

the spectral tests, temporal texture test including multiple scenes may be applied to

make use of temporal reflectance variations for cloud identification at a certain image

coordinate (Key, 2002). A number of cloud identification schemes was developed to

also use auxiliary data e.g. on the current state of the atmosphere (Dybbroe et al.,

2005a,b) or on land surface temperature to help in cloud identification (Khlopenkov

and Trishchenko, 2007). Furthermore, cloud shadows should properly be accounted

for, since they are a substantial source of uncertainty in surface property retrievals (Lati-

fovic et al., 2005). Cloud shadow detection algorithms for AVHRR include geometrical

considerations by projecting the cloud shadow on the Earth’s surface (Khlopenkov

and Trishchenko, 2007) or also a combination of geometric and optical constraints in

combination with statistical image analysis methods (Simpson and Stitt, 1998).

2.3.3 Data records

Three data types are available from the AVHRR sensor: global area coverage (GAC)

and local area coverage (LAC) data, both stored onboard the satellite and transmitted

to a specific ground receiving station at the time of overpass, and the direct read-out

high-resolution picture transmission (HRPT) format (Cracknell, 1997). While both LAC

and HRPT data provide imagery at the full spatial resolution of AVHRR (1.1 km), this

is not the case for the GAC format. GAC data are characterized by a reduced spatial

resolution, which is achieved through a spatial sampling scheme onboard the satellite

in realtime (see Section 3.1.1 for a detailed description of the sampling scheme). Spa-

tial sampling results in a significant reduction of the data volume, which allows much
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larger geographic areas to be recorded onboard the satellite before data transmission

to a receiving station. As a consequence, GAC AVHRR data are globally available

for the entire operational period of AVHRR and have repeatedly served as a basis for

the generation of unique global long-term climate data records (Gutman et al., 1995;

James and Kalluri, 1994; Tucker et al., 2005; Romanov et al., 2000).

As such, GAC-based datasets have previously been used to study land surface param-

eters in mountain regions, for example, vegetation photosynthetic activity based on

NDVI time series in the European Alps (Stöckli and Vidale, 2004) or Alaska (Jia et al.,

2003). Nevertheless, there is a strong need to process AVHRR data at the full spatial

resolution of 1 km (CEOS, 2006), since the use of spatially degraded GAC data in

heterogeneous mountain areas may lead to important biases in satellite data records

(cf. Chapter 3). However, full spatial resolution AVHRR data archives that cover the

entire operational period of AVHRR (or major parts of it) are limited in number: based

on a comprehensive AVHRR archive hosted at the Canada Centre for Remote Sensing

(CCRS), Ottawa, Canada, a long-term dataset (1981 to 2004) at 1 km spatial resolu-

tion covering entire Canada was made available for the use in climate studies (Latifovic

et al., 2005). Another 1-km dataset was compiled for Southern Africa between 1985

and 1998 to extend a SPOT VEGETATION derived NDVI dataset back in time (Swin-

nen and Veroustraete, 2008). In Europe, full-resolution AVHRR data for the use in

long-term studies of land surface parameters are available from the Mediterranean Ex-

tended Daily One Kilometer AVHRR Data Set (MEDOKADS) (Koslowsky, 2003) as well

as at the German Aerospace Centre (DLR; Dech et al., 1998). Another comprehensive

archive for the period from 1984 to present covering the European Alps is hosted at

the Remote Sensing Research Group (RSGB), University of Bern, Switzerland (Hüsler

et al., 2009). Two of these comprehensive full resolution AVHRR datasets served as a

basis for this thesis (described in more detail below): the dataset hosted at the CCRS

is employed in Chapter 3, and the dataset hosted at the RSGB, which is used in Chap-

ter 4.

The CCRS AVHRR dataset

Information on the archive and processing steps provided here follows detailed de-

scriptions in Latifovic et al. (2005), Khlopenkov and Trishchenko (2007), Khlopenkov

and Trishchenko (2008), and Khlopenkov et al. (2009). The CCRS archive encompasses

all AVHRR data ever collected for the area of Canada by several receiving stations

within Canada and also by NOAA. Data is available at 1 km spatial resolution in Lam-

bert Conformal Conic (LCC) map projection for an area of the size 5700 km×4800 km

centered over Canada. It thereby covers the entire area of Canada including Green-
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land, parts of Alaska and the northern part of the conterminous United States (Figure

2.2, top).

Calibration of the optical channels from current missions is performed according to

the NOAA recommendations using the monthly updated calibration coefficients. For

historical data, the calibration is based on the time-dependent piecewise linear calibra-

tion method developed at the CCRS (Cihlar and Teillet, 1995). Calibration of the ther-

mal channels follows Trishchenko (2002), Trishchenko et al. (2002a), and Trishchenko

(2006).

With regard to the geolocation accuracy requirements for systematic satellite observa-

tions defined by GCOS (GCOS, 2006), a novel and highly efficient georeferencing al-

gorithm was recently developed at the CCRS: the Canadian AVHRR Processing System

(CAPS; Khlopenkov et al., 2009). Georeferencing in CAPS includes a number of novel

features in support of the three major georeferencing steps as described in Section

2.3.2: (1) image sharpening using the Laplace operator prior to correlation analysis,

(2) georeferencing relative to monthly clear-sky composites at 250 m spatial resolu-

tion from the MODIS sensor to take advantage of the high accuracy of MODIS image

geolocation, (3) orthorectification based on a 250 m spatial resolution DEM in swath

projection, (4) an image matching technique in native swath projection based on an

automatically generated GCP library including the determination of the satellite state

vector and sensor attitude angles to achieve the best fits, and (5) remapping of the

imagery from swath to LCC projection using a gradient search method (Khlopenkov

and Trishchenko, 2008). The combination of these steps results in a geolocation accu-

racy of better than 1/3 of the sensor’s field of view (FOV) and, hence, provides output

in accordance with the requirements of GCOS and the Committee on Earth Observ-

ing Satellites (CEOS, 2006). A thorough analysis of CAPS geolocation accuracy over

mountain regions will be the subject of Chapter 3.

Scene identification is done based on the Separation of Pixels Using Aggregated Rat-

ing over Canada (SPARC) algorithm (Khlopenkov and Trishchenko, 2007). The SPARC

algorithm calculates a series of ratings for each pixel based on several spectral tests.

Furthermore, surface skin temperatures from the North American Regional Reanaly-

sis (NARR) dataset, which is available at 32 km×32 km spatial resolution, is used as

additional input. By combining all the tests, one single rating is calculated, provid-

ing a measure of the cloud contamination probability for a pixel. In addition, SPARC

provides information on the status of a pixel (cloud shadow, snow/ice, land/water).
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Figure 2.2: Geographic extent of the CCRS dataset (top) in Lambert Conformal Conic (LCC)

projection and the RSGB dataset (bottom) in Equirectangular projection. Political boundaries

are delineated in red. The CCRS image corresponds to the CAPS reference image for the month

of August based on MODIS band 2 (provided by K. Khlopenkov); the RSGB image corresponds

to a MODIS band 2 clear-sky composite for the month of July in 2004 to 2007 (provided by F.

Hüsler).
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The RSGB AVHRR dataset

A detailed overview of the RSGB AVHRR dataset and processing is provided in Hüsler

et al. (2009). The majority of the archived data were recorded by the receiving facility

at the University of Bern, Switzerland (46.93◦N, 7.41◦E). Contributions from the Com-

prehensive Large Array data Stewardship System (CLASS) archive, the Freie Universität

(FU) Berlin, Germany, and the German Aerospace Centre (DLR) helped to extend the

archive back to 1984. At the present moment, there are 25 years of AVHRR data

available at the full spatial resolution of 1 km, even though only morning overpasses

are archived for the period from 1984 and 1989. Due to the geographic location of

Bern, the European Alps have traditionally been in the research focus of the RSGB. As

a consequence, data processing is generally constrained to the area between 40.5◦N

and 50.0◦N, and between 0.0◦E and 17.0◦E (Figure 2.2, bottom) and creates output

in Equirectangular projection at 0.01◦×0.01◦ resolution. It is, however, planned to

extend processing to the area from 25◦N to 75◦N and from 15◦W to 50◦E in the near

future to provide a full spatial resolution AVHRR dataset for entire Europe and parts of

Northern Africa and Western Asia.

Optical channels from current missions for realtime applications are calibrated accord-

ing to the NOAA recommendations using the monthly updated calibration coefficients.

For the reprocessing of the entire archive, calibration is carried out based on PATMOS-

X calibration coefficients that were obtained from A. Heidinger1 through personal

communication (March, 2009). The thermal emissive channels of the AVHRR/3 instru-

ment are calibrated according to the KLM Users Guide (Goodrum et al., 2000). For

AVHRR/2, the method suggested by Kidwell (1998) was modified such that the non-

linear response of the channels 3B, 4 and 5 is corrected according to Walton et al.

(1998).

The automated image navigation scheme implemented at the RSGB follows the three-

step procedure as described in Section 2.3.2. In addition, a land feature based cor-

rection of image navigation parameters is included to account for errors introduced

by non-zero satellite attitude angles (Crawford, 2005). Chip matching is is based on

a predefined GCP library, which may be complemented by randomly defined GCPs if

the number of GCPs accepted from the library does not exceed a predefined thresh-

old (50 GCPs). Orthorectification is carried out with a DEM at 1 km spatial resolution.

Geolocation accuracy to be expected for the RSGB processing chain is ≈0.5 pixel,

which has enabled the investigations of small scale features within the European Alps

(e.g. surface water temperature of small alpine lakes; Oesch et al., 2005); however,

1currently at NOAA National Environmental Satellite, Data, and Information Service (NESDIS), Center

for Satellite Applications and Research (STAR) as a physical scientist.
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additional refinement with regard to the GCOS geolocation accuracy requirements is

necessary in the near future.

Cloud masking is provided by the Cloud and Surface Parameter Retrieval (CASPR) al-

gorithm (Key, 2002). The algorithm quality has been proved by Di Vittorio and Emery

(2002) and was additionally validated using the cloud detection scheme of the Satel-

lite Application Facility to support Nowcasting and very Short-Range Forecasting/Polar

Platform System (SAFNWC/PPS) for the area of central Europe (Wildeisen, 2008). The

CASPR output is a binary cloud/clear mask. In addition, the cloud/scene identifica-

tion scheme implemented at the RSGB includes cloud shadow detection according to

Simpson and Stitt (1998).

2.4 The MODIS

The following sections give an overview of the MODIS sensor system, data archives,

and pre-processing employed in the thesis. General information on the MODIS and its

application for land surface remote sensing is available in Salomonson et al. (1989),

Running et al. (1994), Barnes et al. (1998), and Justice et al. (1998).

2.4.1 Sensor system

The MODIS sensor combines characteristics of the AVHRR and the Landsat TM and was

designed to improve and complement monitoring of land, ocean, and atmosphere by

these previous missions. The sensor is carried onboard the Earth Observing System

(EOS) morning (AM1, or TERRA) and afternoon satellites (PM1, or AQUA). Satellites

need 102 minutes for one orbit, which results in approximately 14.2 orbits per day.

The satellites orbit at ≈705 km above the Earth’s surface with a Sun-synchronous

98◦ inclination, where the maximum scan angle of ±55◦ results in a swath width of

2330 km. This enables the sensor to observe nearly the entire Earth every two days.

The morning satellite (TERRA) crosses the Equator descending at 1030, when cloud

cover typically is at its daily minimum. The afternoon satellite (AQUA) crosses the

Equator in ascending mode at 1330, which in combination with TERRA enables the

observation of the diurnal cycle of various components of the Earth’s system.

The MODIS provides higher radiometric sensitivity compared to AVHRR. In each of the

36 spectral bands, the 12-bit resolution results in 4096 levels of discrimination in mea-

sured response. The bands are sensitive to different portions of the electromagnetic

spectrum between 0.46 µm and 14.39 µm at spatial resolutions of 250 m, 500 m,

and 1 km, depending on the spectral band. Table 2.2 lists the spectral characteristics
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Table 2.2: Spectral characteristics of the MODIS sensor in the seven land bands (B1 to B7) and

the associated spatial resolution (Barnes et al., 1998).

Band Bandwidth [µm] Spatial resolution [m]

B1 0.62 - 0.67 250

B2 0.84 - 0.88 250

B3 0.46 - 0.48 500

B4 0.55 - 0.57 500

B5 1.23 - 1.25 500

B6 1.63 - 1.65 500

B7 2.11 - 2.16 500

of the MODIS bands in the focus of this thesis, bands B1 to B7, which all measure

reflected solar radiation and were designed to observe land cover features plus cloud

and aerosol properties. A specification of all 36 spectral bands can be found in Barnes

et al. (1998).

2.4.2 Data pre-processing

In order to avoid problems with the calibration of the reflective solar bands as de-

scribed above for AVHRR, MODIS design includes a set of sophisticated onboard cal-

ibration modules for the calibration of both the reflective solar as well as thermal

emissive bands. The reflective solar bands are calibrated on orbit by a solar diffuser

(SD) and a solar diffuser stability monitor (SDSM) system, the thermal emissive bands

with wavelengths above 3.7 µm are calibrated by an on-board blackbody. In addi-

tion, MODIS views the Moon a few times per year. Given that the brightness of the

Moon illuminated by the Sun does not change in time, the Moon provides a valuable

radiance source for vicarious calibration similar to the stable targets as described for

AVHRR. The output delivered by the MODIS level 1B algorithm includes geolocated at-

aperture radiances in all 36 spectral bands. Details on the calibration algorithms and

on-orbit performance of MODIS reflective solar and thermal emissive bands is provided

in Xiong et al. (2003b,a, 2005).

Earth location data is available at sub-pixel accuracy (≈50 m). This extraordinary geolo-

cation accuracy is achieved due to several reasons (Wolfe et al., 2002, 1995): First, the

spacecrafts carrying MODIS are very stable and provide highly precise external orienta-

tion knowledge. Second, the MODIS instrument was designed to give precise interior

orientation knowledge. Third, an accurate global DEM (Logan, 1999) is used to model
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and remove relief-induced distortions as discussed above. Fourth, a global set of GCPs

based on Landsat imagery served to determine biases in the sensor orientation, which

were finally used to improve geolocation processing.

The standard MODIS cloud identification scheme uses 19 out of 36 available spectral

bands to obtain information about the cloud contamination of a scene observed by

the sensor (Ackerman et al., 2006, 1998). In addition, the algorithm relies on auxiliary

information such as the daily snow and ice maps made available by the National Snow

and Ice Data Centre (NSIDC) and NOAA, global ecosystem maps at 1 km resolution,

elevation above sea level, land/water mask, and observation geometry. The output of

the MODIS cloud detection algorithm is a 46-bit mask containing information on the

level of confidence with regard to a pixel assumed to be clear, as well as information

on the presence of cloud shadows for clear-sky pixels.

2.4.3 Data records

The geolocated and radiometrically calibrated output of the MODIS Level 1B algorithm

serves as a basis for the generation of a large number of scientific datasets for atmo-

spheric, oceanic, and land applications at a wide range of spatial (250 m, 500 m, 1 km,

and coarser resolution) and temporal resolutions (daily, 8-day, 16-day, and monthly).

An overview of the products made available by the MODIS science teams together with

detailed descriptions is provided at http://modis.gsfc.nasa.gov/. Land surface products

include, inter alia, snow cover, land cover dynamics, vegetation indices such as the

NDVI, or surface reflectance, which is utilized in Chapter 4. MODIS standard products

are distributed in sinusoidal (SIN), integerized SIN, or a lat/long grid (for coarse reso-

lution products). These projections were chosen because they are designed for global

coverage, although they reveal substantial distortions near polar regions (Khlopenkov

and Trishchenko, 2008).

The GCOS has recommended a spatial resolution of 250 m for many Essential Climate

Variables (ECVs) intended for terrestrial applications, such as snow cover, leaf area

index (LAI), or albedo (GCOS, 2006, Appendix 2). However, only MODIS bands B1 and

B2 meet these requirements, even though it would be very beneficial for many land

surface applications to have all seven land bands available at this spatial resolution.

Hence, to enable studies of long-term variations of various land surface parameters

at 250 m spatial resolution consistent with the GCOS requirements for ECVs, a novel

MODIS dataset was recently developed at the CCRS. This dataset, which is employed

in Chapters 3 and 5, will be introduced in the following section.
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The CCRS MODIS dataset

The generation of the CCRS MODIS dataset at 250 m spatial resolution in all seven land

bands includes three major steps (the description of the methodology closely follows

Luo et al., 2008; Trishchenko et al., 2009; Khlopenkov and Trishchenko, 2008):

1. downscaling of the 500 m spatial resolution bands (B3 to B7) to 250 m for

consistency with bands B1 and B2 (Trishchenko et al., 2006)

2. reprojection of the downscaled imagery from swath to LCC projection (Khlopenkov

and Trishchenko, 2008), and

3. clear-sky compositing at 250 m spatial resolution (Luo et al., 2008).

In step 1, reflectances in bands B3 to B7 at 250 m resolution are calculated based on

the reflectances in bands B1 and B2. The underlying principle is, that bands B1 and

B2 contain substantial information on the general shape of the pixel spectrum to be

expected for a certain land cover type. As a consequence, bands B3 to B7 can each

be correlated to B1, B2, and the NDVI (obtained by combining B1 and B2), assuming

a small number of basic scene types. The scene types, vegetation, desert/barren land,

snow, water, and cloud, are classified according to their spectral features in bands B1,

B2, and B6. First, an adaptive regression model based on 500 m data in all seven

bands is built to estimate the regression parameters for a respective scene type. This

model is built for each 5-min granule separately, and within a granule for blocks of

541×812 pixels to reduce the impact of latitudinal variation of surface properties and

observation geometry effects. The model is then applied to B1 and B2 at 250 m

resolution to estimate B3 to B7. Resulting 250 m images are subsequently normalized

to the original 500 m imagery to preserve radiometric properties of the original data.

In step 2, images are reprojected from swath to a standard geographic projection.

Due to the distortions introduced by the standard projection used for MODIS products,

swath data are reprojected to Lambert Azimuthal Equal Area (LAEA) projection (alter-

natively to LCC projection, depending on the application) to better preserve image

information content (see Luo et al., 2008 for the projection parameters). Reprojection

is performed based on a gradient search method, which was shown to preserve the

absolute geolocation accuracy of MODIS pixels determined by the MODIS geolocation

team (Khlopenkov and Trishchenko, 2008; Wolfe et al., 2002).

Finally, clear-sky compositing is done in step 3 based on bands B1, B2, B3, and B6.

This is a two-step procedure: First, scene identification is performed at 250 m spatial

resolution by combining geometrical and spectral approaches. The product is a mask
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delineating cloud cover, cloud shadows, and areas observed under clear-sky condi-

tions. Together with a set of decision rules (described in detail in Luo et al., 2008),

this mask is subsequently used as a basis for clear-sky compositing. In addition, to

reduce the impact of BRDF effects on the composites, two composites are generated

for each composite interval: one for the forward and one for the backward scatter-

ing hemisphere. This was shown to significantly enhance the quality of the clear-sky

composites.
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Kästner, M. and K. T. Kriebel (2001). Alpine cloud climatology using long-term NOAA-

AVHRR satellite data. Theoretical and Applied Climatology 68 (3), 175–195.

Key, J. (2002). The Cloud and Surface Parameter Retrieval (CASPR) System for Po-

lar AVHRR - User’s Guide. Technical report, Cooperative Institute for Meteorolog-



36

ical Satellite Studies, University of Wisconsin, 1225 West Dayton St., Madison, WI

53562.

Khlopenkov, K. V. and A. P. Trishchenko (2007). SPARC: New cloud, snow, and cloud

shadow detection scheme for historical 1-km AVHRR data over Canada. Journal Of

Atmospheric And Oceanic Technology 24 (3), 322–343.

Khlopenkov, K. V. and A. P. Trishchenko (2008). Implementation and evaluation of

concurrent gradient search method for reprojection of MODIS level 1B imagery. IEEE

Transaction on Geoscience and Remote Sensing 46, 2016–2027.

Khlopenkov, K. V., A. P. Trishchenko, and Y. Luo (2009). Image matching technique for

sub-pixel georeferencing accuracy in Canadian AVHRR Processing System (CAPS).

submitted to IEEE Transaction on Geoscience and Remote Sensing.

Kidwell, K. (1998). NOAA polar orbiter data user‘s guide (TIROS-N, NOAA-6, -7, -

8, -9,-10, -11, -12, -13 and -14). Technical report, NOAA/National Environmental

Satellite, Data, and Information Service (NESDIS).

Koslowsky, D. (2003). The MEDOKADS data set as a substantial part of a remote

sensing data network for a Mediterranean research and application network. In

H.-J. Bolle (ed.), Mediterranean Climate, pp. 165–177. Berlin: Springer Verlag.

Latifovic, R., A. Trishchenko, J. Chen, W. Park, K. Khlopenkov, R. Fernandes, D. Pouliot,

C. Ungureanu, Y. Luo, S. Wang, A. Davidson, and J. Cihlar (2005). Generating

Historical AVHRR 1 km Baseline Satellite Data Records Over Canada Suitab,e for

Climate Change Studies. Canadian Journal of Remote Sensing 31 (5), 324–346.

Lee, T. Y. and Y. J. Kaufman (1986). Non-Lambertian effects on remote sensing of

surface reflectance and vegetation index. IEEE Transactions on Geoscience and

Remote Sensing 24, 699–708.

Li, Z., J. Cihlar, X. Zheng, L. Moreau, and L. Hung (1996). The bidirectional effects

of AVHRR measurements over boreal regions. IEEE Transactions on Geoscience and

Remote Sensing 34, 1308–1322.

Lillesand, T., R. Kiefer, and J. Chipman (2004). Remote Sensing and Image Interpreta-

tion (fifth Ed.). New York: John Wiley & Sons.

Loeb, N. G. (1997). In-flight calibration of NOAA AVHRR visible and near-IR bands

over Greenland and Antarctica. International Journal of Remote Sensing 18 (3),

477–490.



Observing the land surface from space 37

Logan, T. L. (1999). EOS/AM-1 Digital Elevation Model (DEM) Data Sets: DEM and

DEM Auxiliary Datasets in Support of the EOS/Terra Platform. JPL D-013508. Jet

Propulsion Laboratory, California Institute of Technology.

Luo, Y., A. P. Trishchenko, and K. V. Khlopenkov (2008). Developing clear-sky, cloud

and cloud shadow mask for producing clear-sky composites at 250-meter spatial

resolution for the seven MODIS land bands over Canada and North America. Re-

mote Sensing of Environment 112 (12), 4167–4185.

Moreno, J. F. and J. Melia (1993). A method for accurate geometric correction of

NOAA AVHRR HRPT data. IEEE Transactions on Geoscience and Remote Sens-

ing 31 (1), 204–226.

Oesch, D. C., J. M. Jaquet, A. Hauser, and S. Wunderle (2005). Lake surface water

temperature retrieval using Advanced Very High Resolution Radiometer and Mod-

erate Resolution Imaging Spectroradiometer data: Validation and feasibility study.

Journal of Geophysical Research 110, C12014.

Rao, C. R. N. and J. Chen (1996). Post-launch calibration of the visible and near-

infrared channels of the Advanced Very High Resolution Radiometer on the NOAA-

14 spacecraft. International Journal of Remote Sensing 17 (14), 2743–2747.

Rao, C. R. N., J. Chen, N. Zhang, J. T. Sullivan, C. C. Walton, and M. P. Weinreb (1996).

Calibration of meteorological satellite sensors. Advances in Space Research 17 (1),

11–20.

Richter, R. (1998). Correction of satellite imagery over mountainous terrain. Applied

Optics 37, 4004–4015.

Robel, J. (2009). NOAA KLM user’s guide with NOAA-N,-P supplement. Technical re-

port, NOAA/National Environmental Satellite, Data, and Information Services (NES-

DIS).

Romanov, P., G. Gutman, and I. Csiszar (2000). Automated Monitoring of Snow Cover

over North America with Multispectral Satellite Data. Journal of Applied Meteorol-

ogy 39 (11), 1866–1880.

Rosborough, G. W., D. G. Baldwin, and W. J. Emery (1994). Precise AVHRR image

navigation. IEEE Transactions on Geoscience and Remote Sensing 32 (3), 644–657.

Rosenthal, W. and J. Dozier (1996). Automated mapping of montane snow cover

at subpixel resolution from the Landsat Thematic Mapper. Water Resources Re-

search 32 (1), 115–130.



38

Running, S. W., C. O. Justice, V. Salomonson, D. Hall, J. Barker, Y. J. Kaufmann,

A. Strahler, A. R. Huete, J.-P. Muller, V. Vanderbilt, Z. M. Wan, P. Teillet, and

D. Carneggie (1994). Terrestrial remote sensing science and algorithms planned

for EOS/MODIS. International Journal of Remote Sensing 15 (17), 3587–3620.

Salomonson, V., W. Barnes, P. Maymon, H. Montgomery, and H. Ostrow (1989).

MODIS: Advanced facility instrument for studies of the Earth as a system. IEEE

Transactions on Geoscience and Remote Sensing 27 (2), 145–153.

Salomonson, V. V. and I. Appel (2004). Estimating fractional snow cover from MODIS

using the normalized difference snow index. Remote Sensing of Environment 89 (3),

351–360.

Saunders, R. W. and K. T. Kriebel (1988). An improved method for detecting clear

sky and cloudy radiances from AVHRR data. International Journal of Remote Sens-

ing 9 (1), 123–150.

Simpson, J. J. and J. R. Stitt (1998). A procedure for the detection and removal of

cloud shadow from AVHRR data over land. IEEE Transactions on Geoscience and

Remote Sensing 36 (3), 880–897.

Sirguey, P., R. Mathieu, and Y. Arnaud (2009). Subpixel monitoring of the seasonal

snow cover with MODIS at 250m spatial resolution in the Southern Alps of New

Zealand: Methodology and accuracy assessment. Remote Sensing of Environ-

ment 113 (1), 160–181.
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Abstract

Topography and accuracy of image geometric registration significantly affect the qual-

ity of satellite data, since pixels are displaced depending on surface elevation and

viewing geometry. This effect should be corrected for through the process of accu-

rate image navigation and orthorectification in order to meet the geolocation accuracy

for systematic observations specified by the Global Climate Observing System (GCOS)
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requirements for satellite climate data records. We investigated the impact of or-

thorectification on the accuracy of maximum Normalized Difference Vegetation Index

(NDVI) composite data for a mountain region in north-western Canada at various spa-

tial resolutions (1 km, 4 km, 5 km, and 8 km). Data from AVHRR on board NOAA-11

(1989 and 1990) and NOAA-16 (2001, 2002, and 2003) processed using a system

called CAPS (Canadian AVHRR Processing System) for the month of August were con-

sidered. Results demonstrate the significant impact of orthorectification on the quality

of composite NDVI data in mountainous terrain. Differences between orthorectified

and non-orthorectified NDVI composites (∆NDVI) adopted both large positive and

negative values, with the 1% and 99% percentiles of ∆NDVI at 1 km resolution span-

ning values between −0.16< ∆NDVI<0.09. Differences were generally reduced to

smaller numbers for coarser resolution data, but systematic positive biases for non-

orthorectified composites were obtained at all spatial resolutions, ranging from 0.02

(1 km) to 0.004 (8 km). Analyzing the power spectra of maximum NDVI composites

at 1 km resolution, large differences between orthorectified and non-orthorectified

AVHRR data were identified at spatial scales between 4 km and 10 km. Validation of

NOAA-16 AVHRR NDVI with MODIS NDVI composites revealed higher correlation co-

efficients (by up to 0.1) for orthorectified composites relative to the non-orthorectified

case. Uncertainties due to the AVHRR Global Area Coverage (GAC) sampling scheme

introduce an average positive bias of 0.02±0.03 at maximum NDVI composite level

that translates into an average relative bias of 10.6%±19.1 for sparsely vegetated

mountain regions. This can at least partially explain the systematic average positive

biases we observed relative to our results in AVHRR GAC-based composites from the

Global Inventory Modeling and Mapping Studies (GIMMS) and Polar Pathfinder (PPF)

datasets (0.19 and 0.05, respectively). With regard to the generation of AVHRR long-

term climate data records, results suggest that orthorectification should be an integral

part of AVHRR pre-processing, since neglecting the terrain displacement effect may

lead to important biases and additional noise in time series at various spatial scales.

3.1 Introduction

3.1.1 Overview

Mountain regions cover approximately one fourth of the Earth’s surface (Kapos et al.,

2000) and are known to be particularly sensitive to climate change (Beniston, 2003).

Due to the strong altitudinal gradients many mountain regions provide unique op-

portunities to detect and analyze global change processes and phenomena on small

horizontal scales. In this regard, remote sensing data represent a valuable source of in-
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Figure 3.1: Terrain displacement [km] depending on the observation geometry and the eleva-

tion of the observed target. Analysis is constrained to the approximate elevation range found

in North America and considers the range of possible sensor scan angles of AVHRR (0◦-55◦;

adopted and modified from Voigt, 2000).

formation, most importantly for investigations at broad spatial scales (Bugmann et al.,

2007). For long-term analyses of various biophysical surface parameters the global

archive of the National Oceanic and Atmospheric Administration (NOAA) Advanced

Very High Resolution Radiometer (AVHRR) data is of particular interest. However, the

topography is recognized as a substantial source of uncertainty in AVHRR data (and

satellite data in general). Not only does topography influence the radiometric char-

acteristics of a surface observed from AVHRR, but also has a distinct effect on image

geometric accuracy (Running et al., 1994; Wolfe et al., 2002). Geometric image dis-

tortions due to the relief of the Earth’s surface occur along the AVHRR scan line,

resulting from the intertwined effects of observation geometry and terrain elevation.

The impact of topography on image geometric accuracy for a standard AVHRR view-

ing geometry is outlined in Figure 3.1. The terrain displacement, or orthoshift, may

amount up to several kilometers for elevated targets depending on the sensor scan

angle (Voigt, 2000; Eidenshink and Faundeen, 1994), where the displacement (∆x)
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for a certain surface elevation (h) is defined as

∆x =
h

tanβ
(3.1)

with β=satellite elevation angle, which in turn is defined as

β = 90− α− γ (3.2)

with α=sensor scan angle and γ=geocentric angle between satellite and pixel loca-

tion (Voigt, 2000). At terrain elevations of 2000 m a.s.l., for example, sensor scan

angles of 30◦ result in an orthoshift of more than 1 km across track (Figure 3.1). How-

ever, the Global Climate Observing System (GCOS) report on systematic observation

requirements for satellite-based products for climate (GCOS, 2006) requests that ge-

olocation accuracy of remote sensing products should be better than 1/3 of the sensor

instantaneous field of view (IFOV). Given the nominal spatial resolution of the AVHRR

sensor at nadir (1.1 km), the requested geometric accuracy is not achieved. The or-

thoshift as outlined above can be corrected through the process of orthorectification,

yet only very few of the known AVHRR processing systems account for surface eleva-

tion through the orthorectification procedure. The terrain displacement as illustrated

in 3.1 is likely to have an impact on the accuracy of multi-date composite data. Along

with other potential sources of error in composite data (described in Section 3.1.2),

this image distortion potentially leads to a misinterpretation of satellite data records,

since any surface pattern under investigation may become unidentifiable due to the

image-to-image shift of elevated pixels. However, the impact of pronounced topog-

raphy on the geometric accuracy of AVHRR derived long-term climate data records

has not yet been adequately addressed and hence, this effect should be analyzed

particularly with regard to future remote sensing studies dealing with broad scale phe-

nomena in mountainous terrain. A common application of long-term AVHRR data is

the analysis of vegetation activity using maximum Normalized Difference Vegetation

Index (NDVI) composite data (described in detail in Section 3.1.2). The NDVI is cal-

culated from the reflectance in the visible and near infrared bands (AVHRR bands 1

and 2) of the electromagnetic spectrum and is a measure of the photosynthetic activity

within the area covered by a pixel (Tucker and Sellers, 1986). Due to the regionally and

temporally limited data availability, only relatively few studies have analyzed long-term

NDVI time series at the full spatial resolution of AVHRR (e.g. Udelhoven and Stellmes,

2007; Pouliot et al., 2009). The majority of the long-term studies on vegetation dy-

namics at global (Moulin et al., 1997), hemispherical (Myneni et al., 1997), continental

(Delbart et al., 2006), and regional scales including mountain ranges such as the Eu-

ropean Alps (Stöckli and Vidale, 2004) make use of reduced spatial resolution Global

Area Coverage (GAC) AVHRR NDVI datasets from the Global Inventory Modeling and
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Mapping Studies (GIMMS; Tucker et al., 2005) or from the Pathfinder AVHRR Land

(PAL) project (James and Kalluri, 1994). GAC data are sampled on board the satellite

in real-time to produce reduced resolution data. This is achieved by computing an

average value from four out of five pixel samples along a scan line and by eliminat-

ing two out of three scan lines (Kidwell, 1998). The resulting product has a spatial

resolution of 1.1 km 4 km at the sub-satellite point with a 3 km distance between

pixels across the scan line. Hence, GAC values are representative of a 3 km×5 km

area, even though GAC-based products are generally resampled to a 4 km, 5 km, or

8 km grid. In spatially heterogeneous areas such as many mountain regions of the

world, the spatial sampling scheme inherent in the GAC data was found to result in a

limited representation in comparison to other sampling schemes (Justice et al., 1989).

Hence, with regard to the future use of GAC based NDVI data for studies of spatially

heterogeneous mountain regions, potential errors due to the GAC sampling scheme

should be analyzed. The paper is organized as follows: In the following section we

expand on a number of issues relevant for the generation and analysis of maximum

NDVI composite datasets. In Section 5.2 we give an overview of the data and the

applied processing steps as well as of the geographical area under investigation. The

influence of orthorectification on AVHRR maximum NDVI composite data at 1 km,

4 km, 5 km, and 8 km spatial resolution is analyzed in Section 3.3.1. Section 3.3.2

presents results of a validation with precisely georeferenced MODIS maximum NDVI

composite data. Finally, with regard to the common use of GAC-based NDVI datasets

in long-term vegetation studies, results are related to the 5 km Polar Pathfinder AVHRR

dataset (hereafter referred to as PPF AVHRR) as well as the 8 km GIMMS NDVI dataset

in Section 3.3.3, and the uncertainty in maximum NDVI composite data due to the

GAC sampling scheme is analyzed. Section 6 summarizes the research.

3.1.2 Generation of composite datasets

Selecting the pixels with the highest quality from multiple scenes within a predefined

time interval and merging them into a composite image is a commonly used tech-

nique. The goal of this compositing process is to create clear-sky composites with

reduced contamination due to clouds and atmospheric constituents. Among other

compositing procedures such as the minimum near infrared band value compositing

(Fraser and Li, 2002) or the maximum surface temperature compositing method (Cih-

lar et al., 1994), the maximum NDVI technique (Holben, 1986) is the most widely used

compositing technique for studies on the terrestrial vegetation although it may still

lead to some biases (Luo et al., 2008). The maximum NDVI is selected within a pre-

defined time interval based on the assumption that NDVI values are reduced by the



46

presence of clouds or by the influence of atmospheric constituents such as water vapor

and aerosols on the measured reflectance in AVHRR bands 1 and 2 (Holben, 1986).

Compositing interval lengths for AVHRR data typically vary between 5 to 7 days and

up to 30 days depending on the application; however, a minimum interval length of

10 days is usually selected in order to increase the chance of a geographic location

being observed under clear-sky conditions. Still, cloud contamination may be present

in maximum NDVI data in areas of persistent cloud cover. Reflectances in AVHRR

bands 1 and 2 are not only influenced by the composition of the atmosphere, but

also by the surface angular anisotropy described by the bidirectional reflectance distri-

bution function (BRDF) of the Earth’s surface (Cihlar et al., 2004). These effects can

be minimized by constraining the range of relative azimuth angles considered during

a compositing interval (Luo et al., 2008) or by normalizing the measured reflectances

to standard viewing conditions using BRDF models (Bacour et al., 2006). Although it

was demonstrated that BRDF effects are reduced through the calculation of vegeta-

tion indices such as the NDVI (Lee and Kaufman, 1986), maximum NDVI composites

may still contain spatial noise due to the variable observation geometry, cloud shadow

contamination and other effects (Luo et al., 2008). Another issue relevant for the

analysis of NDVI composite data is the accuracy of image geolocation. Instead of com-

paring the NDVI of a given location at two different points in time, diverse locations

are compared at a certain image coordinate, if consecutive images within a composit-

ing interval are not accurately co-registered (Townshend et al., 1992). High image

geolocation accuracy is usually achieved by a combination of two different steps: pixel

location prediction using a satellite orbital model and a chip matching procedure using

ground control points (GCPs; Cracknell, 1997. Geolocation schemes for NOAA AVHRR

solely based on information from satellite orbital models will result in an accuracy of

1-4 km at the sub-satellite point (Rosborough et al., 1994), which is insufficient for the

creation of high-quality NDVI composites and does not meet the GCOS requirements

for satellite climate data records. With regard to the generation of AVHRR-based long-

term climate data records, above mentioned sources of uncertainty in composite data

have repeatedly been analyzed. However, the eventual quality gain due to the imple-

mentation of orthorectification has not yet been quantified and we, therefore, make

an attempt to assess the impact of orthorectification on maximum NDVI composites

at various spatial scales. This could finally lead to a better applicability of long-term

AVHRR data time series for climate change studies in mountainous regions. To achieve

this goal, we make use of the newly developed AVHRR processing software at the

Canada Centre for Remote Sensing (CCRS), the Canadian AVHRR Processing System

(CAPS; Khlopenkov et al., 2009), which can optionally disable orthorectification and

thereby allows us to quantify the terrain displacement effects in composite data.
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3.2 Data and methods

3.2.1 AVHRR data

To assess the impact of accurate geolocation and orthorectification on the quality

of maximum NDVI composite data, we use the 1 km AVHRR dataset hosted at the

CCRS, which covers the entire area of Canada and parts of the Unites States since

1981 (Latifovic et al., 2005). In addition, this local coverage dataset is compared to

two freely available GAC based datasets: the PPF AVHRR dataset (5 km; circumpolar

coverage), and the GIMMS NDVI dataset (8 km; global coverage). A short overview of

all three AVHRR datasets is given in the following sections.

CCRS AVHRR product

AVHRR data from two different satellites were chosen: historical data from the AVHRR/2

sensor aboard NOAA-11 in August 1989 and 1990 as well as more recent data from

the AVHRR/3 sensor aboard NOAA-16 in August 2001, 2002, and 2003. These peri-

ods were selected to avoid the possible impact of aerosol contamination due to the

Pinatubo eruption in 1991 and to be able to compare the AVHRR data in 2001 to

2003 against MODIS observations. In addition, the month of August provides a good

opportunity for clear-sky observations and represents close to minimum snow and ice

coverage conditions in the mountains. Pre-processing was performed using the CAPS

software (Khlopenkov et al., 2009). CAPS performs geolocation based on a GCP re-

fining procedure in native swath projection, and determining the satellite state vector

and sensor attitude angles to achieve the best fits. Geolocation accuracy is generally

better than 1/3 of the pixel size, with seasonally varying MODIS composite imagery

being used as reference maps for image chip matching. The procedure as proposed

in Khlopenkov and Trishchenko (2008) was used to remap the AVHRR data to the

Lambert Conformal Conic (LCC) projection, which is the standard projection used at

the CCRS for national scale coverage (Latifovic et al., 2005). In addition, CAPS in-

cludes orthorectification in image swath projection based on a 250 m digital elevation

model (DEM) in order to account for the influence of surface elevation. Details on the

orthorectification procedure can be found in Khlopenkov et al. (2009). Orthorectifica-

tion can optionally be turned off in the CAPS software, which enables us to isolate the

effect of orthorectification on the data. Hence, all AVHRR data were processed twice,

once including orthorectification, and once not taking into account terrain displace-

ment. In the following, NDVI data that originate from CAPS, where orthorectification

was included, are named NDVI O, in contrast to data that do not include orthorecti-
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fication (NDVI NO). In order to account for differences in the spectral response func-

tion (SRF) between the two considered AVHRR sensors, data from NOAA-16 AVHRR/3

were normalized to NOAA-9 AVHRR/2 using the correction functions as proposed by

Trishchenko et al. (2002). These correction functions have previously been shown to

significantly improve the consistency between the NDVI from various AVHRR sensors

as well as in comparison with Système Pour l’Observation de la Terre (SPOT) VEGE-

TATION NDVI data (Swinnen and Veroustraete, 2008). NOAA-11 AVHRR/2 data were

not normalized to NOAA-9 AVHRR/2 since the differences in SRF between both are

minor, and hence, the correction is optional (Trishchenko et al., 2002). Bimonthly

maximum NDVI composites were computed from the 1 km spatial resolution input

data, which results in a 15-day (day 1-15) and a 16-day composite (day 16 to the end

of the month). All observations with view zenith angles (VZA) of VZA>55◦ were ex-

cluded. Additionally, data that were obtained at sun zenith angles (SZA) of SZA>80◦

were not considered to avoid artifacts introduced by the proximity to the terminator

line. In order to identify the impact of orthorectification on coarse resolution data,

maximum NDVI composites were also computed for three coarse resolution AVHRR

datasets (4 km, 5 km, and 8 km) that were generated based on the 1 km dataset

by averaging the adequate number of pixels. Cloud contamination information was

obtained from the Separation of Pixels Using Aggregated Rating over Canada (SPARC)

algorithm (Khlopenkov and Trishchenko, 2007). The SPARC algorithm combines sev-

eral tests and outputs a cloudiness index (CI), which can be regarded as a measure of

cloud contamination probability for each pixel. A cloudiness index threshold of CI=128

was chosen to separate cloudy from clear conditions.

PPF AVHRR data

The AVHRR Polar Pathfinder (PPF) dataset (Fowler et al., 2007) is available from the

National Snow and Ice Data Centre as top of atmosphere (TOA) reflectance values (re-

flective channels) and brightness temperature (thermal channels). Navigation is based

on an orbital ephemeris model with orbit corrections (Rosborough et al., 1994). Data

are finally available in a 5 km spatial resolution Equal Area Scalable Earth (EASE) grid for

the northern hemisphere, and geolocation accuracy is expected to be approximately

2 km on average. The northern hemisphere dataset was downloaded for the same

time periods as described above (Section 3.2.1). Like the AVHRR data from the CCRS

archive (Section 3.2.1), the PPF data for August 1989 and 1990 originate from the

NOAA-11 AVHRR/2 sensor, data for 2001 to 2003 originate from NOAA-16 AVHRR/3.

An SRF correction was applied as described above. Bimonthly maximum NDVI com-

posites were calculated in original EASE grid format, using the same view and solar
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zenith angle thresholds as proposed in Section 3.2.1 along with the processing of the

CCRS data. Composites were reprojected to the LCC projection before the data for

the regions of interest (Section 3.2.3) were extracted. Two different resampling meth-

ods, nearest neighbor (NN) and bilinear interpolation (BI), were used for reprojection

to create two different datasets in order to account for uncertainties introduced by

the resampling process. Cloud information was obtained using two threshold tests: a

brightness temperature (T) test in channel 5 (T<0◦) and a reflectance (R) test in chan-

nel 1 (R>35%). The supplied CASPR cloud product was not used since the output was

found to be unreliable for August 1989 and 1990. NDVI data from the PPF dataset

will hereafter be referred to as NDVIPPF.

GIMMS AVHRR data

The global GIMMS NDVI dataset (Tucker et al., 2005; Pinzon et al., 2005) is available

at the University of Maryland Global Land Cover Facility and is one of the most com-

monly used global datasets to study patterns of vegetation activity on various spatial

scales. It has a spatial resolution of 8×8 km2 and consists of bimonthly maximum

NDVI composites. Cloud screening is provided by a band 5 thermal mask of 0◦C, and

observations at scan angles >40◦ are excluded. Post-processing of the GIMMS NDVI

dataset includes corrections for changes in observation geometry due to satellite orbit

drift and other effects not related to changes in vegetation conditions, e.g. distortions

caused by persistent cloud cover or sensor intercalibration differences. Geolocation

accuracy is assumed to be <1 pixel. The continental dataset for North America was

downloaded for August 1989 and 1990, as well as for 2001 to 2003. GIMMS NDVI

data for the selected periods originate from the same NOAA satellites as the CCRS

AVHRR data. An SRF correction was applied to the NOAA-16 data as described above

(Section 3.2.1). Data quality flags are embedded in the NDVI files. Only data were

used where the quality flag=0 (good value) and flag=1 (good value, possibly snow).

The GIMMS continental datasets are originally provided in Albers Equal Area Conic

Projection. Hence, the continental dataset was reprojected to the LCC projection us-

ing NN and BI resampling schemes before extracting the geographic regions of interest

(Section 3.2.3). NDVI data from the GIMMS dataset will hereafter be referred to as

NDVIGIMMS.

3.2.2 MODIS processing

Terra MODIS level 1b data for August in 2001, 2002, and 2003 were processed as

described in detail in Luo et al. (2008). MODIS pre-processing at the CCRS includes
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downscaling of bands B3 to B7 from 500 m to 250 m spatial resolution using adaptive

regression and normalization scheme for compatibility with the 250 m bands B1 and

B2 (Trishchenko et al., 2006), remapping of the images from swath projection into

LCC projection according to Khlopenkov and Trishchenko (2008), and cloud and cloud

shadow identification at 250 m spatial resolution based on bands B1, B2, B3, and

B6. The NDVI was calculated from bands B1 and B2. In contrast to the clear-sky

compositing scheme as proposed in Luo et al. (2008), the maximum NDVI criterion

was chosen to create bimonthly composites in order to ensure consistency with the

processing of CCRS AVHRR as well as GAC-based NDVI composite data as described

above. The 250 m data were aggregated to 1 km, 4 km, 5 km, and 8 km spatial

resolution by averaging the appropriate number of pixels. The cloud identification flag

for the coarse resolution data was set to ”cloudy”, if more than half of the contributing

250 m pixels were marked as ”cloudy” in the input dataset. In order to account for

differences in the SRF, MODIS NDVI composites were normalized to NOAA-9 AVHRR/2

as proposed by Trishchenko et al. (2002). Maximum NDVI composites from MODIS

will hereafter be referred to as NDVIMODIS.

3.2.3 Geographical regions of interest

Investigations were limited to two regions of interest (ROI) west of Great Bear Lake in

the North West Territories, Canada (denoted as black squares in Figure 3.2, top). The

ROIs were defined to cover an area of 6400 km2 (80 pixels×80 pixels) each, which

enables us to characterize the orthorectification effect at regional (80 km) as well as

at single pixel scale (1, 4, 5, and 8 km). Differences in the geomorphology between

both ROIs are clearly apparent in the MODIS clear-sky composite image as displayed in

Figure 3.2 (top; Trishchenko, 2009): Sparsely vegetated and spatially heterogeneous

ROI/1 within the Mackenzie Mountain Range is characterized by strong altitudinal

gradients on small horizontal scales (maximum elevation difference: 1604 m). We,

therefore, believe that ROI/1 serves as a good example for a typical mountain region

on Earth. ROI/2, on the other hand, mainly covers areas without significant topogra-

phy west of Great Bear Lake (maximum elevation difference: 534 m) and represents

more homogeneous land cover. ROI/2 is chosen as a control in order to demonstrate

that the impact of orthorectification on maximum NDVI composites is reduced in to-

pographically more homogeneous and lower laying areas compared to the mountain

range (ROI/1). The DEM for both ROIs at 1000 m spatial resolution is displayed in Fig-

ure 3.2 (bottom). The DEM was created by combining data from the Canadian Centre

for Topographic Information (CTI) and GTOPO30 if CTI data were not available. A

summary of the geographic characteristics of both ROIs is provided in Table 5.1.
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Figure 3.2: The regions of interest (ROI) selected for the analysis of the maximum NDVI com-

posite data, denoted as black squares in a MODIS clear-sky composite image (top), and as seen

in a 1000 m digital elevation model (DEM; bottom). Each ROI covers an area of 6400 km2

(80 pixels×80 pixels). RGB color scheme of MODIS composite image: Red - band 6 (1628-

1652 nm); Green - band 2 (841-876 nm); Blue - band 1 (620-670 nm).

3.3 Results and discussion

3.3.1 Comparison of NDVI O and NDVI NO

A difference image of two maximum NDVI composites is displayed in Figure 3.3 for

both ROIs, together with the corresponding frequency distribution of the differences.
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Table 3.1: Geographical characteristics of the regions of interest (ROI). Both ROIs have a spatial

extent of 6400 km2 (80×80 1-km pixels). A denotes altitude in meters above sea level.

ROI/1 ROI/2

Upper left corner lat/long [◦] 63.3 N / 128.7 W 65.4 N / 125.8 W

Lower right corner lat/long [◦] 63.0 N / 126.5 W 65.1 N / 123.4 W

Amin / Amax [m] 704 / 2308 73 / 607

Amean (1 stdev) [m] 1601 (314) 219 (76)

The differences (NDVI O−NDVI NO; hereafter referred to as ∆NDVI) are shown for a

1 km spatial resolution composite in August 1990 (day 16 to end of month). Water

surfaces as well as missing values due to persistent cloud cover in either of the datasets

(NDVI O or NDVI NO) are marked as black areas and are excluded from the analysis. The

impact of orthorectification on the maximum NDVI composite image is clearly appar-

ent in ROI/1 (Figure 3.3, top). For the composite shown, NDVI spans values between

−0.21< ∆NDVI<0.16, with negative differences dominating (∆NDVImedian=−0.016).

The underlying topography (cf. DEM in Figure 3.2) is recognizable in the pattern of

∆NDVI, with values around ∆NDVI≈0 in the low-lying valleys and higher absolute val-

ues in elevated areas. Similar to the low-lying areas in ROI/1, the range of ∆NDVI is

lower in ROI/2 (Figure 3.3, bottom). In contrast to the topographically heterogeneous

ROI/1, the histogram of ∆NDVI is symmetrical relative to zero (∆NDVImedian=0.0) for

ROI/2. The asymmetry towards negative values of ∆NDVI in ROI/1 (where NDVI O

adopts lower values than NDVI NO) results from the repeated displacement of elevated

pixels into opposite directions during the course of a compositing interval. Due to the

nature of the maximum NDVI compositing scheme, higher NDVI values will thereby

erroneously be assigned to the geographic location of targets with low NDVI if terrain

displacement is not properly accounted for. High NDVI values of certain (elevated) ge-

ographical locations are thus duplicated, whereas the extent of areas with low NDVI

decreases. If this process is repeated for a number of times, it will finally lead to an

increase in the number of pixels, where NDVI NO adopts higher values compared to

NDVI O. This is supported by the fact that for ROI/1 the satellite zenith angles consid-

ered in the compositing were, on average, significantly larger for non-orthorectified

input data (with p<0.01; not shown). This is not the case for ROI/2, where no signifi-

cant difference between orthorectified and non-orthorectified composites was found

in terms of average satellite zenith angles considered. Depending on how often a

certain area is observed within a compositing interval, the displacement of low-NDVI

areas may also lead to large positive values of NDVI (see Figure 3.3). In ROI/2, non-
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Figure 3.3: NDVI difference image for the ROIs under investigation (left) and corresponding

histograms (right). The differences (NDVI O−NDVI NO) are shown for a 1 km spatial resolution

maximum NDVI composite in August 1990 (day 16 to end of month). Water surfaces as well

as missing values due to cloud cover in either of the datasets (NDVI O or NDVI NO) are marked

as black areas and are excluded from the analysis.

zero differences are observed due to the influence of small scale topography on the

geolocation, as seen for the most elevated areas in the centre/north of ROI/2 (see DEM

in Figure 3.2). Furthermore, minor pixel shifts in low elevation areas result from the

orthorectification process, if the scene to be corrected covers both high and low eleva-

tion areas. To analyze the impact of spatial resolution (1 km, 4 km, 5 km, and 8 km) on

the distribution of ∆NDVI, the histograms of ∆NDVI for all composites and years are
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Figure 3.4: ROI/1 histograms of the differences (∆NDVI) between orthorectified and non-

orthorectified composites for all spatial resolutions. Top: 1 km (left) and 4 km (right). Bottom:

5 km (left), and 8 km (right). Each histogram represents a total of 10 composites. P1,99 denotes

the 1% and 99% percentiles, respectively. For clarity, the scale of the x-axis is kept constant

for all spatial resolutions.

displayed in Figure 3.4 (10 composites per spatial resolution). Given the good agree-

ment between orthorectified and non-orthorectified composites in ROI/2, results are

only shown for ROI/1. Similar to Figure 3.3 (top), histograms for all spatial resolutions

are not symmetrical relative to zero. In addition, distributions of ∆NDVI are character-

ized by large positive and negative values, even though the range of ∆NDVI is clearly

reduced if the data are aggregated to coarser resolutions. At 1 km resolution the 1%

and 99% percentiles (P1,99) correspond to ∆NDVI values of P1,99;1km=[−0.16,0.09] in

contrast to reduced numbers at 8 km resolution (P1,99;8km=[−0.04,0.02]). Aggregation
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to larger regions apparently reduces the range of NDVI because pixel values of both

NDVI O and NDVI NO converge as they more closely correspond to the same region,

i.e. full-resolution pixels may still remain within the same (coarse resolution) pixel af-

ter the orthorectification process. In addition, the range of ∆NDVI is reduced since

the process of aggregation reduces the frequency of occurrence of both high and low

NDVI values. The distinct effect of terrain displacement as demonstrated at single pixel

scale is of particular relevance for comparative studies of satellite and ground based

phenology in complex terrain (Fontana et al., 2008). It likely influences observations

of the temporal progression of vegetation development at a certain location as repre-

sented by time series of maximum NDVI composites and could thereby lead to biases

in the retrieval of phenological parameters, such as the start of season. However, the

analysis of the temporal uncertainty introduced to NDVI composite data by the terrain

displacement is beyond the scope of the study. Apart from the single pixel scale ef-

fects the regional (i.e. ROI) scale effect is also of interest. In view of the asymmetry of

the distribution of ∆NDVI, it is, particularly with regard to the regional scale analysis

of vegetation activity in mountainous regions, important to determine whether mean

NDVI as well as the spatial variability (σNDVI) differ significantly between orthorecti-

fied and non-orthorectified composites. As a result of the overrepresentation of areas

with high NDVI as explained above, we would expect mean NDVI to be systemati-

cally higher in non-orthorectified imagery. Hence, we compared mean NDVI between

orthorectified and non-orthorectified imagery using one-tailed t-statistics for all com-

posites and spatial resolutions, testing the Null-hypotheses H0: mean NDVI NO≤mean

NDVI O against the alternative hypotheses HA: mean NDVI NO>mean NDVI O. In addi-

tion, differences in σNDVI were analyzed using F-test. Results are summarized in Figure

3.5. Statistically significant results (with p<0.01) are indicated with filled symbols in

contrast to insignificant results (open symbols). In ROI/1, mean NDVI appeared to be

significantly higher in non-orthorectified composites at all spatial resolutions except in

one case at 5 km and three cases at 8 km resolution (Figure 3.5; top, left), despite the

fact that the effect of terrain displacement diminishes during aggregation to coarser

resolutions. By contrast, significantly higher mean NDVI in ROI/2 was only obtained

at the 1 km level in six out of ten composites (Figure 3.5; top, right). As discussed

above, minor pixel shifts due to orthorectification in nearby mountains as well as small

scale topography may lead to the observed differences at the 1 km level in ROI/2. Spa-

tial variability appeared to be less affected by the terrain displacement effect (Figure

3.5, bottom). Significant differences between orthorectified and non-orthorectified

imagery were only obtained at the 1 km level in ROI/1. In contrast to the single pixel

scale effect characterized by large positive and negative values of ∆NDVI, the regional

scale effect of terrain displacement is characterized by a systematic overestimation
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Figure 3.5: Comparison of mean (top) and standard deviation (σNDV I ; bottom) between

NDVI O and NDVI NO for ROI/1 (left) and ROI/2 (right). Symbols are filled, where the statistics

were found to be significant (p<0.01).

of mean greenness and associated vegetation photosynthetic activity, represented by

significantly higher values of mean NDVI in non-orthorectified composites. This ef-

fect could be of interest for studies dealing with the contribution of vegetation to

biochemical processes. NDVI datasets have repeatedly served as a basis for the gen-

eration of fields of biophysical parameters, such as leaf area index (LAI) or fraction of

absorbed photosynthetically active radiation (FPAR; Sellers et al., 1996), which in turn

are used to model various soil-vegetation-atmosphere interactions. Hence, inaccurate

representation of mean vegetation activity by non-orthorectified composites may lead

to a misrepresentation of vegetation in biochemical models in mountainous areas.

Results demonstrate that the correction of the pixel displacement in topographically



Orthorectification - spatial sampling - maximum NDVI composites 57

heterogeneous areas has a significant effect on the maximum NDVI composites both

at single pixel and regional scales. The effect is mainly, but not exclusively, observed

in areas with significant topography, depending on the spatial resolution of the com-

posite. The next step is thus to validate these findings with precisely georeferenced

maximum NDVI composites from the MODIS sensor. These results will be discussed in

the following section.

3.3.2 Validation with MODIS maximum NDVI composites

Validation of NOAA-16 AVHRR/3 NDVI data using precisely georeferenced MODIS

composites was performed for the month of August in 2001, 2002, and 2003. Linear

correlation coefficients (r) were computed between NDVIMODIS on the one hand and

NDVI O and NDVI NO, respectively, on the other hand to get a measure of the spatial

coherence of the datasets. In order to account for differences in the performance of

the cloud masking schemes between AVHRR and MODIS, pixels were only considered

for the comparison if they were flagged as cloud-free in both datasets. Figure 3.6 illus-

trates the results, showing r for both ROIs including all four spatial resolutions. The size

of the ’+’-symbols varies according to the percentage of valid values in each ROI and

compositing period, resulting from the number of pixels affected by persistent cloud

cover. Correlation coefficients for ROI/2 closely follow the 1:1 line (Figure 3.6, right),

supporting above findings that in areas without pronounced topography (ROI/2) the

implementation of orthorectification only has a marginal influence on the composite

data. For a topographically heterogeneous area such as ROI/1 (Figure 3.6, left) cor-

relation coefficients, however, adopt higher values for NDVI O, with 0.00< ∆r<0.11

(∆r=rO−rNO). Correlation coefficients span values between 0.56<r<0.99 for NDVI O,

which reflects a generally high level of spatial coherence between MODIS reference

imagery and orthorectified output of the CAPS software. In ROI/1, linear correlation

coefficients for NDVI O lower than r<0.8 were solely obtained in one August com-

posite in 2002 (day 16 to end of month), when persistent cloud cover extensively

degraded the quality of the maximum NDVI composite and resulted in a low per-

centage of valid values. In order to visualize the differences between the three NDVI

datasets, a MODIS reference composite for ROI/1 is displayed along with orthorecti-

fied and non-orthorectified AVHRR NDVI composites at 1 km spatial resolution (days

1-15 in August, 2003) in Figure 3.7. Low-NDVI areas (dark surfaces in Figure 3.7)

are diminished and high-NDVI areas are expanded in non-orthorectified composites

(middle) compared to both, orthorectified AVHRR (left) and MODIS composites (right).

This is again in good agreement with findings in Section 3.3.1, where higher mean

NDVI values were obtained for non-orthorectified composites. Visually, local scale
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Figure 3.6: Linear correlation coefficients ( r) for ROI/1 (left) and ROI/2 (right) and all spatial

resolutions in August 2001, 2002, and 2003. X-axis: Coefficients between NDVIMODIS and

NDVI O. Y-axis: Coefficients between NDVIMODIS and NDVI NO. The size of the ’+’-symbols

varies according to the percentage of valid values in each ROI and compositing period. Three

percent levels (50%, 75%, and 95%) are provided as a reference.

Figure 3.7: ROI/1 as seen in a 1 km maximum NDVI composite in August 2003 (days 1-15),

including orthorectification (NDVI O; left), without (NDVI NO; middle), and as seen in a MODIS

1 km composite for the same period (NDVIMODIS; right). Dark surfaces, indicating low NDVI

values, are clearly diminished in the subset that does not include orthorectification (middle).

topographical features such as valleys and ridges with a horizontal extent of a few

kilometers are more clearly represented in orthorectified composites compared to the

non-orthorectified case. To quantify this effect, we performed a Fourier transform of

all three displayed maximum NDVI composites in Figure 3.7 and analyzed the integral

of the power spectra of each composite after applying a series of circular cut high pass
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Figure 3.8: Summed power (p) of three maximum NDVI composites (NDVI O, NDVI NO, and

NDVIMODIS; Figure 3.7) after the application of high pass filters with cut-off values correspond-

ing to various spatial scales. For clarity, differences in summed power (∆p) between NDVIMODIS

and NDVI O and between NDVI O and NDVI NO are also provided.

filters. For the high pass filters, we chose cut-off values corresponding to spatial scales

from 2 km to 15 km. The results are presented in Figure 3.8. In terms of summed

power after filtering NDVIMODIS clearly exceeds both AVHRR composite images. Major

differences arising for spatial scales smaller than ca. 5 km indicate a high level of small

scale spatial information contained in MODIS composite imagery relative to AVHRR

composites. Differences in summed power were, however, also obtained between

NDVI O and NDVI NO: while the differences were found to be minor for small spatial

scales (<4 km), they distinctly increase for spatial scales between 4 km and 10 km

with the summed power of filtered NDVI O being larger compared to that of filtered

NDVI NO; at spatial scales larger than 10 km differences remain constant, meaning that

the summed power for these spatial scales is identical in both images. These results

based on a single composite again confirm that local scale topographical features at

spatial scales between 4 km and 10 km are more clearly represented in orthorecti-

fied composites and point at the necessity of orthorectification being an integral part
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of data pre-processing in studies concerning topographically heterogeneous areas. In

rugged terrain, spatial NDVI patterns can only be preserved from scene level up to

composite level if terrain displacement is accounted for. Given the good agreement

with MODIS reference composites and the improved representation of local scale land

surface features by NDVI O, we believe that the results provided here represent an

important step towards the generation of high quality satellite climate data records

for mountain regions on the North American land mass. Beyond that, the newly de-

veloped CAPS algorithm (Khlopenkov et al., 2009) could basically be applied to any

geographical area on Earth to pre-process long term AVHRR data records, given that

an archive of full spatial resolution AVHRR data is available. So far, only results based

on 1 km AVHRR data and coarse resolution data created through aggregation of the

1 km data have been presented. However, most of the studies dealing with the anal-

ysis of vegetation activity on large spatial scales make use of GAC-based data, since

they uniquely provide long-term coverage at global scale. We, therefore, relate above

findings to GAC data from both PPF and GIMMS archives in the following section and

address the GAC sampling scheme and its influence on NDVI data in more detail.

3.3.3 Comparison with GAC-based datasets

For the comparison with GAC-based datasets we chose aggregated orthorectified

imagery from the CCRS archive (NDVI O) and confined the analyses to ROI/1. Re-

sults are displayed in Figure 3.9 for the 5 km spatial resolution PPF data (left) and

8 km GIMMS data (right). Pixels were only considered for the comparison if they

were flagged as cloud-free in both datasets. Histograms of the difference images

(∆NDVI=NDVI O−NDVIPPF/GIMMS) are displayed for data that were reprojected using

NN (solid line) and BI algorithm (dotted line). Similar to the pattern obtained for the

comparison of NDVI O and NDVI NO (Section 3.3.1), the majority of the ∆NDVI val-

ues were negative (∆NDVImedian<0) for both PPF and GIMMS datasets, but the stan-

dard deviation of ∆NDVI was higher. In contrast to the distribution of ∆NDVIPPF,

which adopted both large positive and negative values with a systematic average

positive bias for NDVIPPF of 0.05 for both datasets (NN and BL resampling scheme),

∆NDVIGIMMS values were almost exclusively negative, representing significant differ-

ences in the magnitudes of NDVI O and NDVIGIMMS (systematic average positive bias

for NDVIGIMMS of 0.19). Since both NDVIPPF as well as NDVIGIMMS originate from GAC

data, the difference in the magnitude of the systematic bias is assumed to be due to

the post-processing as outlined in Section 3.2.1, which is included in the GIMMS data

in order to correct the NDVI for effects not related to changes in vegetation. Users of

GIMMS data are asked to use the data with caution (Global Inventory Modeling and
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Figure 3.9: Histograms of the differences (∆NDVI) between orthorectified AVHRR data

(NDVI O) and Global Area Coverage (GAC) data from PPF (NDVIPPF; left) and GIMMS

(NDVIGIMMS; right), with ∆NDVI=NDVI O−NDVIPPF/GIMMS. Histograms are shown for ROI/1 NDVI

data that were reprojected using nearest neighbor (solid line) and bilinear interpolation algo-

rithm (dotted line). Each histogram represents a total of 10 composites.

Mapping Studies (GIMMS), 2007), since they present generalized vegetation patterns

and may therefore be of limited value for studies at local scales. Nevertheless, the

strong systematic positive bias of NDVIGIMMS was somewhat surprising. In general,

three factors contribute to the observed differences between NDVI O and GAC-based

datasets. First, uncertainties in the accuracy of geolocation in the GAC datasets should

be considered. As a consequence of the spatial degradation of GAC data due to the

onboard sampling scheme (Section 3.1.1), geolocation schemes for GAC data do not

include chip matching and are primarily based on orbital models. Even though Fowler

et al. (2007) expect sub-pixel accuracy in the geolocation of the PPF data, in certain

cases we observed image-to-image offsets of up to 2 pixels (i.e. in the range of 10 km;

not shown). No obvious shifts were found for the GIMMS data, however, geolocation

accuracy of 1 pixel at 8 km level (Tucker et al., 2005) likely adds to the discrepancies

in a spatially heterogeneous area such as ROI/1. Second, as a result of these geoloca-

tion uncertainties GAC data do not include orthorectification. This again leads to the

effects in maximum NDVI composite data as outlined in the previous sections. Third,

the GAC sampling scheme itself as outlined in Section 3.1.1 is a potential source of

systematic biases in NDVI composite data and will be addressed in more detail below.

To quantify the impact of the GAC sampling scheme on the NDVI in ROI/1 both at

single scene as well as at multi-date (i.e. composite) level, we conducted a separate
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analysis. For the analysis at scene level, we chose a NOAA-16 AVHRR clear-sky scene

on August 29, 2003, whereas composite level analysis was performed for the 16-day

period from August 16 to the end of the month in August 2003. In order to isolate the

GAC sampling effect from the terrain displacement effect, we selected orthorectified

imagery for the analysis. Within the 80×80 km2 ROI/1, 20 locations were randomly

chosen as a starting point for the analysis. At scene level, a ”true” mean NDVI was

calculated at each of these locations based on aggregated 4×4 km2 AVHRR band 1

and band 2 input data (i.e. including all 1 km pixels in the calculation of the coarse res-

olution NDVI). Even though a single GAC sample represents an area of 5×3km2, GAC

data resolution is often assumed to be 4 km, and we, therefore, chose to perform the

analysis at 4 km level. GAC AVHRR band 1 and 2 data were subsequently calculated

by simulating an AVHRR scan line within the 4×4 km2 area, i.e. by averaging four

neighboring 1 km pixels at a time. By doing this (4 rows, 4 columns, and 2 diagonals),

a total number of 10 simulated GAC NDVI values was calculated per 4×4 km2 area.

For the multi-date analysis, we identified the maximum NDVI for the same locations

during the compositing interval. Here again, ”true” maximum NDVI values (based on

aggregated data) were compared to 10 simulated GAC maximum NDVI values. For the

determination of the maximum GAC NDVI during a compositing interval, we created

10 different 16-day NDVI time series at each location by averaging the neighboring

pixels in a randomly chosen AVHRR scan line (as described above) for each satellite

overpass (10 iterations). Results are displayed in Figure 3.10 for scene (left) as well

as composite level (right). NDVI values based on aggregated data (NDVIagg) are op-

posed to the 10 simulated GAC means (NDVIsim) of the same 4×4 km2 area (’+’),

standard deviations within the 10 GAC values are also provided (’�’). For the limited

number of locations we selected, following differences between aggregated and sim-

ulated NDVI values were obtained at scene and composite level: mean deviations of

NDVIsim from the ”true” NDVI (NDVIagg) amounted ∆NDVImean=0.001±0.04 at scene

level and ∆NDVImean=−0.02±0.03 at composite level, where NDVI=NDVIagg-NDVIsim.

At composite level, this translates into an average positive relative bias for NDVIsim

of 10.6%±19.1 for the selected locations (not shown). In addition, the uncertainty

introduced by the GAC sampling scheme appeared to be somewhat reduced at the

multi-date level, given the difference in the mean of the standard deviations at scene

(mean σscene=0.04) and composite level (mean σcomposite=0.02). The GAC sampling

scheme has repeatedly been identified in literature as a source of error in AVHRR NDVI

data. In general, discrepancies between GAC and aggregated datasets arise from the

fact that in GAC sampling, data values unrepresentative of those occurring in the orig-

inal data are included in the averaging process (Justice et al., 1989). Using simulated

AVHRR imagery based on Landsat Multispectral Scanner (MSS) data for various ter-



Orthorectification - spatial sampling - maximum NDVI composites 63

Figure 3.10: Uncertainty of AVHRR Global Area Coverage (GAC) sampling scheme at scene

(left) and composite level (right) for 20 randomly chosen locations within ROI/1. For each

aggregated 4 km NDVI, 10 simulated GAC means within the same 4×4 pixel area are plotted

(’+’), together with the standard deviation (’�’) within these 10 mean NDVI values.

rain types Justice et al. (1989) found that for spatially heterogeneous areas, the GAC

sampling scheme was less accurate in comparison with other sampling procedures.

Belward (1992) demonstrated that undersampling in the GAC data generation leads

to increased values of mean local variance in GAC data compared to aggregated data.

Our findings for randomly chosen locations in a spatially heterogeneous area (ROI/1)

confirm that the GAC sampling scheme potentially leads to biases and additional noise

in the data both at scene and composite level, even though we found the uncertainty

introduced by the GAC sampling to be reduced through the selection of the maximum

NDVI during a compositing interval.

3.4 Concluding remarks

Pixel positions in satellite imagery are affected by the surface topography, however,

this effect was so far ignored by most AVHRR processing systems. Given the large

area of the Earth’s surface covered by elevated topography, this represents a signifi-

cant drawback for the use of AVHRR data in climate studies over mountainous regions,

particularly with regard to the GCOS systematic observation requirements for satellite

products (GCOS, 2006). In this study, we have shown that the implementation of

orthorectification, i.e. the correction of the terrain displacement in satellite imagery,
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has a significant effect on the quality of AVHRR maximum NDVI composites, which are

commonly used to analyze vegetation activity at various spatial scales. The analyses

were performed for an area in north-western Canada. Differences between orthorec-

tified and non-orthorectified maximum NDVI composites at various spatial resolutions

(1 km, 4 km, 5 km, and 8 km) were analyzed for the month of August in 1989,

1990, and 2001 to 2003. Validation was performed using accurately georeferenced

MODIS maximum NDVI composites. Large positive and negative differences between

orthorectified and non-orthorectified maximum NDVI composites were obtained at

single pixel scale in topographically heterogeneous areas, although they were reduced

to smaller numbers for coarse resolution data aggregated based on 1 km data. Abso-

lute differences for a topographically more homogeneous and lower laying area were

significantly smaller, however, an influence of small scale topography could still be de-

tected. Effects of orthorectification identified at single pixel scale are assumed to be of

particular interest for studies dealing with the retrieval of phenological and biophysical

information from NDVI time series. However, the temporal uncertainty introduced to

NDVI composite by the terrain displacement remains to be addressed in future stud-

ies. At regional scale, non-orthorectified composites were found to overestimate mean

NDVI at all spatial resolutions. Spatial variability was only significantly affected at 1 km

spatial resolution. Regional scale effects are therefore of importance for studies deal-

ing with the contribution of vegetation to biochemical processes when the NDVI is

used as input for the generation of fields of biophysical surface parameters such as

the LAI. The good geometric accuracy of orthorectified AVHRR composites generated

by CCRS CAPS was reflected in high linear correlation coefficients with MODIS ref-

erence composites. Local scale topographic features, which are apparent in MODIS

composites, were more clearly recognizable in orthorectified AVHRR composites com-

pared to the non-orthorectified data. Analyzing the power spectra of maximum NDVI

composites, large differences between orthorectified and non-orthorectified AVHRR

data were identified at local scales between 4 km and 10 km. We are, therefore, con-

vinced that orthorectification should be an integral part of AVHRR pre-processing and

that orthorectified CAPS output represents an important step towards the generation

of high quality satellite climate data records for the Canadian landmass. Finally, differ-

ences between NDVI O and GAC-based datasets from PPF and GIMMS were analyzed

for mountainous ROI/1. Positive systematic biases relative to NDVI O were identified

for both GAC-based datasets. The GAC sampling scheme as a source of error in NDVI

data in a spatially heterogeneous area such as ROI/1 was discussed both at scene

and composite levels. Even though the uncertainty introduced by the GAC sampling

scheme was somewhat reduced through the selection of the maximum NDVI during a

compositing interval, simulated GAC NDVI data were systematically positively biased at
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composite level. Results suggest that AVHRR GAC-based datasets produced with the

maximum NDVI composite scheme contain inherent positive NDVI biases and therefore

should be used with caution in future vegetation studies in mountain regions. This bias

is a consequence of the GAC sampling scheme. It is defined by the degree of local

NDVI spatial heterogeneity regardless of surface topography. The correction of this

effect using solely GAC data is not possible because continuous imagery is required at

higher spatial resolution to obtain unbiased NDVI composites. This conclusion empha-

sizes the importance of the task on reprocessing of AVHRR 1-km imagery for climate

studies as identified by the Committee on Earth Observation Satellites (CEOS) in its

response to the GCOS Implementation Plan (CEOS, 2006).
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Abstract

This study evaluates the ability to track grassland growth phenology in the Swiss Alps

with NOAA-16 Advanced Very High Resolution Radiometer (AVHRR) Normalized Dif-

ference Vegetation Index (NDVI) time series. Three growth parameters from 15 alpine

and subalpine grassland sites were investigated between 2001 and 2005: Melt-Out
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(MO), Start Of Growth (SOG), and End Of Growth (EOG). We tried to estimate these

phenological dates from yearly NDVI time series by identifying dates, where certain

fractions (thresholds) of the maximum annual NDVI amplitude were crossed for the

first time. For this purpose, the NDVI time series were smoothed using two com-

monly used approaches (Fourier adjustment or alternatively Savitzky-Golay filtering).

Moreover, AVHRR NDVI time series were compared against data from the newer gen-

eration sensors SPOT VEGETATION and TERRA MODIS. All remote sensing NDVI time

series were highly correlated with single point ground measurements and therefore

accurately represented growth dynamics of alpine grassland. The newer generation

sensors VGT and MODIS performed better than AVHRR, however, differences were

minor. Thresholds for the determination of MO, SOG, and EOG were similar across

sensors and smoothing methods, which demonstrated the robustness of the results.

For our purpose, the Fourier adjustment algorithm created better NDVI time series

than the Savitzky-Golay filter, since latter appeared to be more sensitive to noisy NDVI

time series. Findings show that the application of various thresholds to NDVI time

series allows the observation of the temporal progression of vegetation growth at

the selected sites with high consistency. Hence, we believe that our study helps to

better understand large-scale vegetation growth dynamics above the tree line in the

European Alps.

4.1 Introduction

4.1.1 Scientific context

The effects of climate variability on ecosystems have in recent decades become in-

creasingly important within the global climate change discussion (Studer et al., 2007):

earlier start of spring and extended autumn conditions are reflected in phenological

time series and result in prolonged growing seasons. This has already been demon-

strated in phenological ground observations (Menzel, 2000; Roetzer et al., 2000; De-

fila and Clot, 2001) as well as in remote sensing vegetation index time series (Myneni

et al., 1997; Zhou et al., 2001). Ground observations in combination with remote

sensing approaches can make important contributions to future climate-phenology

studies (Studer et al., 2007). However, ground validation of remote sensing mea-

surements with coarse resolution implies considerable difficulties. Fisher and Mustard

(2007) state that the poor relationship between ground- and satellite phenology due

to data scale issues is a drawback of satellite phenology, because the chance of a

single point ground observation being representative of an entire area at remote sens-

ing scale (typically ≥ 1 km in remote sensing phenology studies; White et al., 1997;
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Reed et al., 1994) is small. Comparative studies of satellite and ground based phe-

nology were performed in order to assess the interrelationship of both approaches

(Chen et al., 2001; Braun and Hense, 2004; Fisher et al., 2006; Fensholt et al., 2006;

Fisher and Mustard, 2007). In order to assure the comparability of remote sensing and

ground phenological datasets, Fisher and Mustard (2007) suggest that the phenologi-

cal metric to be investigated should ideally be identifiable from ground and space and

it should represent the same phenological event from both perspectives. Additionally,

the same authors stress the importance of topography in comparative studies such

that small-scale phenological heterogeneity due to highly variable topography may

lead to discrepancies between remote sensing and ground observations.

The Normalized Difference Vegetation Index (NDVI) is a commonly used remote sens-

ing vegetation index in climate-phenology studies (Myneni et al., 1997; Zhou et al.,

2001; White et al., 1997; Reed et al., 1994; Stöckli and Vidale, 2004). The NDVI is

calculated from the reflectances in the red and near infrared (NIR) bands of the elec-

tromagnetic spectrum and is a measure of the photosynthetic activity within the area

covered by a pixel (Justice et al., 1985; Tucker and Sellers, 1986). NDVI time series,

however, suffer from numerous limitations: the calculated NDVI is not only a func-

tion of vegetation density and type, but it is also influenced by the atmosphere and

illumination as well as observation geometry, which results in noisy NDVI time series

(Holben, 1986; Gutman, 1991). In order to extract meaningful information on veg-

etation dynamics regardless of these distortions, various methods for the elimination

of spurious data were developed, such as the Maximum Value Composite (MVC; Hol-

ben, 1986), Best Index Slope Extraction (BISE; Viovy et al., 1992), Fourier adjustment

(Sellers et al., 1996), Savitzky-Golay filter (Chen et al., 2004), asymmetric Gaussian

model functions (Jönsson and Eklundh, 2002), and many more. All methods aim at

approaching an upper NDVI envelope, based on the assumption that NDVI values are

depressed by any of the above-mentioned effects (Holben, 1986). Smoothing algo-

rithms yet hold the danger of introducing artifacts and suppressing natural variations

in the NDVI time series (Fisher and Mustard, 2007).

4.1.2 Study overview

The European Alps are assumed to be particularly sensitive to changes in the climate

system (Beniston et al., 1997; Wanner et al., 2000, 1997). Plant species have already

been observed to migrate to higher elevations as a consequence of climate change

(Grabherr et al., 1994; Walther et al., 2005). Stöckli and Vidale (2004) found a trend

towards longer growing season lengths in the European Alps based on the 20-year

Pathfinder NDVI dataset (James and Kalluri, 1994). Observed changes in growing
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season length are likely to have considerable implications for ecosystem services, agri-

culture and nature conservation. It is therefore particularly pressing to understand

and quantify past and future changes in season length in mountain ranges on large

spatial scales, e.g. with remote sensing approaches. Phenological networks in Switzer-

land (Studer et al., 2005; Defila and Clot, 2001) that could serve as ground validation

for remote sensing NDVI time series reach up to 1800 m above sea level. However,

for higher elevations the Swiss snow-measuring network IMIS (”Interkantonales Mess-

und Informationssystem”) can provide data on vegetation growth (Rhyner et al., 2002;

Jonas et al., 2008).

The study presented here focuses on the growth phenology of alpine grassland at 15

IMIS sites between 2001 and 2005 from both satellite and ground perspectives. The

IMIS network provides an excellent opportunity to link remote sensing and ground

phenological measurements in a highly complex environment such as the Swiss Alps,

even though frequent cloud cover as well as pronounced topography make the task

difficult. Particularly, we investigated the ability of remote sensing NDVI time series

to track three IMIS vegetation parameters with special consideration of the 20-year

National Oceanic and Atmospheric Administration (NOAA) Advanced Very High Res-

olution Radiometer (AVHRR) archive of the Remote Sensing Research Group (RSGB),

University of Bern. A cross-comparison was subsequently performed with NDVI time

series from two newer generation sensors: Système Pour l’Observation de la Terre

(SPOT) VEGETATION (VGT; 1 km spatial resolution) and TERRA Moderate Resolution

Imaging Spectroradiometer (MODIS; 500 m and 1 km). NDVI time series from all three

sensors were smoothed following two different approaches: a Fourier adjustment

algorithm modified from Stöckli and Vidale (2004) and the Savitzky-Golay method in-

troduced by Chen et al. (2004). The ability of both algorithms to minimize undesirable

noise in the NDVI time series was revised for our purposes.

4.2 Data and methods

4.2.1 Ground dataset

Only a brief overview of the ground dataset is provided here. For detailed information

we refer to Jonas et al. (2008). The IMIS network is a meteorological network that has

been run by the Swiss Federal Institute for Snow and Avalanche Research (SLF) since

1996 (Rhyner et al., 2002) and that has since then recorded snow and climate variables

such as snow depth, air temperature, wind speed, and soil temperature in 30-minute

intervals. More than 100 stations were installed throughout the Swiss Alps. Snow
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Figure 4.1: Spatial distribution of the sites (black dots) in Switzerland. All sites represent

subalpine and alpine grassland (modified from Jonas et al., 2008). The numbers associated

with the black dots indicate site elevations above sea level [m].

depth is measured from above with an ultrasonic snow depth sensor (mounted on a

mast 6 m above ground), which can also track vegetation height during summer. 15

out of 105 stations were identified to best feature undisturbed subalpine and alpine

grasslands with a homogeneous vegetation of at least 10 cm height at full growth. The

sites are distributed throughout the Swiss Alps and range from 1770 to 2545 m a.s.l.

(Figure 4.1). The combination of meteorological and phenological information at the

IMIS sites provides an excellent opportunity to study alpine grassland phenology. IMIS

dates or indices were computed by fitting the growth signal with a 3-leg linear fit (bold

line, Figure 4.2): melt-out date (IMISMO), which can be regarded as the start of season,

start of height growth (IMISSOG), and end of growth (IMISEOG), which corresponds to

the date where maximum plant height is reached. Leaf unfolding after melt-out did

typically not result in any detectable height growth until two to three weeks after melt-

out, when the onset of vegetation height growth (IMISSOG) was observed. IMISSOG

was followed by a nearly linear growth until maximum vegetation height was reached

(IMISEOG) in early summer (Figure 4.2).

A minimum duration of snow cover at the investigated grassland sites spanning from

1 December to 30 April was identified (Jonas et al., 2008). For the subsequent use
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Figure 4.2: Sample data (black dots) from the ultrasonic sensor at the Tujetsch site

(2270 m a.s.l.) in 2001. Melt-out (IMISMO), start of growth (IMISSOG), and end of growth

(IMISEOG) are determined from a 3-leg linear fit of the growth signal (adapted and modified

from Jonas et al., 2008).

within the processing of the remote sensing data, we shortened this snow-covered

period by 15 days on either side to define a maximum growing season length at the

investigated sites.

4.2.2 Remote sensing datasets

NOAA AVHRR

The AVHRR data utilized in this study consist of afternoon passes (Equator Crossing

Time ≈ 1.30 pm) from the six channel AVHRR/3 instrument on board the polar or-

biting NOAA-16 satellite between the 27 February 2001 and 3 October 2005. The

nominal instrument spatial resolution at nadir is 1.1 km. Sensor data were calibrated

according to the KLM user’s guide (Goodrum et al., 2000), using the monthly updated

coefficients for channels 1 and 2 from the NOAA National Environmental Satellite Data

and Information Service (NESDIS). Prelaunch coefficients for channel 1 and 2 calibra-

tion were used before these updates started in 2003. A feature matching algorithm
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Table 4.1: Spectral characteristics [nm] of the red and NIR bands of all involved sensors:

AVHRR/3 (Goodrum et al., 2000), VEGETATION (VEGETATION Programme, 1998), and MODIS

(Barnes et al., 1998); where red=red part of the electromagnetic spectrum and NIR=near in-

frared part of the spectrum. Red and NIR bands are involved in the calculation of the NDVI.

AVHRR/3 VGT MODIS

red [nm] 580-680 610-680 620-670

NIR [nm] 725-1000 780-890 841-876

was used to achieve sub-pixel accuracy of the geolocation. Orthorectification, which

is important to reduce geometric distortions introduced by the complex alpine relief

and the scan geometry, was performed using the GTOPO30 digital terrain model.

Cloud detection was done using the Cloud and Surface Parameter Retrieval (CASPR)

software by Key (2002). The overall quality of the CASPR algorithm was proved by

Di Vittorio and Emery (2002), however, Hauser et al. (2005) who also applied CASPR

to NOAA-16 data for a region covering Switzerland observed difficulties arising from

sub-pixel clouds. An atmospheric correction in the involved AVHRR channels was not

performed. The data were not corrected for NOAA-16 orbital drift, since the effect

of solar zenith angle on NDVI is partly compensated for vegetated surfaces (Stöckli

and Vidale, 2004) and is assumed to be weak, especially in seasonal and inter-annual

terms (Zhou et al., 2001).

NDVI time series were subsequently calculated from AVHRR bands 1 and 2 (Table 4.1).

Observations with satellite zenith angles greater than 45◦ were excluded from further

processing in order to avoid large variations in the data due to viewing geometry. Data

gaps in early 2001 and late 2005 as pointed out above were dealt with as follows:

missing data outside the growing season as outlined in Section 4.2.1 were set to a

value of NDVI=−0.05, since the pixel was assumed to be snow covered at that time of

the year. Missing data during the snow free period were set to NDVI=0.0. A Maximum

Value Composite (AVHRRMVC) was subsequently created from the cloud screened daily

NDVI data. The MVC technique (Holben, 1986) selects the highest NDVI value within

a predefined time interval (i) and is a widely accepted method for the removal of

undesirable noise from daily NDVI time series. A value of i=10 days was chosen for

the daily AVHRR product.

The drawback of the compositing methodology is the loss of critical temporal infor-

mation required to accurately track phenological processes. In order to counter this
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loss, precise acquisition dates for all selected NDVI values were retained instead of

assigning constant time steps (i) to the composite NDVI time series.

SPOT VEGETATION

The freely available SPOT VGT-S RADIOMETRY product for Europe (25◦N-75◦N,−11◦E-

62◦E) was downloaded from the VGT distribution site (http://free.vgt.vito.be/) for the

investigated period (180 scenes totally). The S-10 product represents 10-day compos-

ites in 1 km spatial resolution, selecting the pixel with the highest Top of Atmosphere

NDVI (VEGETATION Programme, 1998). NDVI time series at the selected alpine grass-

land sites were extracted from the NDV band. The precise date of acquisition for each

pixel was derived from the time grid (TG) band. Cloud as well as quality flags were

extracted from the status map (SM). For more detailed information about the VGT-S10

product we refer to the VEGETATION Programme (VEGETATION Programme, 1998).

All cloudy NDVI values that occurred during the snow covered period were set to a

value of −0.05. Values from cloudy days during the growing season were linearly

interpolated between the previous and subsequent NDVI value. The same procedure

was applied to all points where the quality flag in either the red or the near infrared

band (Table 4.1) revealed less than ideal quality.

TERRA MODIS

The MODIS tile number h18/v4 (40◦N-50◦N, 0◦E-15.6◦E) of the MOD09A1 surface

reflectance product with a spatial resolution of 500 m was downloaded from the

Land Processes Distributed Active Archive Center (LP DAAC) for the investigated period

(225 scenes in total). The MOD09A1 product represents 8-day composites, selecting

observations with minimal cloud cover and favorable observation geometry (low solar

and satellite zenith angles). MODIS scenes were resampled to UTM 32N (WGS84) prior

to further processing.

NDVI time series were calculated from the surface reflectance in MODIS bands 1 and

2 (Table 4.1). The precise acquisition date for each pixel is provided along with the

MOD09A1 product in an auxiliary dataset. Cloud state as well as quality flags were

extracted from the surface reflectance state flags. The same interpolation procedure

for cloudy and not ideal quality NDVI values was performed as described in Section

4.2.2 along with the preprocessing of the VGT-S data.

In order to assess the impact of spatial NDVI product resolution on the comparison

with IMIS ground data, a surface reflectance product with 1 km spatial resolution was
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generated based on the original 500 m MOD09A1 product using bilinear resampling.

Further processing of the 1 km product was performed according to the procedure as

described above for the 500 m product. The 1 km NDVI product was finally calculated

from the 1 km surface reflectance product, and cloudy as well as not-ideal quality

NDVI values were interpolated using the same procedure as for the VGT-S data.

4.2.3 Application of smoothing algorithms

The process of compositing is not sufficient to eliminate all unrealistic variability from

NDVI time series (Jönsson and Eklundh, 2002). Two widely used smoothing ap-

proaches were therefore modified (below described in detail) and applied to the com-

posite NDVI time series (NDVIcomp) in order to test for their capability to minimize un-

desirable noise in the composite NDVI time series at the selected 15 alpine grassland

sites: a Fourier adjustment algorithm modified from Stöckli and Vidale (2004) based

on Sellers et al. (1996), and an adaptive Savitzky-Golay filter as it was introduced by

Chen et al. (2004). Smoothing algorithms were applied to isolated single year time

series (i.e. from January to December). Only modifications to the above-mentioned

algorithms are dealt with in the following sections.

Fourier Adjustment

Unevenly spaced composite NDVI time series (i.e. precise acquisition dates for all

NDVI values) as described here for all three sensors do not meet the requirements of

the above mentioned Fourier adjustment algorithm, which assumes constant intervals

in time. The algorithm was therefore applied to time series with daily, and hence

constant, time steps (NDVI365). For that purpose composite NDVI time series were

complemented with auxiliary NDVI values (NDVIaux=−1) in between the valid points

that had been pre-selected within compositing. In order to get a rough approximation

of seasonality in the NDVI time series, a second order Fourier series (f ) was fitted to

NDVI365 using non-linear least squares, assigning weights of Wvalid=1 to all valid and

Waux=0 to all auxiliary points. Data were flagged as anomalous if they were outside

the boundary (f comp−2σ) < NDVIcomp < (f comp+2σ), where f comp represents the val-

ues of f at the corresponding dates of NDVIcomp, and σ is the standard deviation of

(f comp−NDVIcomp). Anomalous NDVIcomp values were subsequently linearly interpo-

lated between the previous and following valid point. Screened NDVIcomp were again

transformed into a time series with daily time steps for further processing, assigning

NDVIaux to the missing dates.



80

Figure 4.3: Composite NDVI time series (AVHRRMVC; dotted) at the Dötra site in southern

Switzerland (2060 m a.s.l) in 2002 and the corresponding Fourier adjusted (thin solid) as well

as Savitzky-Golay filtered NDVI products (dashed). NDVI increase in spring is very pronounced

after snow melt. The Savitzky-Golay product follows AVHRRMVC more closely compared to the

Fourier product. Note the temporal offset between AVHRRMVC (based on precise acquisition

dates) and the Savitzky-Golay NDVI product (fix time steps of i=10 days assumed). Thick

solid lines mark the thresholds ( th) where 50% ( th=0.5), 75% ( th=0.75), and 98% ( th=0.98),

respectively, of total annual NDVI amplitude are crossed for the first time.

In the following we fitted third order Fourier series, since it turned out that the very

pronounced NDVI increase in spring and decrease in late fall at the selected sites could

not be represented in second order series (not shown). The weighting scheme (Stöckli

and Vidale, 2004), which assigns higher weights to uncontaminated measurements

than to negative outliers, was only applied during the growing season. Here again,

Waux=0 were assigned to all NDVIaux of the daily resolution time series. The high

temporal resolution (1 day) of the resulting Fourier adjusted NDVI time series can be

advantageous when comparing satellite and ground based phenological events. An

example of a Fourier adjusted NDVI time series is displayed in Figure 4.3 for the Dötra

site, 2060 m a.s.l.
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Savitzky-Golay Filter

The Savitzky-Golay filter (Savitzky and Golay, 1964) performs a local polynomial least

squares fit within a moving window to assign a smoothed value to each underlying

data point. In contrast to simple moving average filters, this filter preserves area, mean

position, width, and height of seasonal peaks in NDVI time series (Jönsson and Ek-

lundh, 2004). Like the Fourier adjustment algorithm, the Savitzky-Golay filter requires

NDVI data with uniform temporal intervals, however, the use of NDVI time series with

daily resolution (taking into account precise acquisition dates as demonstrated for the

Fourier algorithm) did not reveal satisfactory results (not shown). Hence, dates corre-

sponding to the MVC time interval center (i/2) were assigned to each NDVI value in or-

der to create an evenly spaced composite NDVI time series (NDVIeven) with a temporal

resolution of i=10 days. All values outside the boundary (f−2σ) < NDVIeven < (f+2σ)

were flagged as anomalous, where f is a second order Fourier series that was fitted

to NDVIeven and σ the standard deviation of (f−NDVIeven). Anomalous NDVIeven val-

ues were subsequently linearly interpolated between the previous and following valid

point and steps 2 to 7 of the suggested procedure in Chen et al. (2004) were applied

to screened NDVIeven. Once the NDVI time series was filtered, a curve was fitted to

the data points using linear interpolation to obtain daily resolution. An example of a

Savitzky-Golay adapted NDVI time series is displayed in Figure 4.3.

4.2.4 Comparison of remote sensing and ground data

The ability of remote sensing NDVI time series to track the IMIS vegetation growth

dates IMISMO, IMISSOG, and IMISEOG was tested using the threshold method. A thresh-

old (th) represents a certain fraction of the maximum annual NDVI range (NDVIMAX −
NDVIMIN; Figure 4.3). The date where the threshold is crossed for the first time des-

ignates the vegetation growth parameter in the NDVI time series (analogous to IMIS

dates: NDVIMO, NDVISOG, and NDVIEOG). Keeping in mind that the NDVI is a mea-

sure of photosynthetic activity and therefore can be related to aboveground biomass

(Tucker et al., 1985), we expect leaf unfolding after melt-out as well as grassland

height growth to be represented in the NDVI time series as various NDVI levels, i.e. at

a certain percentage of the maximum annual greenness of each pixel. The threshold

method, however, strongly depends on single data points (NDVIMAX and NDVIMIN) and

is hence sensitive to errors in the timing and magnitude of both NDVI bounding values

(Fisher et al., 2006).

The relationship between remote sensing and ground datasets was on the one hand

quantified by calculating the linear correlation coefficient (r) of remote sensing and
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ground growth phenological dates, and on the other hand by the determination of

the mean temporal offset in days (OD) between the two datasets, with OD repre-

senting the temporal offsets in days between remote sensing and ground datasets for

each phenological date, site and year. Several thresholds were tested for each pixel

and phenological date in order to identify which thresholds yielded lowest OD. The

mean offset in days OD adopted negative values where the growth parameter was

estimated too early in the year by the remote sensing NDVI dataset, i.e. where th was

chosen too low. Analogously, OD adopted positive values where th was chosen too

high. Figure 4.4 addresses this issue, showing an example of a relationship between

satellite and ground data where th was chosen too low (left), nearly optimal (middle)

and too high (right). In the first case the majority of the points are below the 1:1

line, gradually shifting upwards with increasing thresholds (middle and right). OD for

each point is given by its vertical distance from the 1:1 line. The scatter as seen in

the subplots of Figure 4.4 was therefore described as the OD standard deviation (σ in

Figure 4.4 and Table 4.2) in addition to the linear correlation coefficient r. These analy-

ses were carried out for eight NDVI datasets from all 4 products (AVHRR, VGT, MODIS

500 m, and MODIS 1 km), each smoothed with both filter methods (i.e. Fourier adjust-

ment and Savitzky-Golay filter; Table 4.2). Differences in correlation coefficients were

tested performing the Fisher r-to-z transformation, standard deviations of the offset in

days by means of the F-test. In the following, p-values of p < 0.01 were termed as

highly statistically significant and p < 0.05 as statistically significant.

Figure 4.4: Relationship of remote sensing NDVI time series and IMIS ground data depending

on the chosen threshold ( th), exemplary shown for the detection of melt-out (MO) by means

of the Fourier adjusted MODIS (500 m) NDVI dataset. Where th is chosen too low ( th=0.4; left)

the majority of the points lies below the 1:1 line (mean offset of days (OD) negative). OD for

each point is given by the vertical distance between each point and the 1:1 line. With th=0.5

(middle) points closely follow the 1:1 line (OD ≈0), whereas the point cloud shifts over the 1:1

line (OD positive) with increasing thresholds ( th=0.6; right). r=linear correlation coefficient of

satellite and ground dataset, σ=standard deviation of OD.
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4.3 Results

Out of the three thresholds that were tested for each phenological event, smoothing

algorithm, and sensor, shaded thresholds in Table 4.2 generally represent the lowest

mean offset in days (OD). For the same phenological date, the best thresholds (i.e.

yielding min. OD) were very similar across all sensors and smoothing methods. On

the other hand, the optimum thresholds for different phenological dates showed clear

differences. All best (shaded) threshold values ranged between 0.5 and 0.6 for MO,

between 0.7 and 0.75 for SOG and between 0.95 and 0.98 for EOG. Hence, an effect

of spatial NDVI product resolution on the determination of the thresholds was not

found for the MODIS 500 m and 1 km products, i.e. best thresholds (Table 4.2 [d])

remained unchanged with reduced spatial resolution.

Correlations were highly significant across all datasets and smoothing algorithms, with

linear correlation coefficients adopting values between r=0.51 and r=0.82 (Table 4.2).

Overall best correlations were obtained by the Fourier adjusted MODIS 500 m NDVI

dataset. Overall lowest correlations were obtained for EOG extraction by means of

the Savitzky-Golay filtered NDVI time series. In general, large standard deviations

of OD were observed (cp. Table 4.2), with highest standard deviations obtained for

the AVHRR product and lowest standard deviations obtained for the MODIS 500 m

product (Figure 4.4).

4.3.1 Comparison of AVHRR NDVI time series and IMIS phenological

dates

Differences in smoothing algorithm performance were apparent (significance levels in-

dicated in Table 4.2): the Fourier adjusted NDVI data exhibited overall higher correla-

tions with the IMIS phenological dates than the Savitzky-Golay filtered data, however,

this difference was not statistically significant. Additionally, OD standard deviation was

generally found to be higher for the Savitzky-Golay filtered dataset compared to the

Fourier adjusted data, with the difference in OD standard deviation for the detection

of EOG being highly significant. No obvious pattern was found in terms of which

phenological event showed highest correlations within one respective dataset: within

the Fourier adjusted AVHRR NDVI time series, EOG displayed highest correlations (MO

lowest), whereas within the Savitzky-Golay filtered data, SOG exhibited highest corre-

lations (EOG lowest).



84

4.3.2 Comparison to VGT and MODIS products

Differences in smoothing algorithm performance were not as pronounced for the in-

vestigated newer generation sensors compared to AVHRR, even though Fourier ad-

justed NDVI time series generally exhibited slightly higher correlations compared to

the Savitzky-Golay filtered time series. OD standard deviations were highly signifi-

cantly different for EOG detection using the MODIS 500 m product (significance levels

indicated in Table 4.2).

All VGT as well as MODIS NDVI products exhibited higher correlations compared to

AVHRR, but the difference was not statistically significant in all investigated cases (Ta-

ble 4.2 [b-d]): Differences within the Fourier adjusted datasets were e.g. significant

for the detection of MO, but not significant for EOG detection. Correlations of IMIS

phenological dates and 1 km MODIS NDVI time series were not significantly lower

compared to the MODIS 500 m product and were comparable to the correlations as

obtained for the VGT NDVI product (also 1 km).

OD standard deviations of all newer generation products were lower compared to

AVHRR. Differences in OD standard deviations were e.g. statistically significant for

EOG detection by means of the VGT and MODIS 1 km Savitzky-Golay filtered datasets

compared to AVHRR. An minor effect of spatial resolution was detected in terms of

OD standard deviation, which was found to increase with lowered spatial resolution.

This effect was more pronounced for the Fourier adjusted NDVI data compared to

the Savitzky-Golay filtered data. OD standard deviations of the Fourier adjusted 1 km

MODIS product appeared to be of the same order of magnitude as the standard devi-

ations obtained with the 1 km VGT datasets, but lower compared to the AVHRR NDVI

data.

Table 4.2 (facing page): Relationship between phenological growth dates of alpine grassland from

four remote sensing NDVI time series ([a-d]; each smoothed with two smoothing algorithms) and IMIS

sensor ground data, where MO=melt-out, SOG=start of growth, EOG=end of growth, th=applied thresh-

old, r=linear correlation coefficient of satellite and ground dataset, and OD=mean temporal offset in

days between satellite and ground dataset ± one standard deviation (σ). Several thresholds were tested

for each parameter, NDVI product, and sensor. Shaded thresholds indicate lowest OD with regard to the

other thresholds. All correlations were significant with p < 0.001 (two-tailed). Significant differences

between equivalent values of r and σ, respectively, (for shaded thresholds only) are indicated for i) the

comparison of AVHRR with the newer generation sensors (horizontal, ??:1%-level, ?:5%-level, one-tailed)

and ii) the comparison between smoothing algorithms (vertical, ••:1%-level, two-tailed). Comparisons

within the MODIS products (500 m and 1 km) did not reveal significant differences.
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4.4 Discussion

The good agreement between the spectral remote sensing measurements and the sin-

gle point vegetation height measurements in highly complex terrain was remarkable,

especially in consideration of the large differences in measurement scales. Robustness

of the results was reflected in consistent thresholds among all NDVI products and phe-

nological events and is encouraging with regard to further phenological studies within

complex alpine environments.

Numerous previous studies have investigated the relationship between remote sensing

and ground measured vegetation indices as well as biophysical parameters in a wide

range of grassland ecosystems (Fensholt et al., 2006; Tucker et al., 1985; Kennedy,

1989; Kawamura et al., 2003; Wilson and Meyers, 2007), including such in the Eu-

ropean Alps (Vescovo and Gianelle, 2006, 2007). By contrast to these studies, our

study focused on the resolution of annual growth dynamics of alpine grassland. We

believe that relating threshold derived phenological dates from remote sensing NDVI

time series to ground phenological data from the IMIS network was an important step

towards a better understanding of broad scale vegetation growth dynamics above the

tree line in the European Alps.

4.4.1 Determination of thresholds

Optimal thresholds were only investigated with a precision of 0.1 (MO), 0.05 (SOG),

and 0.02/0.03 (EOG). A larger dataset would be needed in order to determine pre-

cise thresholds for each NDVI dataset and parameter. However, the good agreement

between both satellite and ground datasets still enables us to identify following ap-

proximate thresholds to be suitable to determine grassland growth phenology with

NDVI time series at the selected 15 IMIS sites:

• Melt-out: th≈0.6

• Start of growth: th≈0.75

• End of growth: th≈0.98

Even though year-to-year melt-out variability at the selected sites is very high (below

described in detail), melt-out dates from ground and remote sensing datasets showed

a good agreement. Independent of sensor and smoothing algorithm, thresholds of

approx. th=0.6 seemed to be appropriate to track MO, which can be regarded as the

start of season. This threshold for the determination of the start of season is slightly
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higher compared to the threshold as it was applied e.g. in Stöckli and Vidale (2004) to

a NDVI dataset with 0.1◦ spatial resolution. Stöckli and Vidale (2004) applied a thresh-

old of th=0.4 to the entire Alps subdomain in order to derive start of season dates

for a period of 20 years. However, lower spatial resolution of the latter NDVI product

renders a comparison of both thresholds difficult, since first of all, the variability of

the occurrence of phenological events within a pixel will increase with lower spatial

resolution, and second, an area of 0.1◦×0.1◦ within the European Alps will most likely

include land cover classes other than grassland. It will therefore exhibit different an-

nual NDVI dynamics compared to the higher resolution NDVI datasets as used in this

study. This issue emphasizes the necessity of adapting thresholds to specific land cover

classes. Based on these considerations, we suggest that whether or not the presented

thresholds are applicable to coarser resolution NDVI products critically depends on the

homogeneity of land cover and terrain within the investigated area.

SOG dates, which at the ground usually were observed two to three weeks after

MO, coincided with the date where approximately 75% of the total annual NDVI

amplitude were crossed, corresponding to th=0.75. The differences in the threshold

magnitude between MO and SOG reflect the increased pixel integrated greenness

due to leaf unfolding and build up of leaf biomass after snow melt. Then again, EOG

dates were generally identified in remote sensing data shortly before NDVI time series

reached saturation (NDVIMAX). The fact that IMISEOG nearly coincided with NDVIMAX is

a highly interesting finding, suggesting that maximum photosynthetic activity of alpine

grassland is achieved at the end of height growth, i.e. when vegetation has reached

its maximum height.

Since the decrease of spatial resolution from 500 m to 1 km did not have an effect on

the determination of the thresholds, we suggest that thresholds for alpine grassland

to a major extent depend on the spectral characteristics of the sensor: according to

Table 4.1 red bands of the considered sensors all encompass different parts of the

spectrum in the red domain, hence being variably sensitive to changes in chlorophyll

concentration within the grassland pixel (Gitelson and Kaufman, 1998). Positions of

the channels in the visible domain of the electromagnetic spectrum can thereby influ-

ence the magnitude of the NDVI (Teillet et al., 1997) and the shape of the NDVI curve.

Thus, differences in spectral band widths and locations (Table 4.1) lead to variable

NDVI dynamic ranges (NDVIMAX−NDVIMIN) among the sensors (Fensholt et al., 2006)

as well as to different timings of NDVIMAX, i.e. NDVI saturation. The determination of

the thresholds is thereby influenced. The time of occurrence of NDVIMAX is particularly

important for the extraction of EOG from remote sensing NDVI time series, since the

thresholds were found to be close to th=1.0, i.e. close to NDVIMAX itself. The magni-

tude of the NDVI as well as the shape of the NDVI curve also depend on the reduction
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of the atmospheric influence in both channels, since NDVI values are depressed by

atmospheric influence (Gutman, 1991). This issue is discussed in more detail below.

The shape of the NDVI curve is to a certain extent also influenced by the nonuniform

distribution of bidirectional reflectance (BRD), which results in surface reflectance –

and hence NDVI – variations depending on the observation geometry (relative positions

sun–target–sensor; Cihlar et al., 1997; Los et al., 2005). However, it was also shown

that BRD effects are significantly reduced through the calculation of vegetation indices

such as the NDVI from single channel data (Holben, 1986; Lee and Kaufman, 1986)

and minimized through the process of compositing (Holben, 1986).

4.4.2 Smoothing algorithm performance

Even though the differences in r and σ between the two smoothing approaches were

mostly statistically insignificant, results as summarized in Table 4.2 suggest that for

our purposes the Fourier algorithm was more efficient in eliminating undesirable noise

from the NDVI time series. Since Savitzky-Golay NDVI products closely follow the

composite NDVI times series (Figure 4.3), they are more sensitive to short term NDVI

variations and therefore more susceptible to noisy data. This is most clearly reflected in

EOG detection by means of the Savitzky-Golay filtered NDVI time series, where linear

correlation coefficients were lowest and OD standard deviation values highest among

all investigated cases: noisy time series during the growing season led to multiple

local NDVI maxima. Since thresholds for the determination of EOG were found to

be close to th=1.0 (i.e. NDVIMAX), the chance that EOG was attributed to the wrong

NDVI peak was high. This issue underlines a drawback of the threshold methodology

(Section 4.2.4), i.e. that the determination of phenological dates from NDVI time series

using a fraction of the maximum annual NDVI amplitude may be influenced by errors

in the magnitude and timing of both bounding values. Third order Fourier series on

the other hand can only track changes in vegetation with a periodicity of 4 months

and are therefore less susceptible to noisy composite time series. Residual noise in the

Fourier adjusted NDVI time series could be avoided by choosing lower order Fourier

series, however, we argue that third order Fourier series represent a good trade-off

between noise removal on the one hand and representation of natural NDVI short

term variations on the other hand.

As mentioned in Section 4.2.2 the process of compositing comes along with a loss

of temporal information. The application of the Fourier algorithm to NDVI time series

with daily time steps (considering precise acquisition dates) certainly helped to over-

come this issue to a certain extent. By contrast, the temporal uncertainty introduced

to the Savitzky-Golay filtered datasets by assigning fixed time intervals of i=10 (Fig-
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ure 4.3) likely added to the lower performance of the Savitzky-Golay filtered NDVI

datasets.

4.4.3 AVHRR vs. newer generation sensors

The fact that all three sensors turned out to be capable of tracking alpine grassland

dynamics at the selected sites is encouraging with regard to the analysis of the 20-year

AVHRR archive. However, results as summarized in Table 4.2 revealed drawbacks of

AVHRR compared to the newer generation sensors (though not statistically significant

in all cases). Differences in spectral sensor characteristics likely added to this effect

(Table 4.1). This is particulary important regarding the NIR band, where clear differ-

ences between AVHRR and the newer generation sensors are apparent. The AVHRR

NIR band is superimposed on strong water vapor absorption bands between 900-

980 nm, whereas VGT and MODIS NIR bands do not cover these absorption bands and

are hence less affected by variations in atmospheric water vapor content (Kawamura

et al., 2005; Justice et al., 1991). This effect is enhanced by the fact that both VGT

and MODIS data include atmospheric correction, whereas AVHRR data were not cor-

rected for these effects. Even though VGT and MODIS data both include atmospheric

correction, Fensholt et al. (2006) found discrepancies between VGT and MODIS in

the reflectance values of the NIR bands due to differences in atmospheric correction

schemes.

Noisy composite NDVI time series were in some cases still observed for all three sen-

sors even after quality and cloud screening, even though unrealistic NDVI values ideally

are discarded through the process of compositing. In general, remaining noise in the

NDVI time series could be attributed to – for remote sensing applications – hindering

weather conditions in terms of extended cloudy periods during the growing season.

While in the Alps less cloud cover is observed in winter (December through February)

compared to the foreland, the opposite applies to the summer months (June through

August), when frequent cloud cover is observed due to orographically induced con-

vection (Kästner and Kriebel, 2001; Winkler et al., 2006). In the case of AVHRR, insuf-

ficient cloud masking by the CASPR algorithm as outlined above likely added to the

observed noise in the time series and thereby contributed to the lower performance

of AVHRR.

4.4.4 Explanation of OD standard deviation

Complex alpine and subalpine topography leads to high snow cover variability in space

and time due to terrain effects on various climatic variables such as wind, precipitation,
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and snow fall (Liston and Sturm, 1998; Keller et al., 2005). The resulting ”patchy

mosaic” (Liston, 1999) of vegetation and snow cover during the period of snow melt

results in high year to year NDVI variability within the area around each IMIS site,

regardless of the snow and vegetation conditions at the site itself. This random effect

adds to the between-year variability of observed phenological dates such that a pixel in

one year may exhibit a vegetation signal before, and in another year after it is observed

at the IMIS site. Land cover is another crucial factor, which has to be taken into

account in this respect due to the limited spatial extent of the investigated grassland

areas of sometimes only a few square kilometers: depending on varying pixel size

due to observation geometry contaminating land cover classes other than grassland

might have influenced the shape of the annual NDVI curve and hence the extraction

of phenological dates in some cases.

Even though the locations of the IMIS sites were chosen to be representative of the

direct site environment (Rhyner et al., 2002), systematic offsets between remote sens-

ing and ground data may be expected according to the location of the IMIS site within

its surrounding topography: phenological dates from elevated sites (IMIS site above

median elevation of pixel) will presumably be estimated too early by the NDVI, since

the phenology at such IMIS sites lags behind the average phenology of the (lower)

surroundings. The opposite effect is expected for valley sites (IMIS site below median

elevation of pixel). Similar small-scale effects of topography have already been stressed

by Fisher et al. (2006). Given the limited number of 15 sites, here this issue cannot be

addressed in more detail. However, another dataset consisting of five years of melt-

out dates from another 69 sites throughout the Swiss Alps will be available for that

purpose in the near future.

Interestingly, OD standard deviations of the 1 km MODIS Fourier and VGT datasets

were of comparable magnitude, leading to the assumption that OD standard deviation

also depends on spatial sensor resolution. That again is in good agreement with the

above mentioned issue of small-scale vegetation and snow cover variability (Liston,

1999) as well as the influences of multiple land cover classes in the surroundings of the

site: both effects obviously become less pronounced with enhanced spatial resolution.

4.5 Conclusion and outlook

The capability of NOAA AVHRR NDVI time series to track alpine grassland phenology

was investigated with regard to the analysis of our 20 year AVHRR archive. Three

grassland growth phenological dates (melt-out, start of growth, and end of growth)

were extracted from NDVI time series and compared to equivalent measurements from
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the IMIS network at 15 sites in the Swiss Alps. The same investigations were performed

for three additional NDVI products from newer generation sensors VGT and MODIS.

The good agreement between single point vegetation height and coarse scale re-

mote sensing measurements was remarkable. Even though correlations were lower

for AVHRR compared to the newer generation sensors, results for AVHRR were en-

couraging with regard to long-term vegetation dynamics analysis in the Swiss Alps.

The ability of the tested Fourier adjustment algorithm to minimize undesirable noise

from the NDVI time series at the selected sites must be rated higher compared to the

Savitzky-Golay product, since the Fourier product is less susceptible to noisy composite

time series. Similar thresholds for the determination of grassland phenological dates

across sensors and smoothed NDVI products demonstrated the high robustness of the

results. Findings for all three sensors show that the application of various thresholds

to NDVI time series allows the observation of the temporal progression of vegetation

growth at the selected sites with high consistency. Minor threshold differences among

the investigated NDVI products are assumed to result from variable spectral sensor

characteristics in the red bands, which govern chlorophyll sensitivity, and thereby in-

fluence the annual NDVI range.

Discrepancies between remote sensing and ground datasets are assumed to result

from small-scale phenological variability due to complex topography as well as from

land cover classes other than grassland in the surroundings of the sites. These as-

sumptions are supported by the fact that discrepancies are smaller for the 500 m

spatial resolution MODIS product compared to the equivalent 1 km product. Overall,

ground based data from the IMIS station network provided a valuable tool to better

understand and interpret remote sensing NDVI data.

Investigations will be extended to a larger number of sites and years as soon as the

particular data will be available. In order to assess the reasons for the discrepancies

between remote sensing and ground data, the incorporation of topographic infor-

mation in data analysis will be necessary. The inclusion of additional ground verifica-

tion sites in combination with topographic information will significantly improve our

understanding of the relationship between remote sensing and ground phenological

measurements in a complex environment such as the Swiss Alps. Additionally, AVHRR

data from other NOAA satellites will be included in order to assess the transferability

of the results to other satellites of the NOAA series. This will finally enable us to in-

vestigate changes in alpine vegetation dynamics on a larger spatial scale for the past

20 years with high spatial and temporal resolution based on the RSGB AVHRR archive.

Knowledge about these changes will significantly enhance our understanding of the

potential future impact of climate warming on sensitive alpine ecosystems.
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Abstract

Perennial snow and ice (PSI) extent reflects minimum snow and ice conditions at the

end of the summer season and is an important parameter of mountain environments

with regard to its involvement in the hydrological cycle and the surface energy bud-

get. We investigated interannual variations of PSI in nine mountain regions of interest

(ROI) between 2000 and 2008. For that purpose, a novel MODIS dataset processed at

the Canada Centre of Remote sensing (CCRS) at 250 m spatial resolution in all seven

land bands and covering the Arctic circumpolar area was utilized. The extent of PSI
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was found to undergo significant interannual variations, with coefficients of variation

(CV) ranging from 5% to 81% depending on the ROI. Variations could in part be ex-

plained by a strong and statistically significant negative relationship between PSI and

positive degree-days (threshold 0◦) during the summer months in some ROIs. Linear

correlation coefficients (r) as low as r=−0.90 were obtained. In the European Alps and

Scandinavia, PSI extent was significantly correlated with independently derived annual

net glacier mass balances, with r=0.92 and r=0.85, respectively. This suggests that

PSI extracted from MODIS imagery may be used as an indicator of net glacier mass

balances in these areas. Validation of PSI extent in two land surface classifications

in 2000 and 2005, GLC-2000 and Globcover, revealed clear misrepresentation of PSI

extent by up to 129% in both classifications. With regard to the use of land surface

classifications to set up boundary conditions for climate and land surface process mod-

els, this is a potential source of error to be investigated in future studies. The results

presented here have provided interesting insight into variations of PSI in several ROIs

and helped to increase our understanding of sensitive mountain regions in the context

of the global climate change discussion.

5.1 Overview

Snow cover and glaciers are important components of the hydrological cycle in many

mountain ecosystems (Beniston, 2003). As natural storages of frozen water, they are

strongly involved in the modification of the timing and magnitude of water discharge

from the mountain areas on various temporal scales (Viviroli et al., 2003). Mountain

snow and ice are thereby important modulators of water availability both in mountain

regions as well as in surrounding low-lands (Viviroli et al., 2007) and provide water

supply for a significant part of the Earth’s population (Barnett et al., 2005). Further-

more, hydro-electric power plants as sources of renewable energy heavily rely on water

temporarily stored in these reservoirs (Hauenstein, 2005). Apart from issues directly

related to water resources, snow and ice exert large influence on climate and the sur-

face energy budget at regional scale (Dewey, 1977; Kotlarski, 2007), e.g. through

their high reflectivity or the cooling of the atmosphere. As a result, they are critical pa-

rameters to be considered for the assessment of land surface-atmosphere interactions

(Hock and Holmgren, 2005). On the other hand, both, snow cover and glaciers pro-

vide some of the clearest evidence of climate change, since they are often close to the

melting point and, therefore, react sensitively to changes in temperature (UNEP, 2007).

In view of the importance of snow cover and glaciers for mountain environments from

a wide range of aspects, the study of past, present, and future snow cover and glacier
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Figure 5.1: Arctic circumpolar clear-sky mosaic for July to September, 2003, in Lambert Az-

imuthal Equal-Area (LAEA) projection. Selected regions of interest are delineated in white and

labelled according to Table 5.1. Perennial land (and sea) ice extent appears in bluish colors.

RGB color scheme: red, band B6 (1.628–1.652µm); green, band B2 (0.841–0.876µm); blue,

band B1 (0.62–0.67µm).

variations has become increasingly important within the global climate change discus-

sion (Lemke et al., 2007). In this context, variations in the spatial extent of perennial

snow and ice (PSI) are one important aspect. Perennial snow and ice extent represents

minimum snow and ice conditions in mountain regions for a specific year, which are

typically observed at the end of the summer season. While interannual changes in the

spatial extent of perennial mountain ice, i.e. glaciers and ice caps, are generally small

and lag behind climatic changes by at least a few years (Oerlemans, 2001, 148 pp.),

larger year-to-year variability is expected for perennial snow cover due to the close
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relationship of snow covered area (SCA) with meteorological conditions such as air

temperature variations (Robinson and Dewey, 1990).

Satellite remote sensing provides the unique opportunity to study PSI at a wide range

of spatial and temporal scales. For studies of perennial mountain ice data from high

spatial resolution (≤30 m) sensors are the premier source of information (Paul et al.,

2007; Kargel et al., 2005), even though observation frequency of these sensor sys-

tems is limited as a consequence of the generally low ground repeat cycles combined

with the influence of cloud cover. Studies on snow cover mainly utilized the weekly

satellite maps of the northern hemisphere snow cover at a spatial resolution of several

kilometers (Robinson et al., 1993; Ramsay, 1998), however, their use for studies of

mountain regions is limited because of the coarse spatial resolution. Other snow cover

products have become available with the advent of the Moderate Resolution Imag-

ing Spectroradiometer (MODIS) onboard the Terra and Aqua satellites, which offers

improved snow and ice detection capabilities due to finer spectral and spatial resolu-

tion (Justice et al., 1998). MODIS snow and ice products are available at a range of

temporal (daily to monthly) and spatial resolutions (500 m to 0.05◦; Hall et al., 2002).

However, higher spatial resolution is desirable for studies in rugged terrain in order to

capture the patchy mosaic of snow cover (Sirguey et al., 2009). In addition, the Global

Climate Observing System (GCOS) has recommended a spatial resolution of 250 m for

many Essential Climate Variables (ECVs) intended for terrestrial applications, such as

snow cover and albedo (GCOS, 2006, Appendix 2). To meet these requirements and

as a contribution to the Canadian component of the International Polar Year (IPY) Pro-

gramme, a MODIS dataset at 250 m spatial resolution in all seven land bands (MODIS

spectral bands B1-B7) and a temporal resolution of 10 days was recently published by

the Canada Centre for Remote Sensing (CCRS; Trishchenko et al., 2009). The dataset

covers the Arctic circumpolar area (ACA; 9000×9000 km2) and is centered at the ge-

ographic North Pole. If MODIS continues to be operational until the end of 2009,

a dataset covering one decade will be available for various applications, such as the

analysis of trends in land surface parameters or the determination of land cover types

within the ACA at a fine spatial resolution.

In this respect, this dataset may represent a valuable tool not only for the quantifica-

tion of PSI extent variations, but also for the validation of land surface classifications

(LSCs) in complex and spatially heterogeneous mountain regions. Latter application is

of particular interest, since LSCs, which are often derived from remote sensing data,

are commonly used to set up boundary conditions in climate and land surface process

models (Hagemann, 2002). Given the importance of snow and ice for the surface

energy budget, accurate delineation of permanently snow and ice covered surfaces

in such classifications is a prerequisite. The problem with LSCs is, however, that they
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differ with regard to the classification schemes employed, underlying remote sensing

data, and the time period considered. As a result, classifications may differ consider-

ably (Hansen and Reed, 2000; Giri et al., 2005), which emphasizes the motivation to

validate PSI extent in LSCs using the newly available MODIS dataset as outlined above.

Embedded in this context, the paper is structured as follows: data and methods are

introduced in Section 5.2. Interannual PSI variations in a number of mountain regions

within the ACA are quantified and discussed in Section 5.3.1. Section 5.3.2 makes

use of MODIS-retrieved PSI extent to validate the extent of surfaces classified as PSI

in two freely available global LSCs, the Global Land Cover 2000 database (GLC-2000)

and the Globcover land cover map in 2005. Research is finally summarized in Section

6.

5.2 Data and methods

5.2.1 MODIS data

The MODIS clear-sky composites for the ACA were generated as described in detail by

Trishchenko et al. (2009). In summary, processing includes four major steps: since only

bands B1 and B2 of the MODIS sensor are available at 250 m spatial resolution, bands

B3 to B7 are downscaled from 500 m to 250 m spatial resolution using an adaptive

regression and normalization scheme in a first step (Trishchenko et al., 2006). Second,

bands B1 to B7 are reprojected from swath to Lambert Azimuthal Equal Area (LAEA)

projection using a gradient search method (Khlopenkov and Trishchenko, 2008), which

was shown to preserve the geolocation accuracy achieved by the MODIS science team

(Wolfe et al., 2002). In a third step, scene identification at 250 m resolution is per-

formed based on bands B1, B2, B3, and B6. Latter step outputs a mask delineating

cloud cover, cloud shadows, and areas observed under clear-sky conditions including

information on snow cover. This mask is used in step four together with a set of

decision rules to create clear-sky composites for a predefined time interval (Luo et al.,

2008). For our purposes, a single clear-sky composite was created per year by merging

the highest quality pixels from multiple MODIS scenes during the period from July to

September. This was done for the period from 2000 to 2008. The resulting compos-

ites represent minimum snow and ice (i.e. PSI) conditions for the ACA, exemplarily

shown for the year 2003 in Figure 5.1. Nine regions of interest (ROI) were defined for

the analysis of PSI (delineated in white in Figure 5.1), all of them featuring complex

topography and areas permanently covered by snow and ice. Greenland as a large ice

sheet was excluded from the analysis.
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Characteristic spectral surface properties enable the discrimination of PSI from other

land cover types (Dozier and Painter, 2004). Regarding the detection of snow and

ice, the Normalized Difference Snow Index (NDSI) exploits the reflective properties of

snow and ice covered surfaces. The NDSI is calculated by dividing the difference of

reflectances observed in MODIS bands B4 and B6 by their sum and may be regarded

as a measure of the abundance of snow and ice within the area covered by a pixel.

Hence, we generated MODIS PSI maps (PSIMODIS) for each ROI and year following Hall

et al. (2002), using an NDSI threshold of NDSI≥0.4 and excluding pixels if either the

B2 or B4 reflectance was <10%. It is important to note that debris-covered glacier

surfaces are not recognized by this approach and, hence, are excluded from analyses.

In order to remove sea and lake ice prior to the analyses, a land/water mask was

created based on the Global Self-consistent, Hierarchical, High-resolution Shoreline

(GSHHS) database (Wessel and Smith, 1996).

5.2.2 Global land cover 2000 map

The Global Land Cover 2000 (GLC-2000) project was led by the Joint Research Insti-

tute (JRC) of the European Commission (EC) and included contributions from over 30

research groups around the world (GLC, 2003a). The main objective of the GLC-2000

project was to generate a global land cover database in support of international as-

sessment programs such as the Millennium Ecosystems Assessment. The GLC-2000

land cover classification primarily made use of daily global mosaics of Système Pour

l’Observation de la Terre (SPOT) VEGETATION 1 km satellite data acquired between

November 1999 and December 2000 (Bartholomé and Belward, 2005). Other data

sources were partially used, for example, to overcome limitations due to persistent

cloud cover. The database encompasses regionally optimized land cover information

as well as a thematically less detailed global legend that combines the regional classifi-

cations into a single harmonized global product (Bartholomé and Belward, 2005). The

global land cover legend includes 22 classes, following the Land Cover Classification

System (LCCS) of the Food and Agriculture Organisation (FAO; Di Gregorio and Jansen,

2000). Applied classification schemes varied depending on the geographic area and

the partner institution responsible for a certain regional window (see Fritz et al., 2003

for details on the classification algorithms).

In order to enable the areal comparison of PSI extent between GLC-2000 and MODIS

circumpolar imagery, global GLC-2000 data were reprojected from original geographic

lat/long to the LAEA projection (1 km spatial resolution). Land cover class 21 (”Snow

and ice”) was extracted to create PSI maps from GLC-2000 (PSIGLC). Given the time



Perennial snow and ice variations 105

period considered for the GLC-2000 classification scheme, PSIMODIS was compared to

PSIGLC in 2000.

5.2.3 Globcover land cover map

The Globcover project was launched in 2004 by the European Space Agency (ESA) and

run in collaboration with a number of international organization and scientific pro-

grams, such as the United Nations Environment Program (UNEP) and the International

Geosphere-Biosphere Programme (IGBP). The aim of the project was to complement

and update existing land cover classifications such as the GLC-2000 classification (Sec-

tion 5.2.2) with a new global land cover map for the year 2005 (Globcover, 2008).

The Globcover land cover map is based on 300 m spatial resolution data acquired

between December 2004 and June 2006 by the Medium Resolution Imaging Spec-

trometer (MERIS) onboard Environmental Satellite (ENVISAT). The database includes a

global product derived by an automatic and regionally-tuned classification, as well as

eleven regional products derived by the same classification system (see Bicheron et al.,

2008 for details on the classification steps). Data gaps were filled using a set of refer-

ence land cover datasets. The legend of the global product includes 22 classes and is

compatible with the LCCS as mentioned in Section 5.2.2.

For consistency with the MODIS data, global Globcover data were reprojected from

original geographic lat/long to the LAEA projection (300 m spatial resolution). PSI

maps (PSIGC) were obtained by extracting land cover class 220 (”Permanent snow and

ice”). The decision on which year to select for the comparison of PSIMODIS and PSIGC is

not straightforward, since the time period considered for the Globcover classification

includes summer months both in 2005 (entire summer and fall) and 2006 (until June).

We argue, however, that minimal snow and ice conditions are not achieved until June

in most mountain regions and, therefore, compared PSIGC to PSIMODIS in 2005.

5.3 Results and Discussion

5.3.1 Interannual variations of perennial snow and ice extent

Results of the PSIMODIS extent analysis for the period from 2000 to 2008 are summa-

rized in Table 5.1. Overall, we found PSI extent to exhibit strong interannual variations

depending on the ROI, with coefficients of variation (CV) ranging from 5% in the Rus-

sian Arctic and Svalbard to 81% in Northern Siberia. In general, observed interannual

variability was particularly large in ROIs characterized by relatively small PSI extent (Ta-

ble 5.1, A–D and G). Combined over all ROIs and years, the CV of PSIMODIS amounted
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to 22%. In order to illustrate interannual PSIMODIS variations in more detail, selected

geographic subsets within the European Alps and Northern Siberia ROIs are displayed

Figures 5.2 and 5.3, respectively. The PSI masks derived as described in Section 5.2.1

are also shown. The years were selected to represent small, about average, and ex-

tensive PSI extent conditions for the respective area (see the figure caption for more

information). Both figures highlight the large interannual variability, which may be

observed in certain ROIs, and demonstrate the high level of spatial detail provided by

the circumpolar MODIS composites for the detection of PSI in mountain areas. Note

the sea ice along the adjacent coast in Figure 5.3 (bottom), which comes along with

extensive PSI extent in the displayed subset.

Given that the extent of perennial mountain ice generally only varies slowly in time

(Oerlemans, 2001), its variability is not captured by MODIS imagery at 250 spatial

resolution except in cases of pronounced year-to-year ice retreat or advance. Hence,

the variations in PSIMODIS as outlined above can mainly be attributed to variations in

perennial snow cover, and as such, represents the balance of snow accumulation and

melting processes during the preceding seasons. Observed variability of PSI is in line

with earlier studies that described interannual variations of PSI in mountain regions

(Wang and Xie, 2009) or, on larger scales, of northern hemisphere SCA in summer

(Robinson et al., 1993).

Table 5.1: Results of the perennial snow and ice (PSI) extent analysis for all 9 regions of interest

(ROIs) between 2000 and 2008. The ROIs are labelled according to Figure 5.2. CV=coefficient

of variation, defined as the standard deviation divided by the mean×100

mean [km2] CV [%] PSIMIN/PSIMAX [km2]

A. Altai 1.33×103 14 1.02×103/1.63×103

B. European Alps 2.60×103 25 1.93×103/4.17×103

C. Northern Siberia 1.30×103 81 4.96×102/3.72×103

D. Scandinavia 4.98×103 50 2.84×103/1.08×104

E. Russian Arctic & Svalbard 1.04×105 5 9.67×104/1.11×105

F. Iceland 1.10×104 7 1.05×104/1.30×104

G. Eastern Siberia 3.96×103 67 1.77×103/9.94×103

H. Canadian Arctic 2.01×105 10 1.71×105/2.36×105

I. Western North America 1.32×105 13 1.11×105/1.67×105

All ROIs 4.94×105 22 4.23×105/5.26×105
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Figure 5.2: A subset of the European Alps ROI as seen in MODIS circumpolar composites

between 2001 and 2003 (left), and the corresponding PSI mask (right, delineated in white).

The selected years represent extensive (top), about average (middle), and below average PSI

conditions (bottom). The subset covers an area of 150 km×100 km. Water surfaces are

marked in black (right).

Variations in SCA have previously been explained through the close negative rela-

tionship between interannual variations of SCA and air temperature (Robinson and

Dewey, 1990; Brown, 2000). To place our findings in this context, we investigated

the degree to which observed variations in PSIMODIS can be explained by variations in

air temperature during the summer season. For that purpose, we computed linear

correlation coefficients (rTpos) between standardized anomalies of both, PSIMODIS and

positive degree-days (Tpos; threshold 0◦C). For the calculation of Tpos, 2 m temperature

analysis data at 00, 06, 12, and 18 GMT between May and September were consid-
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Figure 5.3: Similar to Figure 5.2, but for a subset of the same areal extent within the Northern

Siberia ROI in 2000, 2002, and 2004. Note the sea ice cover that is accounted for by the

land/water mask.

ered for each year (restricted to land surfaces within the ROIs). The temperature data

at 0.5◦ spatial resolution were obtained from the European Centre for Medium-Range

Weather Forecasts (ECMWF). Anomalies were standardized with respect to the 2000-

2008 period. Results are summarized in Table 5.2. In agreement with the studies as

mentioned above, we found strong and statistically significant (p<0.05) negative cor-

relations (rTpos< −0.66) between standardized anomalies of Tpos and PSIMODIS. In some

cases, closest agreements were obtained for positive degree-days in single months,

e.g. for Northern Siberia and the Canadian Arctic in August or the Russian Arctic

and Svalbard in June. Latter is also in agreement with the findings of Sharp and Wang

(2009), who found strong positive correlations between melt durations on glaciers and
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Figure 5.4: Standardized anomalies of perennial snow and ice (PSI) extent (solid line) and

seasonally positive degree-days from May to September (threshold 0◦C; dotted line) for all

nine regions of interest within the Arctic circumpolar area. Corresponding linear correlation

coefficients are provided in Table 5.2. Standardized anomalies of averaged net glacier mass

balances (dashed line) are provided for the European Alps and Scandinavia. Net glacier mass

balances were compiled for nine (European Alps; 2000-2007) and six glaciers (Scandinavia;

2000-2008). PSIGLC in 2000 (’X’-sign) and PSIGC extent in 2005 (’+’-sign) are also displayed

(standardized relative to PSIMODIS).

icecaps in Svalbard, Novaya Zemlya, and Severnaya Zemlya (three archipelagos within

ROI E) and temperature at 850 hPa in June. Other ROIs exhibited strongest correlations

for positive degree-days over more than one month, e.g. Western North America for

the period from May to September, Iceland, Scandinavia, and the European Alps for

June and July, or Eastern Siberia for June to September. As an additional illustration,

standardized anomalies of PSIMODIS and Tpos (May to September) are shown in Figure

5.4. In agreement with the negative values of rTpos time series of PSIMODIS and Tpos

exhibit contrary behavior in time.

The negative relationship may in part be explained by the strong snow-albedo feed-

back, which has repeatedly been discussed as the driver of SCA variations (e.g. Dery
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and Brown, 2007; Groisman et al., 1994), also because the snow–albedo is known to

be particularly strong in mountain regions (Giorgi et al., 1997; Fyfe and Flato, 1999).

In the northernmost ROIs (C, E, G, and H) sea ice cover is assumed to be a dominant

factor governing PSIMODIS (see also Figure 5.3). Sea ice significantly affects climate in

polar regions (Lemke et al., 2007), and, through the insulation of the ocean as a source

of heat, may influence the duration of the melt season in polar land areas (Sharp and

Wang, 2009).

In regard of the close relationship between PSIMODIS and Tpos, extreme events such

as the summer heat wave in Central Europe in 2003 are of particular interest. In

fact, exceptionally warm and dry conditions from May through to the end of August

2003 (Black et al., 2004) as reflected in a strong positive Tpos anomaly (Figure 5.4, B)

come along with a marked decrease in PSIMODIS in the European Alps in summer 2003.

Similarly, a strong decrease in PSIMODIS in 2003 is clearly apparent in Figure 5.2.

Temperature variations are generally the major driver behind snow cover variability by

determining snow melt and whether precipitation falls as snow or rain. In other words,

PSIMODIS extent is a function of snow accumulation (mainly in winter and spring) and

melting/ablation processes during the summer season. Hence, it should be related to

another important parameter in mountain regions, which is also governed by the an-

nual meteorological conditions: the net mass balance (bn) of mountain glaciers. A net

glacier mass balance for a specific year and glacier is the sum of the observed winter

and summer balances, which both represent a direct and immediate response of the

glaciers’ thickness and volume to annual atmospheric conditions (Haeberli and Hoelzle,

1995). To test this hypotheses we, therefore, compiled and averaged independently

derived net mass balances of nine (European Alps) and six glaciers (Scandinavia) to

generate standardized anomalies of mean net glacier mass balance (bn). These two

ROIs were chosen since net glacier mass balance data were available for glaciers well

distributed within the respective ROIs and for the entire time period (Scandinavia) and

until 2007 (European Alps). Glacier mass balance data were obtained from the World

Glacier Monitoring Service (WGMS; www.wgms.ch) and NVE (2009).

Standardized anomalies of bn are provided in Figure 5.4 (B, D). A close, statistically

significant (p<0.01), positive relationship between standardized anomalies of PSIMODIS

and bn was obtained, with linear correlation coefficients (rbn ) of rbn=0.92 (European

Alps) and rbn=0.85 (Scandinavia).

In a given area we expect the average elevation of the snow line observed at the end

of the summer season to be inversely correlated with the extent of PSIMODIS and di-

rectly related to the snow line observed on the glacier. The glacier’s snow line, on its

part, defines the elevation above which the glacier ice is covered by perennial snow
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and névé and can be regarded as a rough approximation of the glacier’s equilibrium

line in a given year (Paterson, 1994). As such, it is directly correlated to the annual bn.

Results, therefore, suggest that PSIMODIS, as a parameter reflecting the areal extent of

snow (and ice) cover, can be regarded as an indicator of the (volumetric) parameter bn

in the mountain areas of Scandinavia and the European Alps. These results are of par-

ticular interest with regard to the urgent requirement for information on glacier mass

balances on larger spatial scales (Lemke et al., 2007) and may represent an alternative

to the extrapolation of local measurements made at a few generally small glaciers.

As mentioned earlier, accurate knowledge of PSI extent is required to set up boundary

conditions in climate and land surface process models. The MODIS circumpolar im-

agery at 250 m spatial resolution provides a good opportunity to validate PSI extent

as delineated in LSCs in mountain regions. This will be the subject of the following

section.

5.3.2 Circumpolar MODIS imagery vs. land surface classifications

Absolute and relative differences between PSIGLC and PSIGC on the one hand and

PSIMODIS on the other hand were determined and are provided in Table 5.3. In ad-

dition, PSI extent in both LSCs is illustrated in Figure 5.4 (standardized relative to

PSIMODIS). While there is a relatively good agreement between PSIMODIS and PSIGLC

in certain cases (relative errors <10%), namely for the European Alps, Iceland, and

Western North America, in the majority of the cases PSIGLC and PSIGC, in particular,

clearly differ from PSIMODIS. For some ROIs such as the Canadian Arctic (both LSCs) or

Iceland (Globcover), large differences were obtained (>100%). Added for all ROIs, PSI

extent is overestimated in PSIGLC (PSIGC) by 47% (86%). To illustrate the discrepancies

between the datasets, Figures 5.5 and 5.6 display subsets of the circumpolar com-

posites (Figures 5.5/5.6, left), corresponding PSI maps (middle), and PSIGLC/GC (right).

Except for the Canadian Arctic ROI (Figures 5.5/5.6, A), small subsets were selected

to show the PSI extent in more detail. Consistent with the statistics provided in Table

5.3, the overestimation of PSI extent in both LSCs is clearly apparent in the Canadian

Arctic ROI. Figure 5.5 (B) demonstrates for a small subset in the European Alps that

GLC-2000, overall, accurately classifies PSI in 2000 for this area. In contrast, PSI is

underestimated by GLC-2000 in the Altai mountain range (C). Similarly, Figure 5.6 (B)

shows an example in the European Alps where the discrepancies between PSIMODIS

and PSIGC were small. In Northern Siberia, however, PSI extent was found to be clearly

underestimated in the Globcover product (Figure 5.6, C).

The magnitude of the obtained differences in PSI extent for some ROIs was somewhat

surprising. Differences in the spatial resolution of the classification are one reason
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for the observed discrepancies, since small snow patches may not be included in the

GLC-2000 product at 1 km spatial resolution. However, this can certainly not explain

the large deviations we observed. Regarding the GLC-2000 classification, the max-

imum Normalized Difference Vegetation Index (NDVI) compositing scheme used to

minimize cloud contamination in the data should be discussed as a possible source

of error. Clear-sky composite data generated using this compositing scheme served

as an input for classification in a number of GLC-2000 regional windows, such as

North Eastern Europe (including the Scandinavia ROI) or Northern Eurasia (including

the Eastern Siberia as well as the Altai ROIs). The maximum NDVI scheme selects the

highest NDVI value within a predefined period based on the assumption that the NDVI

is decreased due to the influence of e.g. clouds (Holben, 1986). The problem is, how-

ever, that this compositing scheme will generally select cloud observations over snow

covered (i.e. PSI) surfaces, since the NDVI of clouds is higher compared to the NDVI of

snow. If cloud contaminated observations are subsequently removed and replaced by

post-seasonal correction algorithms (Bartholomé and Belward, 2005, and references

therein), it will likely lead to errors in the composite data underlying the classification

schemes. In this context, it is interesting to note that in the European Alps ROI, where

the differences between PSIMODIS and PSIGLC were marginal, a different clear-sky com-

positing scheme was selected (Vancutsem et al., 2007). In the case of the Canadian

Arctic ROI, areas north of approx. 75◦N revealed largest discrepancies, which may

be explained by inconsistencies due to MODIS imagery being used as input for un-

supervised classification between 75◦N-80◦N and data from the Advanced Very High

Resolution Radiometer (AVHRR) between 80◦N-90◦N (GLC, 2003b). However, to our

knowledge no detailed information on the data processing steps in these areas are

available.

As for the Globcover classification, sparse data collection of the MERIS instrument due

to a smaller swath width compared to MODIS (1150 km vs. 2330 km) may result

in discrepancies, as this reduces the chance of a geographic location being observed

Figure 5.5 (facing page): MODIS circumpolar RGB imagery in 2000 (left), corresponding

PSIMODIS (middle), and PSIGLC (right). Three areas are displayed: The northern Canada ROI (A;

2750×1775 km2), a subset of the European Alps ROI (B; 150×100 km2), and a subset of the

Altai mountain range within the Altai ROI (C; 255×166 km2). While there is a good agreement

between PSIMODIS and PSIGLC in the European Alps, the extent of PSI is clearly overestimated

(underestimated) in the Canadian Arctic ROI (Altai subset) by the GLC-2000 classification (cf.

Table 5.3). Color code for the PSI maps: white, PSI; black, water surfaces, grey, snow/ice free

land surfaces.
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under cloud- and snow-free conditions. Especially in Western North America, Cana-

dian Arctic, and both Siberia ROIs, the number of valid MERIS observations during the

considered period is very low (≤10; Bicheron et al., 2008). In addition, MERIS only

covers a small range of the electromagnetic spectrum (0.4-0.9µm) compared to the

entire solar spectrum measured by MODIS, which presumably limits its ability to dis-

criminate between land cover types. Additional errors are eventually introduced to the

Globcover product where a reference dataset was used to fill gaps due to missing data

(Bicheron et al., 2008).

With regard to LSCs being used to set up boundary conditions in climate and land sur-

face process models (Hagemann, 2002), the accurate delineation of PSI in land cover

products is important, since inaccurate boundary conditions potentially lead to erro-

neous climate simulations (Hagemann et al., 1999). While the impact of PSI misclassi-

fication on the assessment of land surface-atmosphere fluxes may be limited to local

scales for ROIs exhibiting small PSI extent (e.g. the Altai mountain range or North-

ern Siberia), it is likely to be more relevant for simulations at larger scales for ROIs

characterized by large areas of PSI (e.g. Canadian Arctic or Western North America).

However, the quantification of this impact remains to be addressed in future studies.

5.4 Concluding remarks

Perennial snow and ice extent represents minimum snow and ice conditions in moun-

tain regions at the end of the summer season and, as such, reflects the balance of

melting and accumulation processes during the previous seasons. We made use of

a newly developed MODIS dataset at 250 m spatial resolution to quantify interan-

nual variations in PSI extent in nine ROIs in the Arctic circumpolar area between 2000

and 2008. Depending on the ROI, large interannual variability of PSI was detected,

which could in part be explained by variations in summer air temperature and likely

reflects the snow-albedo feedback. Independent time series of averaged net glacier

mass balances showed a very close agreement with PSI extent in Scandinavia and in

Figure 5.6 (facing page): MODIS circumpolar RGB imagery in 2005 (left), corresponding

PSIMODIS (middle), and PSIGC (right). Three areas are displayed: The northern Canada ROI (A;

2750 km×1775 km), a subset of the European Alps ROI (B; 150 km×100 km), and a subset

of the Northern Siberia ROI (C; 150 km×100 km). The extent of PSI is clearly overestimated in

PSIGC for the Canadian Arctic ROI, but underestimated in the European Alps and, in particular,

in northern Siberia (cf. Table 5.3). Color code for the PSI maps: white, PSI; black, water

surfaces, grey, snow/ice free land surfaces.
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the European Alps, which suggests that PSI variations may serve as an indicator of

net glacier mass balances in these areas. This is of particular interest with regard to

the need for information on glacier mass balances on broad spatial scales. Finally, the

circumpolar MODIS imagery was employed to validate PSI extent in two land surface

classifications, GLC-2000 and Globcover. PSI extent was found to be clearly misrep-

resented in both land surface classifications, which is of interest with regard to the

use of such classifications to set up boundary conditions in climate and land surface

process models. Inaccurate representation of permanently snow and ice covered areas

potentially leads to erroneous model output. This is of particular interest for large ROIs

exhibiting extensive PSI coverage, as a misclassification of PSI in these areas may af-

fect model output at large spatial scales through the snow-albedo effect. Circumpolar

MODIS imagery has provided interesting and novel insight into PSI variations in several

mountain ranges at high spatial resolution. With regard to the importance of snow

and ice for many land surface and hydrological processes, the results presented here

will enhance our understanding of future climate change impact on mountain regions.
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Glaciology 51, 25–36.



Perennial snow and ice variations 121

Holben, B. N. (1986). Characteristics of maximum-value composite images from tem-

poral AVHRR data. International Journal of Remote Sensing 7 (11), 1417–1434.

Justice, C. O., E. Vermote, J. R. G. Townshend, R. Defries, D. P. Roy, D. K. Hall, V. V. Sa-

lomonson, J. L. Privette, G. Riggs, A. Strahler, W. Lucht, R. B. Myneni, Y. Knyazikhin,

S. W. Running, R. R. Nemani, Z. Wan, A. R. Huete, W. van Leeuwen, R. E. Wolfe,

L. Giglio, J. Muller, P. Lewis, and M. J. Barnsley (1998). The Moderate Resolution

Imaging Spectroradiometer (MODIS): Land Remote Sensing for Global Change Re-

search. IEEE Transactions on Geoscience and Remote Sensing 36 (4), 1228–1249.

Kargel, J. S., M. J. Abrams, M. P. Bishop, A. Bush, G. Hamilton, H. Jiskoot, A. Kääb,
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Chapter 6

Concluding remarks

Mountain environments are particularly sensitive to variations in the Earth’s climatic

system and have, therefore, gained increasing importance in the global change dis-

cussion. In this context, remote sensing was identified as an integral part of the moni-

toring strategies. Among a multitude of possible applications based on a wide variety

of sensor systems, data from the AVHRR and MODIS sensor systems may be employed

to observe land surface parameters at a high temporal resolution and on broad spa-

tial scales. The studies in this thesis have clearly demonstrated the high potential of

the AVHRR and MODIS sensors for observations of land surface parameters in moun-

tain regions at various spatial scales. The focus was entirely set on vegetation, snow,

and ice, due to the importance of these three land surface types for many mountain

environments.

In a first study at local to regional scale, the impact of elevated topography on the

geometric accuracy of AVHRR-derived climate data records was investigated with re-

gard to the GCOS geolocation accuracy requirements (Chapter 3). Investigations were

based on maximum NDVI composite data. Obtained results emphasize that geometric

distortions introduced to satellite imagery through the intertwined effects of obser-

vation geometry and surface elevation should be corrected for through the process

of orthorectification. Neglecting these effects may lead to important biases in NDVI

datasets and to a loss of spatial information at various spatial scales. The study also

showed that maximum NDVI composite data originating from the AVHRR GAC data

format should be used with caution in future studies of spatially heterogeneous moun-

tain regions. A systematic average positive bias caused by the GAC sampling scheme

was identified. This bias likely contributes to the systematic average positive biases

we observed relative to our results in AVHRR GAC-based composites from the GIMMS

and PPF datasets. The conclusions of this study accentuate the importance of the

task on reprocessing AVHRR 1-km imagery for climate studies for two reasons: first,
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only few AVHRR processing systems have so far accounted for the geometric distor-

tions introduced to AVHRR imagery by elevated topography, which limits the use of

AVHRR-derived climate data records for studies of sensitive mountain regions. Second,

GAC-based NDVI data records contain inherent positive biases in spatially heteroge-

neous mountain regions that cannot be corrected for.

A problem often encountered when using remote sensing imagery for studies of

mountain regions is the lack of ground validation data. In this context, the compara-

tive study of satellite and ground based phenology at local scale presented in Chapter

4 made an important contribution. At 15 alpine and subalpine grassland sites, three

grassland growth parameters obtained from in situ measurements (melt-out, start of

growth, and end or growth) were derived from satellite NDVI time series. All three

parameters were estimated consistently by NDVI time series from AVHRR and two

newer generation sensors, MODIS and VEGETATION. The study also emphasized the

necessity to account for the influence of persistent cloud cover in NDVI time series

in mountainous regions through the application of smoothing algorithms. In this re-

gard, a modified version of a commonly used Fourier adjustment algorithm provided

better results compared to a Savitzky-Golay filter. Given that in situ data are avail-

able since 1998, future studies in this context should be extended back in time and,

hence, include various satellites from the NOAA series. This will enable us to validate

decade-long time NDVI time series at several alpine grassland sites and to gain more

detailed insight into possible reasons for discrepancies between remote sensing and

ground measurements. Thoroughly validated NDVI time series will be a great benefit

with regard to the exploitation of the extensive RSGB AVHRR data record for studies

of vegetation dynamics in the European Alps.

In view of the importance of mountain snow and glaciers for the hydrological cycle and

the regional climate in mountains and surrounding low-lands, interannual variations

of perennial snow and ice (PSI) extent in nine ROIs were quantified (Chapter 5). A

newly developed MODIS dataset covering the Arctic circumpolar area at 250 m spatial

resolution in all seven land bands was used. The dataset has proven to be a valuable

tool for the quantification of PSI extent variations at regional to continental scale and

at high spatial resolution in accordance with the GCOS requirements. Strong negative

relationships between PSI extent and positive degree-days during the summer months

were observed for some ROIs, which is in line with previous discussions of the snow-

albedo feedback in the Northern Hemisphere. The good agreement of PSI extent

with net glacier mass balances in Scandinavia and the European Alps showed that

MODIS data at 250 m spatial resolution may be used as an indicator of net glacier

mass balances in these areas. This close relationship should further be investigated in

other regions within the Arctic circumpolar area to assess the potential of circumpolar
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MODIS imagery to estimate glacier mass balances in more detail. In addition, the

high-resolution MODIS data were employed to validate PSI extent in two commonly

used land surface classifications (LSC) in 2000 and 2005. The clear misclassification

observed in both LSCs for most ROIs is a potential source of error to be considered

with regard to LSCs being used to set up boundary conditions in climate and land

surface process models. A decade-long dataset covering the entire Arctic circumpolar

area at high spatial resolution will be available for studies of long-term trends and

changes, if MODIS continues to be operational until the end of 2009. This dataset will

serve as a baseline for the derivation of other land surface parameters, such as albedo,

land cover types, or vegetation properties at 250 m spatial resolution consistent with

the GCOS requirements for ECVs.

In summary, the overall aim of the thesis − to revise the applicability of AVHRR and

MODIS imagery for studies of land surface parameters in mountain regions on various

spatial scales and to make a contribution to the understanding of sensitive mountain

regions in the context of the global climate change discussion − was achieved.
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