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Summary

This thesis focuses on climate field reconstruction methods, and their appli-

cation at the seasonal scale for Europe. We present an in-depth analysis of

PC regression and RegEM. “A priori” knowledge about their performance

is gained through robustness and sensitivity tests in a “surrogate climate”.

Furthermore, we evaluate reconstructions for European summer and winter

temperatures over the last 500 years comparing PC regression to RegEM

and CPS. Finally, based on all these methodological considerations, the the-

sis presents and interprets an ensemble of European summer temperature

reconstructions over the last millennium.

Comparison of climate field reconstruction techniques:

Application to Europe

We compare the performance of PC regression and RegEM to reconstruct Eu-

ropean summer and winter surface air temperature over the past millennium.

Reconstruction is performed within a surrogate climate using the National

Center for Atmospheric Research (NCAR) Climate System Model (CSM) 1.4

and the climate model ECHO-G 4, assuming different white and red noise

scenarios to define the distortion of pseudoproxy series. We show how sensi-

tivity tests lead to valuable “a priori” information that provides a basis for

improving real world proxy reconstructions. Furthermore, we demonstrate

that uncertainties inherent to the predictand and predictor data have to be

more rigorously taken into account. More skilful results are achieved with

RegEM as low frequency variability is better preserved. We further detect

seasonal differences in reconstruction skill for the continental scale, as e.g.

the target temperature average is more adequately reconstructed for sum-
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mer than for winter. Both techniques underestimate the target temperature

variations to an increasing extent as more noise is added to the signal, albeit

RegEM less than with PC regression. We conclude that climate field recon-

struction techniques can be improved and need to be further optimized in

future applications.

An ensemble of European summer and winter temper-

ature reconstructions back to 1500

An ensemble of reconstruction results for past European temperature vari-

ability back to 1500 is presented. We apply PC regression, RegEM and CPS.

The reconstruction results of the three techniques for summer and winter

European temperature averages, and spatial fields related to warmest and

coldest decades are analyzed and discussed. We show that PC regression

and RegEM perform more similarly compared to CPS, and that more robust

reconstructions are achieved for winter than for summer. We conclude that

temperature reconstructions can not be improved significantly by replacing

the reconstruction technique only. Discordances are also very likely to be

due to limited spatial and temporal availability of the proxy data. The com-

parison of PC regression, RegEM and CPS reveals that past temperature

variability is likely more variable than indicated by earlier European sea-

sonal temperature reconstructions, still indicating the exceptional warmth of

the late 20th century. However, further evidence is needed, as the summer

reconstruction results of the three techniques are not yet fully coherent.

European summer temperature variability over the last

millennium

We present reconstructions of European summer temperature variability

over the last millennium. Reconstruction is performed using PC regression,

RegEM, and additionally CPS. The combination of three reconstruction tech-

niques and compilation of long and continuous proxy series provide the basis

for these new results, and for a detailed analysis of European millennial sum-

mer temperature amplitudes. Their robustness is tested by cross-validation
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with the leave-one-out algorithm. Furthermore, the performances of PC re-

gression and RegEM are compared focusing on reconstructed temperature

fields averaged over periods of accordance and discordance. We show that a

rather diverse picture of summer temperature variability over the last millen-

nium is very likely caused by a lack of coherence in the temperature signals

inherent to the proxy data. We conclude that the “Medieval Warm Period”

is not noticeable in the results, whereas some evidence is provided for the

“Little Ice Age”.
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Chapter 1

Introduction

1.1 Scientific background and motivation

The earth has always witnessed climate change throughout its history. How-

ever, time series of atmospheric CO2 concentration from air bubbles in ice

cores reveal highest values presently, relative to the past 650’000 years and are

evidence that the present climate change is unusual. Very likely humans are

the cause: without taking into account human activities, the exceptionally

high concentration of CO2 in the atmosphere can not be explained (Jansen

and coauthors , 2007). The forth assessment report (4.AR) of the Intergov-

ernmental Panel on Climate Change (IPCC) proves that an in-depth under-

standing of past climate is a necessary precondition to understand present

climate, and to learn for the future. Thus, in the last few decades, substantial

progress has been made in paleoclimatology with regard to the improvement

of the understanding of past climate variability prior to the instrumental

measurement period.

1.1.1 Models versus reconstructions

Past climate variability and changes are either assessed by climate model

simulations or by analyses and reconstructions based on indirect climate

information, so called proxies. Past climate signals are recorded in natural

archives, which alter their behavior in response to climate (e.g. tree rings,

corals, varves, peat, speleothems, ice cores), or in documentary evidence (e.g.

1



Figure 1.1: Schematic diagram of the general methodology used to reconstruct past
climates (National research Council of the US National Academy, 2006).

weather reports, diaries, ship logbooks, grape harvest dates). While climate

models allow, due to their physical nature, the linkage of cause and effect in

past climate, statistical reconstructions describe past climate variability and

extremes based on proxies. Thus, paleoclimate reconstructions are crucial to

evaluate, how realistically climate models simulate past climatic changes. In

turn, the skill and robustness of statistical reconstruction methods can be

tested by using climate model simulations as a “surrogate climate”.

1.1.2 Methods for climate field reconstruction

Methods for paleoclimate reconstructions range from direct measurements of

past climate to reconstructions using single or multiple proxy data. These

multiproxy reconstructions can offer more rigorous estimates than a single

proxy approach (Jansen and coauthors , 2007). Reconstruction is performed

with statistical methods, used to estimate past climate variables according

to the following principal ideas (Fig. 1.1). Firstly, the period of instrumental
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measurements is separated into a calibration and a validation part. Then,

a statistical relationship between the target, i.e. the instrumental measure-

ments, and the explanatory variables, i.e. the proxy data, is built over the

calibration period. Secondly, values of the climate variable of interest, includ-

ing those during the validation period are then reconstructed by using the

statistical relationship to predict past estimates from the proxy data. Skill

is attributed to the climate reconstruction if the accuracy of reconstructed

and estimated values during the validation period is positively tested (NRC ,

2006). Thus, skill measurements are calculated in order to indicate how

trustful the reconstruction result is.

Commonly used reconstruction methods have the premises of linearity and

stationarity in common. It is assumed, that the statistical relationship be-

tween target and proxy is linear, and the same throughout the calibration,

validation, and reconstruction period. Thus, a presumably nonstationary

calibration period potentially introduces biases in the reconstruction pro-

cess (Rutherford et al., 2003). Results applying covariance-based methods

for climate field reconstruction (CFR) indicate that using the 20th century

data-rich part of instrumental measurements for calibration does not sig-

nificantly bias past climate reconstructions (Rutherford et al., 2003). Fur-

thermore, errors integrated in the statistical reconstruction are presumed

to be independent and identically distributed (i.i.d) gaussian white noise.

Large-scale climate reconstructions range from simple averaging and scaling

of proxy data, to more complex CFR methods. For composite-plus-scaling

(CPS) (e.g. Jones and Mann, 2004; Esper et al., 2005) simply the composite,

i.e. the average series of the proxy data, is built and then used for recon-

struction by scaling this composite according to the standard deviation of

the target during the calibration period. Focusing on CFR methods, which

provide not only temporal, but also spatial climatic information, there are

mainly two approaches. Multivariate principal component (PC) regression is

the traditional method used to reconstruct spatial climatic patterns (Mann

et al., 1998, 1999; Luterbacher et al., 2004; Xoplaki et al., 2005; Casty et al.,

2005; Pauling et al., 2006). PC regression seeks to reconstruct past climatic

fields using truncated principal components (PC) of both the target and the

proxy data. The transformation to the PC with truncated singular value
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decomposition (TSVD) allows for reduction of dimensionality, still retaining

most of the variability contained in the full data sets (Wilks , 1995). Fur-

thermore, the first few PC’s typically represent large-scale modes, e.g. the

North Atlantic Oscillation (Casty et al., 2005a). The regression coefficients

during the calibration period are estimated by ordinary least squares (OLS),

and then used to “retrodict” past climate values. The disadvantage of OLS

is, that if noise is inherent to the explanatory variables in the regression, the

coefficient estimates are biased, which leads to a loss in variance in the re-

construction result, and underestimation of amplitudes (Gleser , 1992; Thejll

and Schmith, 2005; Lee et al., 2008). Therefore, recently alternative methods

have been introduced (Allen and Stott , 2003; Hegerl et al., 2006; Rutherford

et al., 2005; Mann et al., 2005, 2007; Lee et al., 2008), not only taking into

account the uncertainties of the statistical models, but also the noise inherent

to the proxy data. Regularized expectation maximization (RegEM), first de-

scribed by Schneider (2001), is a covariance-based iterative algorithm, which

linearly models the relationship between missing and available values (giving

plausible ones). The EM algorithm estimates the mean and the covariance of

an incomplete data matrix by imputing values for missing ones (Schneider ,

2001). Thus, with each iteration step, estimates of the mean and the covari-

ance of the input matrix are computed, followed by the calculation of the

regression coefficients and the statistical characteristics of the residuals. The

iterations are repeated until the convergence criterion is fulfilled (Schneider ,

2001). For the regularization of the EM algorithm different regularization

schemes can be applied. Mann et al. (2007) proposed truncated total least

squares (TTLS), i.e. to retain only a specific number of PC of the covariance

matrix, accounting for i.i.d. gaussian white noise of equal variance inherent

to both, the target and the proxies.

There have been criticisms with regard to large-scale climate field recon-

structions, predominantly focusing on the validation and robustness of re-

constructions (McIntyre and McKitrick , 2003; von Storch et al., 2004; Thejll

and Schmith, 2005; Bürger and Cubasch, 2005; Smerdon and Kaplan, 2007).

With the use of “a millennial surrogate climate” von Storch et al. (2004)

showed that temperature reconstructions very likely do not fully capture the

variance on longer time scales: the bias addressed damps the amplitude of
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PC regression based reconstructions, such that temperatures during cooler

periods may have been colder than estimated, while periods with comparable

warm temperatures as in the calibration period are likely unbiased (NRC ,

2006). Thus, concerns about application of the reconstruction methods arise

from uncertainties in the ability of the statistical methods and algorithms

to recognize and reproduce the climatic signal and its variations against the

noise at different timescales (NRC , 2006). Detailed evaluations and reassess-

ments of climate reconstruction methods have been performed (Rutherford

et al., 2003, 2005; Küttel et al., 2007; Mann et al., 2007; Wahl and Ammann,

2007; von Storch et al., 2007; Moberg et al., 2007; Lee et al., 2008) and are still

needed in order to identify their flaws, and enhance their reliability. The role

statistical reconstruction methods play in this context is not trivial (NRC ,

2006).

1.1.3 The data perspective

Every climate reconstruction represents a compromise with regard to the cho-

sen target, and to a greater extent with regard to the explanatory variables.

Many times temperature only is considered, and other climate variables, e.g.

pressure or precipitation, which offer complementary insights into long-term

mechanisms of the climate system, are neglected. Temperature fields are

preferred to reconstruct as they are more homogeneous than the precipita-

tion ones, and offer a more stable and less erratic basis for methodological

investigations.

The calibration often involves a simplification of what is very likely a more

complex relationship between the the proxies and the target climate variable.

The simplification is defensible (Jansen and coauthors , 2007). Furthermore,

reconstructions implicitly presume rather ideal conditions, e.g. the associ-

ated errors being i.i.d. gaussian white noise. Therefore, it is important to

understand the limitations of reconstructions, and the area of conflict be-

tween the premises of the reconstruction methods, the target instrumental

measurements and the heterogeneity and quality of proxy series.
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Target instrumental records

In most reconstructions, the target are instrumental measurement records.

Their length and statistical properties determine the calibration period. How-

ever, only since the late 19th century the number and distribution of instru-

mental measurement stations have been large enough to estimate temper-

atures for the entire globe (NRC , 2006). Associated uncertainties of in-

strumental measurements arise from the geographic distribution, land-use

changes, poor sampling and inhomogeneities (Brohan et al., 2006). Errors in-

herent to instrumental records can deteriorate the calibration and reduce the

significance of reconstructions. Improvements in methods to construct data

bases of gridded global climate observations are therefore crucial (Mitchell

and Jones , 2005).

Documentary proxy evidence and early instrumental measurements

Documentary proxies are of high precision, and provide information that re-

lates directly to natural hazards with a socio-ecomic impact (Pfister et al.,

1999; Glaser , 2001; Brázdil et al., 2005). Documentary evidence tends to

best record extreme events, thus compromising not continuous, but discrete

series of indexes related to climate, often lacking information about past

climatic mean states. The most limiting factor in their use for statistical

reconstruction, is the missing information during the calibration period. Ob-

viously, when instrumental measurements started, the necessity of compiling

documentary sources on climate stopped.

As in Europe instrumental measurements started early, here they provide a

basis for comparison with natural proxy records. Not surprisingly, when early

instrumental records are used for reconstruction, they correlate highly with

the target. The limitations of early measurements relate to inhomogeneities.

This has proved to be of particular importance for reconstructing summer

temperatures. Instrumental measurements might have been too warm due to

awkwardly exposure of thermometers (Frank et al., 2007; Böhm et al., 2008).

The role of early instrumental measurement in millennial reconstructions is

minor, compared to the crucial role of documentary evidence, before 1500

AD.
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Tree ring records

Tree rings (ring widths and maximum late wood density) play a dominant role

in paleoclimate reconstructions. They agree well with statistical premises,

as they are continuous, precisely dated at annual and higher resolution, and

found in many locations (Jones and coauthers , 2008). Although new meth-

ods have been introduced to process tree ring data appropriately for lower

frequency reconstruction (Esper et al., 2002; Büntgen et al., 2006), often

precise information about the sampling and the pre-processing of available

tree ring data is missing, which introduces uncertainties in the process of

reconstruction. Furthermore, the different variance spectra of different tree

species are mostly not taken into account by the commonly used statisti-

cal reconstruction methods (Jones and coauthers , 2008). Finally, a problem

of “divergence” between some tree ring data and the observed temperature

trend at the end of the 20th century has been discovered (Briffa et al., 1998;

Wilson et al., 2007), influencing considerably the calibration with and inter-

pretation of tree rings.

Ice core isotopic records

Ice cores are a prominent proxy for reconstruction of past climate. The ice

core variable, that has widely been used, is δ18O, the isotopic composition of

water (e.g. Grootes and Stuiver , 1997; Johnsen and Vinther , 1998). Ice cores

are very limited in their availability, their importance is emphasized as they

are found in crucial locations (e.g. Greenland, Antarctica) where no other

proxy information is available. There is no simple temperature-isotope effect,

as there are exchanges between water at the surface, water droplets as well

as atmospheric water vapor which have to be considered in detail (Bradley ,

1999). Biases introduced due to non-climatic noise, e.g. surface roughness

or rapid ice flow, can not yet be adequately integrated in the reconstruction

process by statistical methods (Jones and coauthers , 2008). Furthermore,

annual markers in the ice do very likely not correspond to fixed calendar

dates, which introduces further uncertainties to reconstructions using ice

core data (Jones and coauthers , 2008).
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Other proxies

Many, many other proxies are available, e.g. corals, speleothems, lake and

peat sediments, as well as marine sediments. Most of these proxies are diffi-

cult to incorporate in highly temporally resolved climate reconstruction. On

the one hand they can not yet be dated accurately enough, on the other

specific statistical methods need to be developed. Although generally not

considered for multiproxy reconstruction, they provide valuable archives and

records to interpret past climate variability and change also at lower fre-

quencies. Furthermore, e.g. coral records also include information about the

tropical ocean climate, and build a basis for the extension of land-only climate

reconstructions. Lately, also temperature-depth profiles from boreholes are

used for geothermal past climate reconstruction given a decreasing resolution

in depth and in time (González-Rouco et al., 2008). Also new proxy types

are developed steadily, e.g. tree ring isotope records (Treydte et al., 2007),

which further enrich the paleoclimate proxy archives for reconstruction.

1.1.4 Northern hemispheric temperature reconstruc-

tions over the last millennium

Since the late 1990s paleoclimatologists have reconstructed annual to decadal

surface air temperature variability over the northern hemisphere (NH). Many

NH annual average temperature reconstructions covering approximately the

last millennium have been presented (Jones et al., 1998; Mann et al., 1998,

1999; Briffa et al., 2001; Esper et al., 2002; Mann and Jones , 2003; Cook

et al., 2004; Moberg et al., 2005; Rutherford et al., 2005; DArrigo et al., 2006;

Hegerl et al., 2006). Hereby different variants of CPS (e.g Esper et al., 2002;

Moberg et al., 2005; Hegerl et al., 2006; DArrigo et al., 2006), as well as

inverse multivariate PC regression (Mann et al., 1998, 1999) have been ap-

plied. There are differences between these NH reconstructions particularly

with regard to the magnitude of the past coolings in the 12th to 14th and

17th to 19th centuries. The reconstruction of Moberg et al. (2005) reveals

persistent warm conditions comparable to the mid 20th century, while the

others mostly exhibit a small maximum just before the year 1000 AD. How-

ever, none of them show temperatures before the 20th century being warmer
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than levels reached for the last two decades of the 20th century (Jansen and

coauthors , 2007). Besides NH paleoclimate reconstructions, a range of in-

creasingly complex atmosphere-ocean general circulation models (AOGCMs),

earth system models of intermediate complexity (EMICs) and energy balance

models (EBMs) have been used to simulate NH temperatures over the last

500 and 1000 years using both natural and anthropogenic forcings (e.g. Crow-

ley et al., 2003; González-Rouco et al., 2006; Goosse et al., 2006; Ammann

et al., 2007). The comparisons of energy balance climate model simulations

and observations disclose that much of the pre-anthropogenic decadal-scale

temperature variations on the NH can be explained by changes in volcanism

and solar irradiance, while only approximately 25 percent of the temperature

increase in the 20th century can be attributed to natural variability (Crowley ,

2000). Furthermore, Mann (2007b) concludes that natural forcings (solar and

volcanic) explain reasonably major large-scale average temperature changes

of the past millennium until the 19th century. However, only greenhouse gas

and sulfate aerosols can explain the recent anomalous warming displayed in

the NH temperature reconstructions for the late 20th century.

Recent studies emphasizing regional to continental dynamics of past climate

variability on seasonal to centennial timescales, more and more have gained

importance (http://www.pages.unibe.ch). At regional scale other aspects

than at the hemispheric scale in the response to forcing become important,

e.g. the influence of internal variability on climate variations being more

dominant (Shindell et al., 2003, 2004; Bengtsson et al., 2006). Furthermore,

Goosse et al. (2006) suggests land surface forcing has induced Medieval sum-

mer warmth around the 11th century in Europe, comparable to the recent

warmth of the late 20th century. And Mann (2007b) concludes that atmo-

spheric circulation patterns may play a crucial role in understanding vari-

ability patterns of specific regions. Thus, in contrast to the NH, where the

lowering of solar irradiance during the “Maunder Minimum” in the 17th cen-

tury has only lead to a moderate decrease of the average temperature, in

Europe a substantial cooling was induced, due to a tendency towards the

negative phase of the NAO (Luterbacher et al., 2001; Mann, 2007b). Finally,

it is important to detect the seasonal response to explosive volcanism, on

smaller scales than hemispheric (Fischer et al., 2007).
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Smaller and seasonal scales imply different methodological aspects to be con-

sidered in the reconstruction. On the one hand, the magnitude of regional

climate variability amplitudes is often greater than at the hemispheric scale

(Luterbacher et al., 2004), on the other, the dimensionality of the “problem”

decreases considerably. Thus, CFR methods have to be tested and evaluated

according to the spatial and temporal scales they are applied to.

1.2 European climate reconstructions over the

last millennium

Many reconstructions at the European scale put the current climate change

into the context of past climate variability covering approximately the past

500 years (Luterbacher et al., 2004, 2006; Xoplaki et al., 2005; Casty et al.,

2005, 2007; Raible et al., 2006; Pauling et al., 2006; Fischer et al., 2007).

Thus, they provide information about continental climate variability, and

the intrinsic seasonal patterns of climate change in Europe, which are not

visible at the hemispheric scale. Furthermore, they offer the possibility for

an extension even further back in time. An accurate picture of European

climate variability over the last millennium does not yet exist. Many proxy

series across Europe explain past local climate variability (e.g Kirchhefer ,

2001; Proctor et al., 2002; Chuine et al., 2004; Mangini et al., 2005; Büntgen

et al., 2006; Esper et al., 2007; Blass et al., 2007), however they have not

yet been comprised for a multiproxy approach attempting to explain past

climate variability for the whole of Europe. Thus, the question, to what

extent the “Medieval Warm Period” (MWP), the “Little Ice Age” (LIA), and

the sharp temperature increase of the 20th century can be captured in large-

scale European climate field reconstructions over the last millennium, has not

yet been answered. Furthermore, as proxy data availability is exceptionally

good in Europe compared to other continents, the European area is suitable

for methodological investigations aiming at the reconstruction of millennial

seasonal climate variability.
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1.2.1 The Palvarex 2 project

This PhD thesis contributes to research work within the second phase of

the project PALeoclimate VARiability and EXtreme events (PALVAREX

2) in the workpackage 1 of the National Center of Competence in Research

(NCCR) in Climate (http://www.nccr-climate.unibe.ch), funded by the Swiss

National science Foundation. PALVAREX 2 focuses on the further enhance-

ment of seasonal reconstructions of past European climate based on the multi-

proxy approach. The climate reconstructions performed in phase 1 for the

last 500 years, are to be extended over the last millennium. The objectives

of PALVAREX 2 are related to:

1. The collection and compilation of highly resolved proxy evidence from

natural archives and documentary sources.

2. The understanding of the response of European past climate to natural

and anthropogenic forcings, as well as internal variability, on the basis

of gridded climate fields reconstructions.

3. The assessment of anomalous periods and extreme events of the past.

4. The development and in-depth understanding of methodologies.

The aims of PALVAREX 2 correspond to those of the Millennium project

of the European Union. Both projects have the overall aim to answer the

question, to what extent the magnitude and rate of recent climate change

exceed the natural variability of European climate over the last millennium.

1.2.2 Aims of this PhD thesis

The main aim of this PhD thesis is the in-depth examination and evaluation

of the traditionally used climate field reconstruction technique PC regression

at the European scale, and of the statistical methods CPS and RegEM also

considered for millennial European climate field reconstructions. As method-

ological considerations are in the foreground and center of this PhD, partic-

ularly temperature is considered, due to the reasons mentioned above. On

the basis of the gained knowledge about the performance of the reconstruc-

tion methods, the creation and interpretation of temperature reconstructions
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covering the last millennium is aimed at in a second step.

To achieve these aims three sub-aims are defined:

1. The creation of “a priori” knowledge about the skill and robustness

of millennial reconstructions by testing plausible and worst-case input

scenarios for climate field reconstructions.

2. Detect flaws and enhance the reliability of the reconstruction results,

by the use of an “ensemble approach”.

3. Visualize the key role of the proxy data quality and availability in the

reconstruction process.

To summarize: Prior to the reconstruction of past climate variability over the

last millennium, a reassessment of the performance of the different statistical

methods is achieved.

1.3 Outline

This thesis is structured as follows: After the introduction to the scientific

background and the topic in chapter 1, the scientific contributions are pre-

sented in chapter 2 to chapter 4. In chapter 2, PC regression and RegEM are

introduced. Their performance is compared temporally and spatially, assum-

ing different pseudoproxy scenarios within a “surrogate climate” over the past

millennium at the European scale. In chapter 3, PC regression, RegEM, and

additionally CPS are then applied to real proxy data covering the past 500

years. Similarities and differences of reconstructed past European summer

and winter temperature variations and extremes are analyzed and discussed.

Chapter 4 presents an ensemble of European summer temperature recon-

structions over the past millennium. The interpretation is complemented

with analyses focusing on the robustness of the results. Finally, conclusions

and perspectives are contained in Chapter 5. The appendix includes the

skill assessment of PC regression and RegEM to reconstruct three climate

variables (pressure, temperature and precipitation).
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Abstract

This paper presents a comparison of principal component (PC) regression

and regularized expectation maximization (RegEM) to reconstruct European

summer and winter surface air temperature over the past millennium. Recon-

struction is performed within a surrogate climate using the National Center

for Atmospheric Research (NCAR) Climate System Model (CSM) 1.4 and

the climate model ECHO-G 4, assuming different white and red noise scenar-

ios to define the distortion of pseudoproxy series. We show how sensitivity

tests lead to valuable “a priori” information that provides a basis for im-
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proving real world proxy reconstructions. Our results emphasize the need

to carefully test and evaluate reconstruction techniques with respect to the

temporal resolution and the spatial scale they are applied to. Furthermore,

we demonstrate that uncertainties inherent to the predictand and predictor

data have to be more rigorously taken into account. The comparison of the

two statistical techniques, in the specific experimental setting presented here,

indicates that more skilful results are achieved with RegEM as low frequency

variability is better preserved. We further detect seasonal differences in re-

construction skill for the continental scale, as e.g. the target temperature

average is more adequately reconstructed for summer than for winter. For

the specific predictor network given in this paper, both techniques under-

estimate the target temperature variations to an increasing extent as more

noise is added to the signal, albeit RegEM less than with PC regression. We

conclude that climate field reconstruction techniques can be improved and

need to be further optimized in future applications.

2.1 Introduction

Knowledge of temperature amplitudes is of utmost importance in gaining a

better understanding of past temperature evolution and change. Reconstruc-

tion of past temperature variability based on paleoclimatic data can provide

insights into the interpretation of the role of climatic forcings. Many existing

reconstructions place the twentieth century warming at continental to global

scale into a broader context (Mann et al., 1998, 1999, 2005; Esper et al.,

2002; Luterbacher et al., 2004, 2007; Mann and Rutherford , 2002; Xoplaki

et al., 2005; Rutherford et al., 2005; Casty et al., 2005a, 2007; Guiot et al.,

2005; Moberg et al., 2005; Jansen and coauthors , 2007). However these re-

constructions have various limitations, primarily related to the availability

of proxy data and their quality. It is a methodological challenge to filter out

the climatic signal from a range of different proxy archives, given the short

instrumental period for calibration and the increasing lack of predictors back

in time. Reconstruction is generally approached in two ways. One possibility

is to reconstruct the average, i.e. a single time series over a specific time pe-

riod, e.g. the Northern Hemisphere average over the past millennium. The
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average series is reconstructed by making a composite of multiple proxy se-

ries, centered and scaled according to the target, i.e. composite-plus-scaling

(CPS) (see Jones and Mann, 2004; Esper et al., 2005). The other possibility

is to focus on the whole climatic field of interest. In this case climate field

reconstruction (CFR) techniques provide temporal and spatial information

(Jones and Mann, 2004, and references therein). The CFR approach pro-

vides a distinct advantage over averaged climate reconstructions, for instance,

when information on the spatial response to external forcing (e.g. volcanic,

solar) is sought (e.g. Shindell et al., 2001, 2003, 2004; Waple et al., 2002; Fis-

cher et al., 2007). The results of both approaches, CFR and CPS, have led

to some controversy over temperature amplitudes, raising questions about

associated uncertainties, and the robustness and skill of the various recon-

structions, as well as the influence of trends, and the length and climatology

of the calibration period (von Storch et al., 2004, 2007; Bürger and Cubasch,

2005; Thejll and Schmith, 2005; Wahl and Ammann, 2007; Moberg et al.,

2007). Recent studies provide some answers to these questions (Wahl and

Ammann, 2007) and introduce improved methodologies for reconstructions,

e.g. the application of different parameter estimation techniques (Schneider ,

2001; Hegerl et al., 2006), the use of wavelet analysis (Moberg et al., 2005)

or state space models (Lee et al., 2008). In this contribution we concentrate

on CFR techniques.

Principal component (PC) regression is the classical method used to recon-

struct past European climate field information and has been widely applied

(Briffa et al., 1987; Cook et al., 1994; Luterbacher et al., 2004; Casty et al.,

2005, 2007; Xoplaki et al., 2005; Pauling et al., 2006). With PC regression,

CFR is commonly performed under the assumption that no errors are inher-

ent to the predictor data, and regression coefficient estimates are achieved

using ordinary least squares (OLS). However, if noise is inherent to the predic-

tor data, these estimates are negatively biased towards an underestimation

that results in loss of variance (Lee et al., 2008). Several authors (Hegerl

et al., 2006; Mann et al., 2005, 2007; Rutherford et al., 2005; Brohan et al.,

2006; Esper et al., 2007; Lee et al., 2008; Li et al., 2007) have recently dis-

cussed the necessity of taking into account not only the uncertainties of the

statistical model, i.e. the residuals, but also the errors inherent to the pre-
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dictand and predictor data:

Y + einstr = B(X + eproxy) + e (2.1)

where e are the residuals, einstr the errors associated with the instrumental

measurements, i.e. the predictand and eproxy the errors associated with the

predictors. Thus the methodological problems can be partly solved by bet-

ter incorporating the different uncertainties in the statistical reconstruction

models. Studies by Schneider (2001), Mann et al. (2005, 2007) and Ruther-

ford et al. (2005) have proved the capability of the Regularized Expectation

Maximization (RegEM) algorithm to more accurately reconstruct past tem-

perature variations. One reason for this is that RegEM integrates eproxy in

the reconstruction technique, as ill-posed problems are regularized. Mann

et al. (2007) found truncated total least squares (TTLS) to be a particularly

successful option for undertaking the regularization. RegEM with TTLS is

used here as proposed by Mann et al. (2007) and following the instructions

therein.

Some of the studies mentioned above found differences between the results

obtained by using principal component (PC) regression, on the one hand, and

those achieved by means of the more sophisticated RegEM approach, on the

other. However, these studies are limited to the hemispheric to global scale

and, mainly, to annual resolution (Rutherford et al., 2005; Mann et al., 2007;

Lee et al., 2008). One might expect to obtain different results when applying

these techniques at a smaller spatial scale, such as Europe, and considering

seasonal, rather than annual, data. In this study we therefore examine the

sensitivity of the reconstruction skill at the continental scale, with seasonally

resolved synthetic proxy data, i.e. proxies derived from climate model data.

We use data from two simulations -one generated by the National Center

for Atmospheric Research (NCAR) Climate System Model (CSM) 1.4 (Am-

mann et al., 2007), and the other generated by ECHO-G 4, which consists

of the atmosphere and ocean general circulation models (GCM) ECHAM4

and HOPE-G (González-Rouco et al., 2006). Both simulations are likely

to provide realistic opportunities for testing CFR approaches (Mann et al.,

2005, 2007; von Storch et al., 2004; González-Rouco et al., 2006; Lee et al.,

2008). Utilizing climate model data in a systematic experiment setup to at-
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tempt to reconstruct simulated past temperatures helps to understand the

two techniques better. This would be less easily undertaken with real world

multiproxy data as input, due to their heterogeneous nature and limited

availability. The evaluation of CFR techniques is an important step in the

process of identifying methodological deficits and limitations, providing “a

priori” knowledge about the performance of the methodologies. Testing the

techniques is therefore a good preparation for the next step: the improve-

ment of reconstruction using real world proxy data. Apart from the choice of

the reconstruction technique, there are several other factors limiting the skill

of reconstructions of past climate variability, e.g. the varying number and

spatial distribution of proxies over time (Pauling et al., 2003; Küttel et al.,

2007; Mann et al., 2007). However, here we focus on three things: on the de-

pendence of reconstruction skill on a specific predictor network, comparable

in size and spatial distribution to a millennial European real world network,

on the two techniques applied, and on the quality of the predictor data. We

evaluate RegEM (Schneider , 2001; Rutherford et al., 2005; Mann et al., 2007)

for European summer and winter temperatures over the past millennium. In

this study, RegEM is for the first time applied to spatial scales smaller than

the hemispheric. Furthermore, we compare RegEM to PC regression, the

basic multivariate regression model applied at the European scale, e.g. in

Luterbacher et al. (2004, 2007), Casty et al. (2005, 2007) and Xoplaki et al.

(2005). In section 2 we describe the NCAR CSM 1.4 and ECHO-G 4 cli-

mate model data and the experimental setting. Then we introduce the two

CFR techniques and the criteria for comparison. In section 3 we present

the results. We begin by looking at the European average temperatures and

diagnosing the skill. Then, we evaluate the spatial skill. The results are

compared and discussed in section 4, followed by a summary of our principal

conclusions and a glance at future research in section 5.

2.2 Data and Methods

We test the performance of PC regression and RegEM in the surrogate cli-

mate of the two global coupled models NCAR CSM 1.4 and the ECHO-G 4.

The use of climate model data permits an evaluation of the skill of the Eu-
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ropean reconstructions over a time period of 1000 years and not only during

the twentieth century verification period, as would be the case in reality. The

brevity of the real world instrumental period for calibration makes it very dif-

ficult to compare techniques and assess reliability of their performance (e.g.

Lee et al., 2008). Moreover, different virtual scenarios can be created by al-

tering the input data of the statistical models, in order to better understand

their performance and their sensitivities.

2.2.1 Simulated European surface air temperature data

NCAR CSM 1.4 (Ammann et al., 2007) and ECHO-G 4 (González-Rouco

et al., 2006) are both global coupled models. NCAR CSM 1.4 has a grid

resolution of 3.75◦ × 3.75◦ and is forced over the period 850 to 1999 AD.

ECHO-G 4 has a grid resolution of 3.75◦× 3.75◦ for the atmospheric compo-

nent and 2.8◦×2.8◦ at low latitudes for the ocean, and is forced over 1000 to

1990 AD. NCAR CSM 1.4 forcings included are observation-based time histo-

ries of solar irradiance, aerosol loadings from explosive volcanism, greenhouse

gases and anthropogenic sulfate aerosols (Ammann et al., 2007). Orbital pa-

rameters and land use changes are not included as forcings in NCAR CSM

1.4. Any potential long-term drift is removed by subtracting a millennial-

scale spline fit for individual months of the annual cycle, obtained from the

control integration, at each gridpoint (Ammann et al., 2007). ECHO-G 4

forcing includes natural (solar irradiance, radiative effects of stratospheric

volcanic aerosols) and anthropogenic (greenhouse gas concentrations) esti-

mates (González-Rouco et al., 2006) of past millennial external forcings. A

flux adjustment constant in time and zero spatial average are used to inhibit

climate drift (González-Rouco et al., 2006). The NCAR CSM 1.4 simulation

used here is the one with ‘medium’ solar irradiance scaling (0.25% Maun-

der Minimum reduction) in the terminology of Ammann et al. (2007). The

ECHO-G 4 simulation (using 0.3% Maunder Minimum reduction) is the one

sometimes known as ‘Erik 2’ (González-Rouco et al., 2006), which has cooler

initial conditions than the older ‘Erik 1’ simulation used in several previous

pseudoproxy studies.

The predictand in the reconstruction experiments is the simulated gridded
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surface air temperature field, generated by the NCAR CSM 1.4 and the

ECHO-G 4 simulations respectively. To represent Europe we selected the

area 52.5◦ W to 71.25◦ E and 28.125◦ N to 76.875◦ N of the global model

run, which gives a rather coarse picture of the European area, namely 476

gridboxes (land and sea). Gridded model surface temperature information

with a higher spatial resolution is not available for the past millennium.

Nevertheless, testing and comparing CFR techniques in this experimental

setting is reasonable. The original NCAR CSM 1.4 and ECHO-G 4 simu-

lation temperature data are monthly resolved. We have calculated seasonal

mean temperatures for summer (JJA) and winter (DJF) starting in Decem-

ber 1000 AD and ending in August 1990 AD. Some analyses are made on a

gridpoint basis, while others are made for the (latitude weighted) European

average temperature.

2.2.2 The Pseudoproxy data

The predictor data used for this study corresponds to NCAR CSM 1.4 and

ECHO-G 4 model gridpoints closest to real world proxy locations in Europe.

As the proxies are derived from the model data, we call them synthetic proxies

or “pseudoproxies” (Mann and Rutherford , 2002; Rutherford et al., 2005; von

Storch et al., 2004, 2006). The pseudoproxy locations are chosen according to

published data (Mann et al., 1999; Briffa et al., 2001; Klimenko et al., 2001;

Proctor et al., 2002; Shabalova and van Engelen, 2003; Luterbacher et al.,

2004, 2007; Casty et al., 2005; Rutherford et al., 2005; Guiot et al., 2005;

Mangini et al., 2005) and some other data that will be potentially avail-

able from current research projects (NCCR Climate and MILLENNIUM).

The real world proxy data referred to consists of 1000 year long series and

some series covering several centuries. Additionally, a few gridpoints refer

to shorter real world series, which are primarily used to optimize the spatial

distribution of the network towards Eastern and Southern Europe. We argue

that if the techniques already fail using input data covering the full length

of 1000 years, they certainly can be expected to do so, if the number and

spatial distribution are reduced and change through time. Thus the pseu-

doproxies derived and used in this paper are idealized, as we assume them
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Figure 2.1: The distribution of the 30 pseudoproxies used in this study. Each
dot corresponds to the north-western corner of one 3.75◦ × 3.75◦ gridbox of
the NCAR CSM 1.4 and ECHO-G 4 model.

all to be constantly available over the full time period of 1000 years (e.g. as

been done in Mann et al. (2007)). Keeping the spatial distribution and the

number of proxies constant over time allows us to focus on the actual vari-

able of interest, the performance of the two different CFR techniques. We

limit ourselves to considering mainly one network, equal for both seasons and

without changing availability over time. The predictor network (Fig. 2.1)

consists of 30 gridpoints and is seen as a reasonable selection of a predictor

network for a 1000 year European temperature reconstruction. Additional

testing has been made with a smaller pseudoproxy network, which consists of

12 gridpoints (not shown). These pseudoproxies refer to real world proxy se-

ries available to reconstruct the late Maunder Minimum (Küttel et al., 2007).

The conclusions drawn are conditional upon the specific network configura-

tion considered. Accordingly, this study can not apply in complete generality.

Moreover, we restrict our analysis based on the assumption that our pseudo-

proxies have seasonal resolution and do not combine temporally low and high

resolved climate proxies such as those for instance in Moberg et al. (2005).

Generally, the quantity and, even more, the spatial distribution of the proxy

information plays a crucial role in determining the reconstruction skill. Even

a single point, if optimally situated, has an impact on the reconstruction re-
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sult, and thus improves the skill (Küttel et al., 2007). However, the focus of

this study lies more on the performance of the two reconstruction techniques

as such.

We use different scenarios for errors in the local pseudoproxy series, i.e. the

predictors are characterized by the addition of red or white noise with vary-

ing signal to noise ratios (SNR) to the simulated temperature signal. Noise

is added as indicated e.g. in Mann and Rutherford (2002) and von Storch

et al. (2004), with the difference that the pseudoproxies here are constructed

based on seasonal means, correlations etc., i.e. separately for summer and

winter, taking into account different responses of real-world proxy data to

warm and cold season conditions.

The predictand is regarded as “perfect”, i.e. no noise is added. The noise

is intended to mimic errors inherent to the predictor data (Equation 2.1).

White noise is added to be consistent with the premises given by the regres-

sion model used, i.e. the residuals are independent and identically distributed

(i.i.d.). We have selected the five SNR 0.25, 0.4, 0.5, 1 and ∞ (no added

noise) according to Mann et al. (2007). With r = SNR/(1 + SNR2)1/2

the SNR is related to the associated root-mean-square correlation between

the predictor data and their associated local climate signal (Mann et al.,

2007). We obtain r = 0.24, 0.37, 0.45, 0.71 and 1.0 for the five SNR val-

ues under consideration, respectively (Mann et al., 2007). As it is plausible

that errors in proxy series are serially autocorrelated, we use red noise to

make the uncertainties more realistic. The red noise is modeled as a first-

order autoregressive AR(1) process (Mann et al., 2007) and represented by

Xt = φXt−1+Zt, where Zt ∼ WN(o, σ2) and φ 6= 0. For AR(1) processes the

autoregressive parameter φ is equal to the sample lag-1 autocorrelation co-

efficient ρ, here ρ = 0.32, 0.71. The sample lag-1 autocorrelation coefficients

for red noise as well as the five SNR for white noise are the same as those

evaluated in Mann et al. (2007). This allows for direct comparison, making it

possible to determine whether RegEM performs better than PC regression at

the continental scale as well, and how the increase in temperature variability

due to the downscaling affects the reconstruction results.
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Figure 2.2: Scheme of the analogousness / differences between PC regression
(green) and RegEM (red). PC regression corresponds to “retrodiction” and
RegEM to the imputation of past temperature values. The input matrix for
both techniques is indicated in colors.

2.2.3 PC regression versus RegEM

RegEM was first described by Schneider (2001). It has only recently been

further developed and implemented by Rutherford et al. (2005) and Mann

et al. (2007), and is compared to PC regression in the present paper. The two

reconstruction techniques each take a different approach to the reconstruction

“problem” (Fig. 2.2). With PC regression, past temperature values are

“retrodicted”, i.e. predicted into the past, whereas with RegEM missing

values are imputed, i.e. missing values are replaced by plausible ones. While

for RegEM the input is the whole data matrix including the missing and

available values, as indicated in red (Fig. 2.2), for PC regression only the

available predictand and predictor values are part of the input, as shown in

green (Fig. 2.2).

2.2.4 Multivariate principal component regression

Multivariate PC regression seeks to reconstruct the past temperature field

using the principal components of both the predictand and the predictors:

ypc = xpcB + e (2.2)
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where B are the regression coefficients relating the explanatory variables

xpc, i.e. the predictor information, and the target ypc, i.e. the predictand.

The relationship is assumed to be a linear function of parameters stationary

over time. The regression coefficients of the calibration period, here B, are

estimated by OLS and then used to “retrodict” past temperature values.

Predictand and predictors are transformed to their principal components to

obtain orthogonal series and make it possible to reduce the dimensionality

of the data while still retaining most of the variability contained in the full

dataset (Wilks , 1995). This allows for climatic interpretation of temperature

fields, as first few principal components typically capture large-scale modes.

Here the calculation of the principal components is based on the correlation

matrix as for instance in Luterbacher et al. (2004). Furthermore, they are

truncated as in that study, i.e. most of the variance is captured by considering

only the most important directions of the joint variations, thus avoiding

redundancy (Wilks , 1995).

2.2.5 Regularized Expectation Maximization

RegEM is a covariance-based iterative CFR technique based on the idea of

gradual linear modeling of the relationship between missing values and avail-

able values, also taking into account ill-posed or under-determined settings

(Mann et al., 2007). The input data matrix combines both predictand and

predictor data over the full reconstruction period:

xm = µm + (xa − µa)B + e (2.3)

where B refers to the regression coefficients relating available values xa and

missing values xm within the multivariate data set. e is the random vector

representing the error with mean zero and the according covariance matrix

C to be determined (Schneider , 2001; Mann et al., 2007). The conventional

iterative Expectation Maximization algorithm (EM) estimates the mean and

the covariance matrix of an incomplete data matrix and imputes values for

the missing ones (Schneider , 2001). The EM algorithm is used under the

assumption that the predictand and predictor data are Gaussian. With each

iteration step, estimates of the mean µ and the covariance-variance matrix
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Σ of the input matrix are calculated, followed by the computation of esti-

mates of the coefficient matrix B and the residual covariance matrix C. The

iteration is repeated step by step until the convergence criterion is fulfilled

(Schneider , 2001; Mann et al., 2007).

In cases where the number of variables exceeds sample size the EM algo-

rithm has to be regularized, as ill-posed problems lead to singularity of the

covariance-variance matrix Σ (Schneider , 2001). Instead of estimating the

coefficients B by the conditional maximum likelihood method given the es-

timates of µ and Σ, the parameters are estimated by truncated total least

squares (TTLS). Thus, in order to regularize the covariance matrix Σ its

principal components are truncated, i.e. only a specific number of principal

components is considered, according to the truncation parameter. For fur-

ther information and a more detailed description of RegEM see Schneider

(2001), Rutherford et al. (2005) and Mann et al. (2007). In our study the

non-hybrid, revised version of RegEM is used (Mann et al., 2007). We stan-

dardized the available values with regard to the calibration period, 1900 to

1990 AD, to ensure that the testing of climate reconstruction methods relies

on the appropriate application of real world constraints (e.g. Smerdon and

Kaplan, 2007). The truncation parameters for TTLS are chosen in two ways.

The first is as explained in Mann et al. (2007). Mann et al. (2007) identify

optimal truncation parameters based on the estimate of the noise continuum

to the log-eigenvalue spectrum (Wilks , 1995). This procedure serves to de-

termine leading eigenvalues that lie above the estimated noise continuum.

The second way is by evaluating a range of possible other truncation param-

eters and then selecting the parameters leading to reconstruction results with

smallest differences in mean and standard deviation to the target over the

verification period. As stated in Mann et al. (2007), the choice of the trun-

cation parameters is not unique. This is illustrated here: validation scores

of reconstruction results obtained with the log-eigenvalue spectrum criteria

are shown together with those of reconstruction results (see supplementary

online material) using alternative truncation parameters.

Furthermore, the reconstructions were performed both with and without the

principal components of the predictand. However, analyses indicated that

results using or not using PC analysis do not differ much (not shown), and
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therefore, in this paper, we restrict our results to the case of not using the

principal components of the predictand. In this way another ambiguous

choice is avoided and the whole range of variability is retained for recon-

struction.

2.2.6 The comparison criteria

PC regression and RegEM are compared to each other in the same exper-

imental setting. As mentioned above, the reconstructions are performed

within the surrogate climate of the NCAR CSM 1.4 and ECHO-G 4 climate

models using 30 pseudoproxies with different SNR, all constant over time.

We investigate how and to what extent the quality of the predictor data

affects the reconstruction skill. Furthermore, we evaluate the results of the

two techniques. On the one hand, the skill of the reconstructions is analyzed

focusing on the European average only. For this reason, figures display the

target, the European average temperature from 1001 to 1990 AD, in compar-

ison to the reconstruction results, accompanied by a quantitative summary

of the skill. The commonly used reduction of error (RE) and coefficient of

efficiency (CE) skill scores are calculated. Tables 2.1 and 2.2 indicate the

RE and CE skill scores over the verification period 1001 to 1899 AD, both

for NCAR CSM 1.4 and ECHO-G 4. On the other hand, we concentrate

on the climate field information, i.e. the spatial patterns. Our focus here

lies on the averaged reconstruction bias, and RE calculated for the 30-year

filtered reconstruction results at each gridpoint, both over the verification

period 1001 to 1899 AD. In first comparing the target with the reconstruc-

tion results for each technique separately, and subsequently comparing the

results of PC regression with those of RegEM, we determine how well the

techniques perform, depending on the influence of the errors inherent to the

predictor information.
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2.3 Results

2.3.1 Impact of the quality of the predictor data

The subsequent figures all refer to results obtained using NCAR CSM 1.4,

whereas the results produced with ECHO-G 4 are provided in the supple-

mentary online material, with the exception of the skill scores tables (Tables

2.1 and 2.2), which are shown for both climate models.

Figures 2.3 and 2.4 show the methodological comparison for averaged Euro-

pean summer (Fig. 2.3, suppl. Fig. 2.3) and winter (Fig. 2.4, suppl. Fig.

2.4) temperature reconstructions from 1001 to 1990 AD (land and sea). The

figures display temperature anomalies with regard to the calibration period

1900 to 1990 AD. The target, i.e. the average of the simulated European sur-

face air temperature over the past millennium, is shown in black, while the

average of the reconstructed summer and winter temperature fields are given

in color. All curves are smoothed with a 30-year running mean. The results

differ according to the five white noise scenarios used in the reconstructions.

The NCAR CSM 1.4 target exhibits variability with quite large quasi-periodic

amplitude variations over the past millennium, both in summer and in win-

ter. The variability for summer and winter average temperatures is similar

to that exhibited by the ECHO-G 4 run (von Storch et al., 2004; González-

Rouco et al., 2006). The reconstructions realized with PC regression (Fig.

2.3, suppl. Fig. 2.3, top) and the perfect pseudoproxy set, i.e. no white

noise added (yellow line), capture the target very well. However, the more

white noise is added to the signal, the more this technique fails to properly

reconstruct, and underestimates the amplitude of the target temperature

variations. Thus, the difference between negative temperature anomalies of

the reconstruction results and the calibration period mean is not as large as

that of the target and the calibration period mean, i.e. the reconstruction

being to warm. There is a shift from the scenarios with higher SNR, SNR ∞
and SNR 1 (yellow and red lines) to those with lower SNR, SNR 0.5, 0.4, 0.25

(blue and green lines), and a decrease in skill indicated by the RE and CE

scores in Tables 2.1 and 2.2. The RegEM reconstruction result of the SNR

∞ scenario captures the target well, too. In comparison to PC regression,
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Figure 2.3: European summer average temperature anomalies (30-year run-
ning mean) wrt 1900 to 1990 AD, for PC regression (top) and RegEM (bot-
tom), using 30 pseudoproxies (see Fig. 2.1) with varying white noise added
to the signal. The target (black line) is compared to the reconstruction re-
sults (colored lines). TTLS indicates which truncation parameter is used to
reconstruct.

Figure 2.4: as Figure 2.3, but for winter.
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Table 2.1: RE as well as CE skill scores for the NCAR CSM 1.4 results
shown in Figure 2.3, 2.4, 2.5 and 2.6, and the non-filtered reconstruction
results (not shown). The calibration period is from 1900 to 1990 AD, the
verification period from 1001 to 1899 AD. For RegEM RE and CE are
shown for two different TTLS parameters (left, TTLS parameters chosen as
in Mann et al. (2007), right, as additionally proposed in this paper).

NCAR CSM 1.4
Reduction of error (RE)

PC reg RegEM
30 year filtered non-filtered 30 year filtered non-filtered

su wi su wi su wi su wi
perfect: 0.99 0.97 0.96 0.95 0.96 0.98 0.874 0.91 0.84 0.91 0.77 0.88
SNR 1: 0.92 0.86 0.81 0.73 0.98 0.96 0.873 0.92 0.65 0.78 0.73 0.75
SNR 0.5: 0.74 0.66 0.56 0.42 0.97 0.95 0.86 0.84 0.58 0.51 0.4 0.32
SNR 0.4: 0.65 0.59 0.45 0.32 0.96 0.91 0.8 0.77 0.34 0.31 0.14 0.02
SNR 0.25: 0.45 0.45 0.22 0.14 0.839 0.82 0.6 0.54 -0.12 -0.24 -0.58 -0.56

SNR 1,phi=0.32: 0.86 0.74 0.74 0.6 0.93 0.9 0.86 0.95 0.65 0.63 0.62 0.76
SNR 1,phi=0.71: 0.8 0.68 0.67 0.49 0.843 0.91 0.75 0.9 0.66 0.71 0.39 0.6

Coefficient of efficiency (CE)
PC reg RegEM

30 year filtered non-filtered 30 year filtered non-filtered
su wi su wi su wi su wi

perfect: 0.98 0.92 0.85 0.86 0.86 0.94 0.633 0.74 0.45 0.68 0.33 0.66
SNR 1: 0.73 0.59 0.36 0.2 0.92 0.85 0.630 0.77 -0.19 0.24 0.22 0.28
SNR 0.5: 0.13 0.003 -0.47 -0.7 0.88 0.81 0.60 0.53 -0.43 -0.66 -0.76 -0.98
SNR 0.4: -0.19 -0.21 -0.86 -0.996 0.59 0.7 0.43 0.34 -1.23 -1.35 -1.53 -1.86
SNR 0.25: -0.85 -0.62 -1.63 -1.52 0.45 0.4 -0.16 -0.35 -2.8 -3.19 -3.62 -3.55

SNR 1,phi=0.32: 0.54 0.24 0.13 -0.18 0.77 0.67 0.6 0.85 -0.18 -0.24 -0.11 0.31
SNR 1,phi=0.71: 0.31 0.05 -0.13 -0.5 0.47 0.70 0.263 0.71 -0.14 0.02 -0.77 -0.16

RegEM captures the target summer average temperature (Fig. 2.3, suppl.

Fig. 2.3, bottom) more adequately for all white noise levels. After focusing

on the performance of the techniques for summer reconstructions, we now

turn to the reconstruction results for European winter average temperatures

(Fig. 2.4, suppl. Fig. 2.4). Figure 2.4 shows that both techniques capture

the target average temperature less accurately for winter than for summer

(Fig. 2.3, suppl. Fig. 2.3), a finding which is more pronounced for NCAR

CSM 1.4 than for ECHO-G 4. In principle, we obtain the same picture for

PC regression as described above for the European summer average temper-

ature reconstruction results. However, the RE and CE skill scores are higher

for summer than for winter (Tables 2.1 and 2.2). Overall, RegEM seems to

be more robust and less sensitive to the amount of white noise added to the

signal than PC regression, although, as seen for winter (Figure 2.4, and even

more so suppl. Figure 2.4), it appears that RegEM can ‘invent’ undesirable,
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Table 2.2: As Table 2.1, but for ECHO-G 4 (results see supplementary
online material).

ECHO-G 4
Reduction of error (RE)

PC reg RegEM
30 year filtered non-filtered 30 year filtered non-filtered

su wi su wi su wi su wi
perfect: 0.99 0.996 0.96 0.93 0.947 0.98 0.986 0.99 0.84 0.92 0.75 0.78
SNR 1: 0.93 0.89 0.85 0.7 0.92 0.96 0.95 0.97 0.79 0.81 0.36 0.04
SNR 0.5: 0.79 0.66 0.65 0.35 0.89 0.87 0.82 0.85 0.63 0.46 -1.73 -1.45
SNR 0.4: 0.7 0.6 0.54 0.25 0.88 0.82 0.77 0.77 0.53 0.27 -2.72 -2.31
SNR 0.25: 0.62 0.49 0.42 0.07 0.91 0.92 0.81 0.65 0.12 -0.11 -2.3 -2.36

SNR 1,phi=0.32: 0.94 0.952 0.84 0.78 0.948 0.95 0.95 0.94 0.82 0.72 0.39 0.4
SNR 1,phi=0.71: 0.81 0.953 0.68 0.62 0.97 0.84 0.86 0.85 0.79 0.32 0.18 0.17

Coefficient of efficiency (CE)
PC reg RegEM

30 year filtered non-filtered 30 year filtered non-filtered
su wi su wi su wi su wi

perfect: 0.95 0.991 0.8 0.86 0.760 0.92 0.97 0.98 0.28 0.61 0.47 0.53
SNR 1: 0.67 0.76 0.29 0.35 0.64 0.79 0.9 0.93 0.02 0.13 -0.37 -1.04
SNR 0.5: 0.01 0.28 -0.62 -0.37 0.51 0.39 0.62 0.68 -0.7 -1.48 -4.81 -4.22
SNR 0.4: -0.38 0.15 -1.11 -0.59 0.45 0.18 0.51 0.52 -1.15 -2.37 -6.91 -6.05
SNR 0.25: -0.75 -0.09 -1.67 -0.97 0.6 0.62 0.59 0.27 -3.07 -4.11 -6.01 -6.15

SNR 1,phi=0.32: 0.72 0.898 0.25 0.53 0.762 0.78 0.88 0.87 0.15 -0.3 -0.29 -0.27
SNR 1,phi=0.71: 0.12 0.899 -0.47 0.2 0.87 0.26 0.71 0.69 0.01 -2.14 -0.74 -0.77

temporal features, such as various spurious quasi-periodic variations, which

do not exist in the target data. Nevertheless, the range of the variability of

the 30-year filtered results corresponds better to that of the target for RegEM

(RE and CE 30-year filtered in Tables 2.1 and 2.2). While both techniques

reconstruct the target average temperature less accurately with increasing

noise level (Tables 2.1 and 2.2), RegEM does so to a considerably lesser de-

gree than PC regression. Figures 2.5 and 2.6 (suppl. Figs. 2.5 and 2.6) show

a second comparison of reconstruction results of the summer and winter av-

erage temperature anomalies with regard to the 1900 to 1990 AD calibration

period, now with red noise applied in comparison to the corresponding white

noise scenario. The middle white noise scenario SNR 1 is displayed together

with the two red noise scenarios with the same SNR, but different sample

lag-1 autocorrelation coefficients ρ = 0.32, 0.71 (as mentioned above, chosen

according to Mann et al. (2007)). For PC regression (Figs. 5 and 6, suppl.

Figs. 2.5 and 2.6, top) the addition of red noise (orange and magenta line)

affects the skill of the reconstruction slightly more than the addition of white

noise with SNR 1 (red line), both for summer and winter according to RE
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Figure 2.5: European summer average temperatures anomalies (30-year run-
ning mean) for PC regression (top) and RegEM (bottom). The white noise
scenario SNR 1 (red line) is compared with two different red noise scenarios
(orange and magenta lines); the target is shown in black. TTLS indicates
which truncation parameter is used.

Figure 2.6: As Figure 2.5, but for winter.
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and CE (Tables 2.1 and 2.2). For RegEM, the target temperature variations

also remain appropriately reconstructed for summer when red noise is added

instead of white noise according to RE and CE (Tables 2.1 and 2.2), although

adding red noise with an autocorrelation coefficient ρ = 0.71 (magenta line)

clearly increases the variability of the reconstruction result in winter.

The RE and CE scores for the 30-year filtered data (Tables 2.1 and 2.2)

quantitatively describe the reconstruction results (Figs. 2.3, 2.4, 2.5 and 2.6,

likewise for ECHO-G 4 in the supplementary online material) and confirm

that RegEM performs better than PC regression focusing on the evaluation

of the low frequency variations (RE and CE 30-year filtered in Table 2.1 and

2.2). Nevertheless, a glance at the RE and CE scores calculated for non-

filtered results (figures not shown) reveals differences in the performance of

the reconstructions seen in Figures 2.3, 2.4, 2.5 and 2.6. Summer average

temperature reconstructions using RegEM also produce lower RE scores than

those using PC regression under the different white and red noise scenarios

(RE non-filtered in Tables 2.1 and 2.2). Winter temperature reconstructions

based on RegEM and PC regression RE and CE scores are comparable (Ta-

ble 2.1), and slightly lower in a few cases for RegEM (Table 2.2). The SNR

0.25 scenario, in particular, leads to lower skill score values, and the result

is generally unsatisfactory. Using rednoise scenarios (Fig. 2.6, suppl. Fig.

2.6, bottom), the range of the variability of the SNR 1 scenario with an au-

tocorrelation coefficient of ρ = 0.71 (magenta line) is rather somewhat too

large compared to the target (Fig. 2.5, suppl. Fig. 2.5) for RegEM. Finally,

several scenarios for both summer and winter even return negative annual

RE and CE scores with RegEM, indicating that these reconstruction results

have no skill. With the alternative way of determining the TTLS parame-

ters for RegEM (supplementary online material), equally skilful, and in some

cases even more skilful reconstructions can be achieved. For PC regression,

RE scores indicate that all reconstruction results have skill; however, this is

contradicted (for SNR 0.5, SNR 0.4 and SNR 0.25) by the corresponding CE

scores (Figs. 2.3 and 2.4, suppl. Figs. 2.3 and 2.4).

To summarize: Figures 2.3 and 2.4 (Suppl. Figs. 2.3 and 2.4) as well as

Tables 2.1 and 2.2 indicate that both techniques reconstruct European tem-

perature variability more adequately for summer than for winter. RegEM
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seems to be more robust than PC regression with regard to the effect of

noise added to the signal. Figures 2.5 and 2.6 (Suppl. Figs. 2.5 and 2.6), as

well as Tables 2.1 and 2.2 display that reconstructions using red noise instead

of white noise still retain skill. Nevertheless, the increase in variability in the

results affects the reconstruction skill, more so in winter than in summer.

Finally, there is a difference in reconstruction skill depending on variability

frequency.

2.3.2 The spatial skill patterns of the reconstructions

Figures 2.7 and 2.8 (Suppl. Figs. 2.7 and 2.8) show the spatial skill patterns

of the summer and winter reconstruction results from Figures 2.3 and 2.4

(Suppl. Figs. 2.3 and 2.4) under the three different white noise scenarios,

i.e. SNR ∞, SNR 1 and SNR 0.5. Since examining RE, the relation between

the squared reconstruction error and the squared anomalies from the calibra-

tion average, is somewhat controversial (Bürger and Cubasch, 2007), we have

chosen to add a more intuitive skill measure, and also to look at the spatial

differences of the two techniques, thus making it possible to directly deter-

mine the origins of the underestimation of the target temperature variations

in the reconstruction results. Accordingly, the spatial skill is defined here as

the differences between reconstructed and target temperature anomalies, i.e.

the bias, averaged over the verification period, 1001 to 1899 AD, and the RE

skill scores for the 30-year filtered results calculated for each gridpoint. This

corresponds to a validation of the whole summer and winter temperature

field. Positive bias values indicate that the difference between the average

of reconstructed temperature anomalies over the verification period and the

calibration period mean is smaller than that between target and calibration

mean. Thus the target temperature anomalies are underestimated by the

reconstructed anomalies, and overestimated for negative bias values. A lack

of predictor model gridpoints (see Fig. 2.1) in the Atlantic leads to consider-

able uncertainties over that area both for summer and winter reconstructions

(Figs. 2.7 and 2.8, suppl. Figs. 2.7 and 2.8). This effect is to be expected.

However, the smaller the SNR, the larger the area with underestimation of

target temperature anomalies becomes for summer and winter. Again, this
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is less pronounced for RegEM than for PC regression. Thus RegEM seems to

be less dependent on the SNR than PC regression. The spatial skill patterns

of RegEM are quite similar to those of PC regression. Nevertheless, for PC

regression the underestimation of the target temperature variations during

the verification period in the field is more clearly indicated. The spatial vali-

dation of the two techniques discloses the underestimation of amplitude seen

for the European average temperatures in Figures 2.3 and 2.4 (Suppl. Figs.

2.3 and 2.4) for PC regression. Focusing on the spatial RE scores for the

30-year filtered reconstruction results, we conclude that no large differences

can be seen, despite the fact that RE skill scores are again higher for summer

results than for winter.

2.4 Discussion

The results presented in this comparison of PC regression and RegEM re-

veal a seasonal dependence of reconstruction skill. Both techniques seem to

perform more accurately (Figs. 2.3 and 2.5 compared to Figs. 2.4 and 2.6,

likewise for ECHO-G 4 in the supplementary online material) for reconstruct-

ing summer average temperatures than winter when focusing on how well the

low frequency variability of the target is captured. Testing the techniques

with a less dense predictor network (12 gridpoints representing real world

proxy series used to reconstruct the late Maunder Minimum (Küttel et al.,

2007), not shown) confirms these findings, although with an additional de-

crease in reconstruction skill. The more skilful performance in reconstructing

European summer temperatures over the last millennium might be explained

by the fact that the range of temperature variability is smaller in summer

than in winter. Consequently, the impact of adding noise to the signal with

smaller standard deviations in summer than in winter is less remarkable.

Thus the reconstruction skill is less affected for summer than for winter.

Furthermore, this is also potentially related to the spatial distribution of the

predictor network used here. Predictor networks which may be optimal for

reconstructing summer temperatures are not necessarily optimal for recon-

structing winter temperatures (Pauling et al., 2003; Luterbacher et al., 2006;

Küttel et al., 2007).
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Figure 2.7: Spatial skill patterns of the European summer temperature re-
constructions using PC regression (left) and RegEM (right) with white noise
scenarios SNR ∞, SNR 1, and SNR 0.5. The skill is defined by the average
of the bias (reconstructed values - target values) [shaded] and RE [contours]
calculated for each gridpoint over the verification period from 1001 to 1899
AD. The scale refers to the bias, i.e. differences in temperature anomalies for
summer. Colors indicate reconstructed values that are about (greenish blue
and green), higher (light green, yellow to red) or lower (light blue to violet)
than the target values.
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Figure 2.8: As Figure 2.7, but for winter. Colors indicate reconstructed
values that are about (light blue and greenish blue), higher (light green to
green, yellow, red) or lower (dark blue to violet) than the target values.
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The performance of reconstructions seems to depend less on the red structure

of noise for the SNR 1 scenario with an autocorrelation coefficient ρ = 0.32

than with ρ = 0.71 (RE and CE 30-year filtered in Tables 2.1 and 2.2). For

ρ = 0.71 the variability of the reconstruction results, especially for winter,

is considerably increased using RegEM (Figure 2.6, suppl. Figure 2.6). Fur-

thermore the skill of the reconstruction is generally more affected for the

SNR 1 scenario with ρ = 0.71 than with ρ = 0.32 or for white noise only.

However, analyses of typical red noise characteristics of realworld data (in

Luterbacher et al., 2004) reveal, that ρ = 0.71 is not seen in the data and

ρ = 0.32 is presumably more indicative of real world proxies. Still it is useful

to study a range of autocorrelation coefficients to obtain an understanding

of how reconstruction results depend on different types of noises. Neverthe-

less, the noise scenarios in this paper certainly do not mimic the full range

of characteristics of noisy real world predictor series, once again indicating

that there is a need to model predictor data and inherent uncertainties more

realistically (Moberg et al., 2007). Tables 2.1 and 2.2 indicate that both tech-

niques lose skill to an increasing degree as more noise is added to the signal.

RegEM is less sensitive to and less affected by the noise addition than PC

regression, but applying RegEM instead of PC regression in reconstructing,

one of the fundamental statistical problems remains. Furthermore, while for

the 30-year filtered data (Tables 2.1 and 2.2) RE and CE skill scores confirm

that RegEM performs more accurately than PC regression, the skill scores for

the non-filtered reconstruction results are nevertheless lower for RegEM than

for PC regression, especially in winter. One explanation might be, that using

RegEM, mean and covariance of the whole input data matrix are iteratively

estimated. The fact that the statistical characteristics of the whole input ma-

trix are addressed together over the calibration and verification periods might

be a reason for the less accurate inter-seasonal performance of RegEM, as

exhibited by the validation of the non-filtered results. Furthermore, consid-

ering the reconstruction results in Figures 2.3 and 2.4 (top, likewise ECHO-G

4 in the supplementary online material) and the RE scores in Tables 2.1 and

2.2, it is an alarming sign that the PC regression results still achieve such

high RE scores; moreover, the RE scores are put into the right perspective

by the negative CE scores. The implication for reconstructions with real
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world proxy data is that verification has to be conducted very carefully by

applying different means of validation. The interpretation of reconstruction

skill and the reasonable verification of reconstruction results are delicate and

not free from contradictions. Therefore, the development of alternative and

more intuitive tools, as well as more thorough validation must be attempted

(e.g. Wahl and Ammann, 2007).

Why should it be the case that RegEM captures the target average 30-year

filtered temperature variations more adequately than PC regression? When

applying PC regression, we use OLS to estimate the regression coefficients

for the calibration period. By contrast, when applying RegEM we use either

the conditional Maximum likelihood method (if no regularization is needed)

or TTLS (if the problem is ill-posed). These different estimation techniques,

especially TTLS, which takes into account errors in the explanatory variables

(Equation 2.1, eproxy), have a crucial impact on the reconstruction skill. An-

other important difference is the nature of RegEM as an iterative process

which is non-linear in general. Finally, RegEM not only provides estimates

of the mean with each iteration step, but of the variance as well. We ex-

pected RegEM to be better than PC regression prior to this study, but we

also expected it to be better than our results now indicate. One expectation

for the less pronounced difference is that the reconstruction performance de-

pends not only on the statistical technique chosen, but also on the choice

and quality of the predictor network. Therefore, these other factors should

be optimized, as well.

However, the use of RegEM also leaves room for future methodological im-

provements. Mann et al. (2007) recently addressed the problem of choosing

truncation parameters. This was also investigated prior to applying RegEM

here. The validation of a range of parameters, close to the one proposed by

Mann et al. (2007), demonstrated that comparable results can be obtained

by using alternative parameters (supplementary online material). We there-

fore urge the evaluation of several truncation parameters over the verification

period.

Despite all this, we prefer RegEM to PC regression in this case, as it captures

the multi-decadal variations of the target summer and winter European av-

erage temperatures more accurately (Figs. 2.3, 2.4, 2.5 and 2.6, likewise for
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ECHO-G 4 in the supplementary online material) than PC regression when

focusing on lower frequency variability (RE and CE 30-year filtered in Tables

2.1 and 2.2).

2.5 Conclusions and perspectives

The outcomes regarding the performance of the two reconstruction tech-

niques are restricted to the specific experimental setting used in this paper.

As mentioned above the tests are based on NCAR CSM 1.4 and ECHO-G

4 climate model data, a predictand which consists of 476 gridpoints (land

and sea), a pseudoproxy network with 30 gridpoints (Fig. 2.1), and sce-

narios based on different SNR constant over time. By comparing the two

CFR techniques, -PC regression and RegEM,- at a continental and seasonal

scale, we have demonstrated that the reconstruction skill differs according

to the spatial and temporal scales the techniques are applied to. The fact

that RegEM achieves different results for continental and hemispheric recon-

structions (Mann et al., 2007) emphasizes the necessity of downscaling to

smaller spatial and subannual temporal scales, in order to achieve a better

understanding of the robustness and skill of the reconstruction techniques

on higher temporal and spatial scales. Furthermore, hemispheric annual

temperature reconstructions do not provide information about regional-scale

variations, such as the intrinsic seasonal patterns of climate change as they

have occurred, for instance, in Europe during past centuries (Mann et al.,

2000; Luterbacher et al., 2004, 2007; Xoplaki et al., 2005). We found seasonal

differences in the performance of RegEM and PC regression, and we demon-

strated that predictor data quality has a crucial impact on reconstruction

skill. RegEM has proved that more adequate results can be obtained by bet-

ter incorporating the errors in the predictor data to reconstruct surface air

temperature fields. However, the choice of the right TTLS parameters turned

out to be ambiguous, and the procedure for selecting the most accurate ones

needs further investigation. If no noise, or noise with a high SNR, is added

to the signal, PC regression performs just as well as RegEM for winter and

for summer. If noise with a smaller SNR is added to the climatic signal, the

performance of RegEM proves to be more robust compared to PC regression.
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If the variability range is too large, as is the case e.g. for SNR 0.25 and SNR

1 with ρ = 0.71, both RegEM and PC regression exhibit deficits: the am-

plitude of target temperature variations tends to be underestimated by PC

regression and overestimated by RegEM. However, overestimation might be

adjusted by the choice of more suitable TTLS parameters.

The next step will be to quantify the differences between PC regression and

RegEM by applying the two techniques to real world data, given a varying

number of predictors and SNR over time. There is still a need and potential

for further optimizations of CFR techniques, such as RegEM, that take bet-

ter account of errors. PC regression can still be optimized as well, e.g. by

restriction to land areas only (Luterbacher et al., 2004; Xoplaki et al., 2005),

optimization of PC truncation, or the implementation of different regression

coefficient estimation procedures. Certainly other settings, and more realis-

tic real world conditions have to be considered in future. On the one hand

CFR techniques need to be better adapted to the specific character of the

predictor data, and on the other, the quality of the predictor data has to be

better understood, quantified and modeled. Exclusive use of classical multi-

variate statistics should be expanded to include solutions already developed

in other research areas, e.g. econometrics. Time series analysis offers still

further solutions, such as state space models and the use of Kalman filters

(Lee et al., 2008), that are also worth exploring with regard to climate field

reconstructions.
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2.6 Supplementary Material

Figure 2.9: Supplementary Figure 2.3 for ECHO-G 4. European summer
average temperature anomalies (30-year running mean) wrt 1900 to 1990
AD, for PC regression (top) and RegEM (bottom), using 30 pseudoproxies
(see Fig. 2.1) with varying white noise added to the signal. The target (black
line) is compared to the reconstruction results (colored lines).
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Figure 2.10: Supplementary Figure 2.3 for NCAR CSM 1.4. As Figure 2.3,
but with different TTLS parameter.

Figure 2.11: As supplementary Figure 2.3 for ECHO-G 4, but with different
TTLS parameter.
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Figure 2.12: Supplementary Figure 2.4 for ECHO-G 4. As supplementary
Figure 2.3, but for winter.

Figure 2.13: Supplementary Figure 2.4 for NCAR CSM 1.4. As Figure 2.4,
but with different TTLS parameter.
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Figure 2.14: As supplementary Figure 2.4 for ECHO-G 4, but with different
TTLS parameter.

Figure 2.15: Supplementary Figure 2.5 for ECHO-G 4. European summer
average temperatures anomalies (30-year running mean) for PC regression
(top) and RegEM (bottom). The white noise scenario SNR 1 (red line) is
compared with two different red noise scenarios (orange and magenta lines);
the target is shown in black.
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Figure 2.16: Supplementary Figure 2.6 for ECHO-G 4. As supplementary
Figure 2.5, but for winter.
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Figure 2.17: Supplementary Figure 2.7 for ECHO-G 4. Spatial skill patterns
of the European summer temperature reconstructions using PC regression
(left) and RegEM (right) with white noise scenarios SNR ∞, SNR 1, and
SNR 0.5. The skill is defined by the average of the bias (reconstructed values
- target values) [shaded] and RE [contours] calculated for each gridpoint over
the verification period from 1001 to 1899 AD. The scale refers to the bias,
i.e. differences in temperature anomalies for winter and summer separately.
Colors indicate reconstructed values that are about (greenish blue and green),
higher (light green, yellow to red) or lower (light blue to violet) than the target
values.
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Figure 2.18: Supplementary Figure 2.8 for ECHO-G 4. As supplementary
Figure 2.7, but for winter. Colors indicate reconstructed values that are about
(light blue and greenish blue), higher (light green to green, yellow, red) or
lower (dark blue to violet) than the target values.
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Abstract

An ensemble of reconstruction results for past European temperature vari-

ability back to 1500 is presented. We apply principal component (PC) regres-

sion, regularized expectation maximization (RegEM) and composite-plus-

scaling (CPS). The reconstruction results of the three techniques for sum-

mer and winter European temperature averages, and spatial fields related to

warmest and coldest decades are analyzed and discussed. We show that PC

regression and RegEM perform more similarly compared to CPS, and that
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more robust reconstructions are achieved for winter than for summer. We

conclude that temperature reconstructions can not be improved significantly

by replacing the reconstruction technique only. Discordances are also very

likely to be due to limited spatial and temporal availability of the proxy

data. The comparison of PC regression, RegEM and CPS reveals that past

temperature variability is likely more variable than indicated by earlier Eu-

ropean seasonal temperature reconstructions, still indicating the exceptional

warmth of the late 20th century. However, further evidence is needed, as

the summer reconstruction results of the three techniques are not yet fully

coherent.

3.1 Introduction

Reconstruction of past temperature variability is of high importance in the

discussion on current climate change (Jansen and coauthors , 2007). The

question, if caveats of reconstruction techniques can lead to false conclusions

about past temperature variations, is crucial and needs to be addressed.

Many studies focus on testing climate reconstruction techniques in “a sur-

rogate climate” (Mann and Rutherford , 2002; von Storch et al., 2004, 2007;

Rutherford et al., 2005; Küttel et al., 2007; Lee et al., 2008; Mann et al., 2007;

Moberg et al., 2007; Riedwyl et al., 2008a) using pseudoproxies, i.e. proxies

derived from climate model simulations. This “laboratory” is useful to get “a

priori” knowledge about the performance of reconstruction techniques. How-

ever, these studies do not allow final conclusions concerning reconstruction

techniques applied to real world instrumental and proxy data. Therefore,

in this contribution we use real data to further examine lessons learnt from

“a surrogate climate”, and to better take into account the impact of real

world conditions, i.e. the much higher resolved real gridded target surface

air temperature field in contrast to the lower resolved hemispheric climate

model fields. Furthermore, the heterogeneity and limited spatial and tempo-

ral availability of the real proxy data, which is idealized often using pseudo-

proxies (Riedwyl et al., 2008a).

We compare multivariate principal component (PC) regression, the classical

method used to reconstruct past European climate (e.g. Luterbacher et al.,
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2004; Xoplaki et al., 2005; Casty et al., 2005; Pauling et al., 2006), composite-

plus-scaling (CPS) (e.g. Jones and Mann, 2004; Esper et al., 2005), and reg-

ularized expectation maximization (RegEM) (Schneider , 2001; Rutherford

et al., 2005; Mann et al., 2007). Thus, we further explore RegEM with trun-

cated total least squares (TTLS) as regularization scheme, and provide more

evidence for the usefulness of the errors-in-variables approach TTLS at the

seasonal European scale. We show that the analysis of an ensemble of recon-

struction results leads to a more in-depth understanding of the reliability and

robustness of existing European temperature reconstructions back to 1500.

3.2 Data and Methods

The predictand is the European surface air temperature field taken from

Mitchell and Jones (2005) at 0.5◦x0.5◦ resolution. Europe is represented by

the area 24.5◦ W to 39.75◦ E and 35.25◦ N to 69.75◦ N (land area only). The

predictors (see Luterbacher et al., 2004, for an overview), i.e. the proxy data

consist of a combination of early instrumental temperature records, documen-

tary proxy evidence, ice core- and sea ice data, though with some additional

information that has become available since (tree ring series and grape har-

vest dates). In order to use maximal predictor information, different proxy

networks are used, i.e. 136 predictor networks in summer and 128 in win-

ter. For PC regression and RegEM separate reconstructions are performed

for each single network. For CPS the composite, i.e. the average series, of

the available proxy data is calculated first, and then used for reconstruction.

PC regression is applied as outlined in Luterbacher et al. (2004) and Riedwyl

et al. (2008a). Predictors and predictand are transformed to their princi-

pal components (PC) using truncated singular value decomposition (TSVD)

with the truncation levels according to Luterbacher et al. (2004). RegEM is a

covariance-based iterative algorithm, replacing missing values with plausible

values (imputation), as described in detail by Schneider (2001); Rutherford

et al. (2005); Mann et al. (2007). We apply the non-hybrid version of RegEM

with TTLS as regularization scheme to take into account under-determined

settings (Mann et al., 2007). Furthermore, the predictand is represented by

its leading PC (Mann et al., 2007). The truncation levels for the TTLS regu-
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larization of the covariance and the number of predictand PC to be kept are

based on the estimate of the noise continuum to the log-eigenvalue spectrum

(Mann et al., 2007; Wilks , 1995). In few cases, the predictor networks are

very small, and the truncation levels tend to be overestimated by the above

mentioned criteria. We therefore set the truncation levels in these cases as

low as possible, i.e. to 1.

With PC regression and RegEM the European summer and winter tempera-

ture averages are computed given the reconstructions of the underlying spa-

tial field. Using CPS (e.g. Esper et al., 2002, 2005; Jones and Mann, 2004;

Moberg et al., 2005) the temperature averages are reconstructed directly by

centering and scaling the proxy data composite according to the calibration

(1901 to 1995) average and standard deviation of the predictand.

We mainly focus on lower frequency variations, thus only the 30-year Gaus-

sian filtered reconstruction results with associated uncertainties (filtered 2

standard errors SE) are shown for the European averages. For PC regression

and CPS the SE refer to the prediction intervals, for RegEM they also relate

to the imputation error of its iterative algorithm. The SE for the 30-yr fil-

tered reconstruction results are calculated as in Xoplaki et al. (2005).

Furthermore, we compare the spatial temperature anomaly averages of the

warmest summer and coldest winter decades as well as extreme single sum-

mer and winter years, using PC regression and RegEM. The warmest summer

and coldest winter decades are defined as the consecutive 10 warmest and

coldest years within the reconstruction period from 1500 to 1900.

Verification is performed for the largest predictor networks available by the

end of the 19th century, as well as for the available proxies used to recon-

struct the warmest summer and the coldest winter decades. We calculate the

reduction of error (RE) and the coefficient of efficiency (CE) (Cook et al.,

1994), as well as the relative root mean squared error (RRMSE) (Lee et al.,

2008), using the period 1901 to 1960 for calibration, and 1961 to 1995 for

verification. The closer RE and CE values get to 1 and the RRMSE values

to 0, the higher is the skill of the reconstructions.
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3.3 Results and Discussion

3.3.1 Analysis of the temperature average reconstruc-

tions

Figure 3.1 shows the comparison of PC regression (blue), RegEM (green)

and CPS (red) for European summer (top) and winter (bottom) average

temperature anomaly reconstructions back to 1500 and associated uncer-

tainties. For summer the three reconstruction results agree on pronounced

positive anomalies at the end of the 18th century. Furthermore, the CPS re-

sult exhibits maximal negative temperature anomalies at the end of the 16th

century, which are less pronounced for RegEM and PC regression. Mainly be-

fore 1700, the variances of the reconstruction results deviate from each other:

Temperature variability is about the same for PC regression and RegEM, but

larger for CPS, which illustrates a fundamental difference between scaling,

i.e. CPS, and the regression based techniques PC regression and RegEM.

PC regression seems to “loose” variability over the reconstruction period

(Küttel et al., 2007; Riedwyl et al., 2008a), RegEM with TTLS is less af-

fected, and CPS, by definition, fully retains the variability of the calibration

period. The 2 SE bounds of the PC regression and CPS results do not fully

overlap. However, the PC regression and CPS results lie within the filtered

2 SE bounds of the RegEM result. Furthermore, the RegEM result is not

fully included in the 2 SE bounds of PC regression and CPS at the end of

the 18th century. For winter (Figure 3.1, bottom) the three results show dis-

tinctly positive temperature anomalies for the mid 18th century and negative

anomalies at the end of the 17th century. The results of PC regression and

RegEM mostly agree on the magnitude of temperature amplitudes, the ones

of RegEM being slightly higher than those of PC regression. Before 1700 the

reconstruction results deviate less from each other than for summer. Also

the 2 SE bounds indicate better accordance of the reconstruction results for

winter than for summer. The result of RegEM fully lies within the 2 SE

bounds of the PC regression result, and vice versa. The uncertainty bounds

of the CPS result do not overlap scarcely with the results of PC regression

and RegEM. Table 3.1 presents RE, CE and RRMSE scores for the results

67



shown in Figure 3.1. PC regression reveals highest skill both for summer and

winter, followed by RegEM. CPS has lowest skill. The average temperature

anomalies, both for summer and winter, are coldest for CPS (Figure 3.1)

compared to PC regression and RegEM. This seems to deteriorate the recon-

struction skill of CPS. Thus, the validation measures RE, CE and RRMSE

penalize large differences between the reconstructed average and the calibra-

tion period average, and do not reward the perfect match of the variance

of the CPS result with the variance of the calibration period. Furthermore,

a probable decrease in variability over the reconstruction period seems not

to be penalized by the validation measures (Riedwyl et al., 2008a). There

is a decrease in skill (Table 3.1), if verification is performed for the recon-

structions with the two subsets used to reconstruct warmest summer and

coldest winter decade, compared to the maximal proxy data sets. Seasonal

Table 3.1: RE, CE and RRMSE skill scores for the results shown in Figure
3.1. The calibration period is 1901 to 1960, the verification period 1961 to
1995. The skill scores are calculated for reconstructions using the maximal
proxy data set available by the end of the 19th century (173 proxies in
summer, and 170 in winter), and the proxy data available to reconstruct the
warmest summer and coldest winter decade only (selected subset, i.e. 30
proxies in summer and 11 in winter.

differences in the performance are evident for RegEM and CPS: For RegEM,

the 2 SE bounds for the winter result indicate much smaller imputation SE

than for summer. This is likely due to the fact that the winter predictor net-
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Figure 3.1: 30-year Gaussian filtered European summer and winter average
temperature anomalies (wrt the 1901 to 1995 calibration period) back to
1500, PC regression (blue line, corresponding 2 standard errors (SE) blue
shaded), RegEM (green line, corresponding 2 SE green shaded) and CPS (red
line, corresponding 2 SE red shaded). Instrumental surface air temperature
data (Mitchell and Jones (2005), 1901 to 2002, and Hansen et al. (2001),
2003 to 2007) in black.

works are continuous over longer time periods. In consequence, less predictor

networks are used for winter than for summer temperature reconstruction,
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and the imputation errors are smaller. The uncertainty bounds of CPS very

likely differ from those of PC regression and RegEM, e.g. they are largest in

winter, as they directly refer to the European average series, and not to the

PC of the underlying spatial field. Furthermore, for CPS and RegEM the

skill is higher for winter than for summer (Table 3.1), which is not the case

for PC regression (Table 3.1, selected subset summer compared to winter).

Nevertheless, Figure 3.1 shows that there is better accordance of the three

results for winter with regard to periods with maximal positive and negative

temperature anomalies. There are significant differences in variance (F-test)

between PC regression and CPS, as well as RegEM and CPS for summer,

while for winter the differences are not significant. Thus, there seems to be a

better coherence of the temperature signals in the winter proxy data. While

in winter early instrumental series, ice core data and documentary evidence

only are used, the types of proxy data, and the temperature signal inherent

vary more for summer.

In “a surrogate climate” RegEM proved that more skilful results can be

obtained by better incorporating errors inherent to proxy data to capture

low-frequency variability (Riedwyl et al., 2008a). This advantage is less ob-

vious here. The use of many early instrumental series as predictors leads to

rather high signal to noise (SNR) ratios, i.e. a low rate of errors inherent

to the predictor data (Küttel et al., 2007). Therefore, in the case here, PC

regression and RegEM seem to perform comparable. Nevertheless, the error

assumptions of RegEM with TTLS are more realistic than those of PC re-

gression, presuming noise inherent to the predictors as well.

The strong positive temperature anomalies at the end of the 18th century of

the summer results (Figure 3.1, top) are likely to be an artefact of too warm

early instrumental measurements, and support the findings of Moberg et al.

(2003), Frank et al. (2007) and Böhm et al. (2008). The pronounced neg-

ative winter temperature anomalies at the end of the 17th century (Figure

3.1, bottom) represent the well known cold of the Maunder Minimum (e.g.

Luterbacher et al., 2001, 2004). We further focus on these two periods for

the analysis of the reconstructed European temperature fields.
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3.3.2 Analysis of the temperature field reconstructions

PC regression and RegEM agree on the coldest winter decade, 1689 to 1698.

However, in summer the warmest decade using PC regression is 1789 to

1798, and in the case of RegEM it is 1774 to 1783. Figure 3.2 shows the

comparison of reconstructed temperature anomaly fields averaged over the

warmest summer decade (1789 to 1798) and coldest winter decade (1689 to

1698), using PC regression (left) and RegEM (right). For the warmest sum-

mer decade (Figure 3.2, top), the maximal temperature anomalies are more

pronounced using PC regression than using RegEM. There are some simi-

Figure 3.2: European surface air temperature anomaly (wrt to the 1901 to
1995 calibration period) fields, averaged over the warmest summer decade
(1789 to 1798, top) and coldest winter decade (1689 to 1698, bottom) using
PC regression (left) and RegEM (right). Contours represent RE skill pat-
terns. RE is calculated for each gridpoint over the verification period from
1961 to 1995. White dots indicate the locations of the proxies used for recon-
struction.

larities between the spatial patterns, e.g. for Central Europe, where most

proxy data are available, and less accordance exists for the North East, where

the proxy data coverage is sparse. For the coldest winter decade (Figure 3.2,
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bottom) the negative temperature anomalies in the North East are more pro-

nounced using RegEM than using PC regression, in general though the two

anomaly patterns are remarkably similar. Overall, the results agree more

for the coldest winter decade while there are discordances in summer (see

also the supplementary online material); the positive temperature anomalies

are generally more pronounced for summer using PC regression. The rea-

son might be that with PC regression, the PC of predictand and predictors

are taken, while with RegEM the PC of the predictand only are considered.

Therefore, single summer predictor series seem to have more weight using PC

regression, and dominate periods, where they explain most variance, which

is not the case for RegEM. The spatial field of reconstructed single cold and

warm winters and summers are provided in the supplementary online mate-

rial. PC regression and RegEM agree more for winter (warmest year: 1724;

coldest year: 1695) than for summer (warmest year: 1798 PC regression,

1826 RegEM; coldest year: 1821). Again, the RE scores for PC regression

(Figure 3.2, left) indicate slightly higher skill than those for RegEM (Figure

3.2, right). However, the performance of PC regression and RegEM to re-

construct warmest summer and coldest winter decades (Figure 3.2), as well

as extreme years (supplementary online material) are comparable.

3.4 Conclusions

Related to European summer and winter average and field reconstructions,

we found that PC regression and RegEM perform more similar compared to

CPS. This is likely due to the impact of scaling (CPS) in contrast to multi-

variate regression with regularization schemes (PC regression using TSVD,

and RegEM using TTLS).

Testing RegEM with TTLS shows that this technique is suitable and promis-

ing for reconstructions at the European scale with real instrumental and

proxy data. However, the determination of truncation levels, both for PC

regression using TSVD, and for RegEM using TTLS is a field for further

investigation and exploration. CPS, compared to PC regression and RegEM,

offers the advantage to be much easier applied.

Highest skill both for summer and winter is achieved for PC regression. How-
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ever, both RegEM and CPS reveal reconstruction results with lower, and in

the case of CPS clearly more variable values than PC regression. The com-

monly calculated skill scores for verification seem not to fully capture the

performance of the reconstruction techniques (Riedwyl et al., 2008a). We

conclude that temperature reconstructions can not be improved significantly

by only replacing the reconstruction technique. Discordances are very likely

to be due to the spatial distribution and uncertainties inherent to the proxy

data, as well as their limited availability. Thus, here more robust results are

achieved for winter than for summer. More evidence is still needed in order

to get a coherent reconstruction for past European summer temperatures.

An ensemble of results can help to improve the reliability and robustness

of reconstructed past temperature variability amplitudes. Applying several

techniques to reconstruct the same target can reduce the uncertainties, and

is an approach worthwhile pursuing consequently in future.
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3.5 Supplementary Material

Figure 3.3: As Figure 3.2 in the main article, but for warmest summer decade
for RegEM (1774 to 1783).
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Figure 3.4: Warmest (top) and coldest (bottom) summer year for PC regres-
sion (right) and RegEM (left) in the reconstruction period 1500 to 1900.
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Figure 3.5: Warmest (top) and coldest (bottom) winter year for PC regression
(right) and RegEM (left) in the reconstruction period 1500 to 1900.
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Abstract

We present reconstructions of European summer temperature variability

over the last millennium. Reconstruction is performed using PC regression,

RegEM, and additionally CPS. The combination of three reconstruction tech-

niques and compilation of long and continuous proxy series provide the basis

for these new results, and for a detailed analysis of European millennial sum-

mer temperature amplitudes. Their robustness is tested by cross-validation

with the leave-one-out algorithm. Furthermore, the performances of PC re-

gression and RegEM are compared focusing on reconstructed temperature
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fields averaged over periods of accordance and discordance. We show that a

rather diverse picture of summer temperature variability over the last millen-

nium is very likely caused by a lack of coherence in the temperature signals

inherent to the proxy data. We conclude that the “Medieval Warm Period”

is not noticeable in the results, whereas some evidence is provided for the

“Little Ice Age”.

4.1 Introduction

There is still little evidence on European past temperature evolution and

change back to the year 1000 AD (Brázdil et al., 2005). Many reconstruc-

tions at the European scale put the current warming in the context of climate

variability over the past 500 years (Luterbacher et al., 2004, 2006; Xoplaki

et al., 2005; Casty et al., 2005, 2007; Raible et al., 2006; Pauling et al., 2006;

Fischer et al., 2007), whereas only few multiproxy reconstructions cover the

last millennium (Guiot et al., 2005). An extension back to the year 1000 AD

can help to further establish whether or not the recent 20th century temper-

ature increase is unusual in a longer-term context (Goosse et al., 2006).

While past temperature variability over the last millennium has been thor-

oughly analyzed and discussed at the northern hemispheric scale (Jansen and

coauthors , 2007), this study is a contribution for the regional scale. On the

basis of long, continuous proxy series, it is examined to what extent the “Me-

dieval Warm Period” (MWP) (Lamb, 1965; Hughes and Diaz , 1994; Bradley

et al., 2003b), the “Little Ice Age” (LIA) (Grove, 1988, 2004; Pfister et al.,

1999; Wanner et al., 2000; Luterbacher et al., 2001), and the temperature

increase of the 20th century (Jansen and coauthors , 2007) are captured by

summer temperature reconstructions.

The number of millennial European proxy records is still moderate, and their

spatial distribution sparse. A “complete” picture of past temperature field

variability over the last millennium can thus not be provided. In consequence,

the focus lies mainly on the reconstruction of average summer temperatures,

and moreover on their robustness. Reconstructed summer temperature fields

for specific periods are presented in order to compare the performance of the

reconstruction techniques spatially. Reconstruction is performed, applying
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an ensemble of three reconstruction techniques. Principal component (PC)

regression, the technique traditionally used for European climate field recon-

struction (Luterbacher et al., 2004; Casty et al., 2005; Pauling et al., 2006) is

applied. In addition, regularized expectation maximization (RegEM) intro-

duced by Schneider (2001); Rutherford et al. (2005), and Mann et al. (2007)

which proved to be suitable and promising for seasonal European climate

field reconstructions (Riedwyl et al., 2008b), as well as composite-plus-scaling

(CPS) (e.g. Jones and Mann, 2004; Esper et al., 2005) are used.

The robustness of the reconstructions is tested by cross-validation with the

leave-one-out algorithm. This allows for an understanding to what extent

individual proxy series influence the reconstruction results.

In section 2 we describe the proxy data used, and the three reconstruction

techniques applied. In section 3, first the summer average temperature re-

construction results and the robustness exercise are presented. Second, PC

regression and RegEM are compared spatially over specific periods back to

1000 AD. The results are discussed in section 4, followed by conclusions in

section 5.

4.2 Data and Methods

Past summer temperatures are estimated for the period 1000 to 1900 AD by

establishing a statistical relationship between the predictand and the pre-

dictors during the calibration period 1901 to 1970 AD. A longer calibration

period is preferable, though the limitation in length here is due to some

shorter proxy series. The predictand is the European surface summer air

temperature field taken from Mitchell and Jones (2005) at 0.5◦x0.5◦ reso-

lution. To represent summer temperatures, the average of June, July and

August is calculated. Europe is defined by the land area 24.5◦ W to 39.75◦E

and 35.25◦ N to 69.75◦ N. The number of predictors is maximally 18 (by the

end of the 20th century) and minimally 6 (in the year 1000 AD), varying in

temporal and spatial availability (Table 4.1, Figure 4.1). Thus, 12 different

predictor networks, decreasing in number back in time, are defined for recon-

struction back to the year 1000 AD. The data comprise mostly long tree ring

chronologies (Briffa et al., 2001; Kirchhefer , 2001; Hantemirov and Shiyatov ,
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Table 4.1: List and description of summer proxies used for reconstruction.

2002; Guiot et al., 2005; Büntgen et al., 2006, 2008; Linderholm and Gun-

narson, 2005). Furthermore, the reconstructions are based on grape harvest

dates (Chuine et al., 2004) and historical documentary series (Shabalova and

van Engelen, 2003; Luterbacher et al., 2004). The selection comprises long,

continuous and mostly natural proxy records spanning over the last millen-

nium.

PC regression is used as traditionally applied and described in (Luterbacher
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Figure 4.1: In blue the proxy locations used for reconstruction (left), and the
varying number of proxy series over time (right) are indicated.

et al., 2004; Riedwyl et al., 2008a), and RegEM with truncated total least

squares (TTLS) as regularization scheme according to Mann et al. (2007).

With PC regression, the proxy series that explain most variance are cali-

brated against the most dominant patterns of spatial variability of the in-

strumental measurement series. RegEM with TTLS is a covariance-based

iterative algorithm, replacing missing values (given available ones) with plau-

sible values, taking into account under-determined settings (Schneider , 2001;

Rutherford et al., 2005; Mann et al., 2007). Furthermore, the predictand is

usually represented by its leading PC (Mann et al., 2007). Here, reconstruc-

tion with RegEM is not only performed by reconstructing the PC of the

underlying spatial field, but by reconstructing the past European summer

average temperature series directly as well. Thus, we apply a multiple vari-

ant of RegEM with TTLS, given the European summer temperature average

series as predictand. As proposed in Huybers (2005), ambiguity is avoided

using the simple average rather than PC. For CPS too, the predictand is the

average series, and the summer temperatures are reconstructed by building a

composite of the predictors, which is then scaled by the amplitude of the pre-

dictand (e.g. Esper et al., 2002, 2005; Jones and Mann, 2004; Moberg et al.,

2005).

Separate reconstructions are performed based on the maximal predictor net-

work (18 proxy series), using the calibration period 1901 to 1940 AD, and the

verification period 1941 to 1970 AD for validation. The reduction of error

(RE), coefficient of efficiency (CE), and the squared correlation coefficient

(r2) are calculated.
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To access the robustness and the uncertainties inherent to the reconstruc-

tions, cross-validation with the leave-one-out algorithm is performed. For

k = 1, ...., 18, we temporarily remove the kth proxy series from the predic-

tor network, and calibrate and reconstruct with k − 1 proxy series to finally

compare this result to the one including the kth series.

To more easily compare the results of the three techniques, the lower-frequency

variations, and thus the filtered reconstruction results with associated filtered

uncertainty bounds are shown. As in Xoplaki et al. (2005) the standard er-

rors (SE) for the 30-yr Gaussian filtered reconstruction results are calculated

using the predictor verification residuals after making the residuals consistent

with Gaussian white noise (Mann et al., 1998; Briffa et al., 2002).

4.3 Results

4.3.1 European summer average temperatures and their

robustness

Figure 4.2 shows European summer average temperature anomalies over the

last millennium, using PC regression (blue), CPS (red) and RegEM (green).

The three results display temperature anomalies being on a lower level over

the reconstruction period (1000 to 1900 AD) than during the calibration

period (1901 to 1970 AD); moreover including the 2 SE bounds, the re-

constructed values do not exceed the 20th century warmth (indicated by

instrumental measurements in black). The result for PC regression is rather

balanced. Noticeable are maximal positive temperature anomalies around

the 14th, 15th and 16th century. The CPS result displays generally lower

and more variable temperature anomalies than the one of PC regression.

They agree in a raise from negative to positive anomalies in the 12th cen-

tury, both being more pronounced for CPS than for PC regression. Thus,

the maximal positive anomaly peak of the CPS result is at the end of the

12th century. Furthermore, a negative anomaly peak is displayed at the be-

ginning of the 19th century, which is much more pronounced than in the PC

regression and RegEM results. The result of RegEM shows a noticeable pe-

riod of pronounced negative anomalies in the 11th and 12th century, followed
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Figure 4.2: 30-year Gaussian filtered European summer average tempera-
ture anomalies (wrt 1961 to 1990) over the last millennium. PC regression
(blue line, corresponding 2 standard errors (SE) blue shaded, CPS (red line,
corresponding 2 SE red shaded) and RegEM (green line, corresponding 2 SE
green shaded). Instrumental surface air temperature data (Mitchell and Jones
(2005), 1901 to 2002, and Hansen et al. (2001), 2003 to 2007) in black.
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Table 4.2: RE, CE and r2 scores for the reconstructions using the maximal
predictor network.

by a steep increase to maximal positive anomalies around the 13th to 14th

century. Furthermore, pronounced negative anomalies are also displayed at

the beginning of the 17th century. The increase thereafter, resulting in a

positive anomaly peak at the beginning of the 19th century is in agreement

with the PC regression result. The variability of the RegEM result is largest

and the temperature anomalies lowest, compared to PC regression and CPS.

Displaying the three results together (Fig. 4.2, bottom), reveals that their

behavior, besides few exceptions, is rather diverse. There is some agreement

between the CPS and PC regression result in the 12th century, and between

the three of them by the end of the reconstruction period. Table 4.2 shows

that the skill of the three reconstructions is modest, the reconstruction of

CPS having lowest skill. Furthermore, the RE score of PC regression is high-

est, followed by RegEM, and r2 is slightly higher for RegEM than for PC

regression.

Figure 4.3 displays the results of the robustness exercise. The 18 reconstruc-

tions based on k− 1 proxy series (grey), together with their average (colors)

are shown. Thus, instead of 2 SE, here the uncertainty bounds are indi-

cated by the deviations from the original reconstructions leaving out each

proxy series once. The deviations are smallest for PC regression, followed

by CPS and finally RegEM. The main meanderings and outliers result from

having left out the same proxy series. Thus, e.g. the maximum late wood

density tree ring series from the Alps (Table 4.1, No. 2) seems to have con-
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Figure 4.3: The results using the leave-one-out algorithm (grey lines), and
their average (colors as in Fig. 4.2), are shown.

siderable influence on the result, as well as the two tree ring series from the

“Valle des Merveilles” (Table 4.1, No. 4 and 5), and the tree ring series from

Belfast (Table 4.1, No. 8). The RegEM result significantly deviates in the

13th to 14th century due to leaving out the tree ring series from “Valle des

Merveilles” (Table 4.1, No. 4), and those from Northern Norway (Table 4.1,

No. 12 and 13). In consequence, for RegEM the average of the leave-one-out

scenarios does not agree with the original result in Figure 4.2, which seems

not to be the case for PC regression and CPS.
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4.3.2 European summer temperatures fields

Figure 4.4 shows eight reconstructed European summer temperature fields

(a-h) using PC regression (left), and RegEM (right), averaged over periods

of accordance and discordance back to the year 1000 AD. The spatial fields

are chronologically ordered from past (top) to present (bottom). Analyzing

the reconstruction results in Figure 4.2, we define periods of discordance,

• 1040 to 1105 AD, 1141 to 1200 AD and 1275 to 1305 AD (Fig. 4.4a,

c, and d)

and periods of accordance

• 1106 to 1140 AD, 1480 to 1525 AD, 1590 to 1635 AD, 1710 to 1740

AD and 1800 to 1835 AD (Fig. 4.4b, e, f, g, h).

Obviously, accordance of the average summer temperature reconstruction re-

sults (Fig. 4.2) does not necessarily include the same for the spatial fields

(e.g. as seen in Fig. 4.4b and Fig. 4.4f). During the 11th and 12 cen-

tury (Fig. 4.4a-c), the RegEM temperature anomaly fields clearly display

cooler conditions than PC regression (see also Fig. 4.2). The maximal neg-

ative temperature anomalies are strongly pronounced in the North East for

RegEM, whereas for PC regression they are only moderately indicated in

the South West. Furthermore, Figure 4.4d and Figure 4.4e show the pro-

nounced positive temperature anomaly peaks of the PC regression result in

the 14th and 16th century, including large areas of the European East being

warmer, whereas the RegEM result is first still indicating cooler conditions

in disagreement with PC regression, however warmer conditions (Fig. 4.4e)

thereafter. Clearly, the exceptional cold of the RegEM result (Fig. 4.2) at

the beginning of the 17th century is shown (Fig. 4.4f). The PC regression

field is revealing cooler conditions as well, however not as pronounced, and

locally different. Finally, the spatial fields more and more agree, both show-

ing rather similar patterns (Fig. 4.4g), particularly closest to present (Fig.

4.4h).
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Figure 4.4: European summer temperature anomaly fields (wrt to 1961 to
1990), averaged over selected periods of accordance and discordance between
PC regression (left) and RegEM (right), over the last millennium. Chrono-
logically ordered from past (top) to present (bottom).
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4.4 Discussion

4.4.1 Methodological considerations

The variability of the reconstruction is lowest for PC regression, and seems

to be rather damped over the reconstruction period compared to CPS and

RegEM. Testing the performance of PC regression in “a surrogate climate”

showed a similar effect (Küttel et al., 2007; Riedwyl et al., 2008a). In con-

trast, the RegEM result retains more variability. One reason is likely to be

that the estimation of the regression coefficients of the two techniques dif-

fer: PC regression is applied estimating the coefficients using ordinary least

squares (OLS), whereas for RegEM the coefficient are estimated based on

TTLS. RegEM has proved that adequate results can be achieved, incorpo-

rating errors inherent to proxy data using TTLS as regularization scheme

(Mann et al., 2007). However, the choice of the truncation parameter can

still be improved, by a more rigorous adaptation, which is a field of ongoing

research (Sima and Van Huffel , 2007). Using CPS, by definition the vari-

ability of the result corresponds to the one of the predictand average series

during the calibration period.

The main cause of the diversity of the reconstruction results in Figure 4.2

seems to be the heterogeneity of the proxy data, and the incoherence in

their summer temperature signal over the last millennium. An earlier study

showed that for summer the temperature signals inherent to proxy data seems

to be less coherent already over the last 500 years, which leads to discrep-

ancies in the results of the three techniques (Riedwyl et al., 2008b). There

are differences in the performance of the techniques in handling the diversity

of responses in the proxy data. PC regression seems to be less affected than

CPS and RegEM. The truncation not only of the predictand, but of the pre-

dictors as well, seems to reduce deviations.

Figure 4.3 indicates that leaving out single series leads to largest deviations

between the RegEM results. This is very likely due to the fact that the

variability of the RegEM reconstruction is largest. Thus, with regard to its

variability and robustness the CPS result lies between PC regression and

RegEM. It is problematic that the influence of certain proxy series turnes
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out to be considerable. Certainly, a larger number of coherent proxy series

can make a difference in the reconstruction performance. Nevertheless, it is a

future challenge to enhance the robustness of the results, specially of RegEM

with TTLS. Furthermore, the results of this robustness exercise put into per-

spective the impressions of confidence by only focusing on the 2 SE bounds.

It is certainly important, not only to rely on SE, but other measures of er-

rors to address uncertainties and enhance the reliability of the reconstruction

(Jones and coauthers , 2008).

Finally, Figure 4.4 displays the discordances further back in time, and the

increasing similarity by the end of the reconstruction period related to the

increasing availability of proxy series. Only few proxies are located in the

Southwest and the East, which very likely is the reason of disagreement be-

tween PC regression and RegEM over these areas. Thus, not much confidence

can be attributed to the results for Eastern and Southern Europe. We hy-

pothesize that if the proxy data quality is high and the spatial and temporal

distribution sufficient, less discrepancies between the results can be expected.

4.4.2 Millennial temperature history

The MWP is not explicitly seen in the three European summer reconstruc-

tion results, despite for some single series this is the case (Büntgen et al.,

2006). Although the multiproxy results display some peaks of warmth (Fig.

4.2, PC regression in the 14th, 15th and 16th century, and CPS at the end of

the 12th, and RegEM at the beginning of the 13th century), they are not dis-

tinct enough to assume the MWP. Thus, more coherent summer temperature

signals are needed to verify its existence. More evidence can be found for the

LIA, which is also well marked in the reconstruction of Guiot et al. (2005).

The reconstruction using RegEM indicates a period of cooling from the mid

14th to the mid 19th century, in correspondence with the LIA (Wanner et al.,

2000; Luterbacher et al., 2001). There might be a relation of the cold period

in the RegEM result of the 11th to 12 century with an assumed major glacier

advance in 1100 AD (Holzhauser et al., 2005). However, the climax of the

Late Maunder Minimum (1675-1715 AD), seen in reconstructions covering

the past 500 years, which include early instrumental measurement series as
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proxies (Luterbacher et al., 2004; Riedwyl et al., 2008b), is not evident here

using mostly natural proxy archives. Furthermore, for both the PC regres-

sion and the CPS result, a cooling during the LIA period is less obvious than

for RegEM. Likely the significant peak at the beginning of the 19th century

in the CPS results, which is e.g. also seen in the reconstruction of Büntgen

et al. (2006), is related to the LIA.

4.5 Conclusions and perspectives

The combination of three reconstruction techniques and compilation of ap-

propriate long and continuous proxy series have provided the basis for the

detailed reconstruction of European summer temperature variability over

the last millennium. The picture of past summer temperature variability

displayed by the results is rather diverse, still the recent warming can be put

in a longer-term context. There is no noticeable evidence for the MWP in

the reconstruction results. Mainly the RegEM result provides evidence for

the LIA, however the cooling from the 14th to 19th century is not as pro-

nounced in the results of PC regression and CPS. The reconstruction results

with associated 2 SE bounds do not reach the level seen in the instrumental

measurement records for the 20th and 21th century.

The incoherence between the reconstructions using PC regression, RegEM

and CPS indicate that the sample size of long and continuous proxy series

needs to be further enlarged, and methodological adjustments to be made in

order to achieve more reliable results. To exclude, if possible, the arbitrari-

ness of the PC selection fully (CPS), and to some extent (RegEM) is strongly

suggested. The errors-in-variables approach TTLS is a promising regulariza-

tion scheme (Mann et al., 2007; Sima and Van Huffel , 2007), however more

rigorous adaptations for the unambiguous selection of the truncation param-

eters need to be developed in future.

Finally, the robustness exercise shows the considerable influence of some

proxy series on the reconstruction result. They could be identified with

the leave-one-out algorithm. Thus, cross-validation can help to interpret re-

constructions with associated uncertainties more adequately. More robust

reconstructions of summer temperature variability over the last millennium
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can likely be achieved on the basis on more coherent multi proxy data. They

require a more detailed understanding of the climate signal and careful in-

terpretation of its spatial significance for the individual proxy series.
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Chapter 5

Conclusions and perspectives

The equilibrium of atmosphere, ocean, land and humans is disturbed, and

unpredictable, unprecedented climatic events might occur in the future. In

this context, the question arises to what extent the past is still the key to

the future.

However, future scenarios depend on “a priori” knowledge, about past and

present climate conditions. The analysis of past European climate variabil-

ity thus provides valuable knowledge, that helps to propagate future projec-

tions, and places recent climate changes in a longer-term context. Therefore,

the description of past temperature variability is essential, and methodolog-

ical considerations involved need to be addressed with due care. Intense

discussions about the use of reconstruction methods at the NH scale have

shown that clarifications are needed. This thesis contributes to better un-

derstanding the strengths and weaknesses in performances of methods using

PC regression, RegEM and CPS at the European seasonal scale over the last

millennium. Our results emphasize the necessity to test, validate and adapt

the reconstruction methods with respect to the specific spatial and temporal

resolution they are applied to.

5.1 “A priori” knowledge

The comparison of PC regression and RegEM in the “surrogate climates” of

the NCAR CSM 1.4 and ECHO-G 4 climate models over the last millennium
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reveals seasonal differences in the performance of the two CFR methods: Eu-

ropean temperature variability is more adequately reconstructed for summer

than for winter. Furthermore, it is demonstrated that the proxy data qual-

ity has a crucial impact on the reconstruction skill. More skilful results are

achieved with RegEM with regard to lower frequency variability, whereas,

using PC regression, the past temperature amplitudes are underestimated.

The spatial validation of the two methods discloses an underestimation of

the target temperature variations by PC regression, however indicating sim-

ilar RE scores for RegEM. RegEM with TTLS proves that more adequate

reconstruction results are achieved by taking into account errors inherent to

the proxy data. If the SNR in the pseudoproxies is high, PC regression and

RegEM perform alike. If the SNR is low, the performance of RegEM is more

robust than that of PC regression. Both methods exhibit deficits if the noise

inherent to the pseudoproxies is red or the SNR is very low. PC regression

tends to underestimate the amplitudes of the target temperature series, while

they are overestimated by RegEM. We conclude that CFR methods can be

improved, however need to be further optimized in future.

5.2 Evaluation of reconstructions over the last

500 years

Analyzing an ensemble of summer and winter temperature reconstructions

for the last 500 years improves the understanding of how reliably past tem-

perature amplitudes are reconstructed using PC regression compared to CPS

and RegEM. We conclude that PC regression and RegEM show a more sim-

ilar performance compared to CPS. However, differences between the results

of the three methods are larger for summer than for winter reconstructions;

indeed the difference in similarity of the results between summer and winter

is striking. This is likely due to more strength and coherence in the temper-

ature signal inherent to winter proxy data. We found that the highest skill,

both for summer and for winter, is achieved using PC regression, followed

by RegEM and, finally, CPS. Furthermore, we conclude that reconstructions

can not be significantly improved by the choice of a different method only:
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further improvement can be achieved by the enhancement of the temporal

and spatial availability of the proxy data. Applying an ensemble of sev-

eral methods to reconstruct the same target based on identical input reveals

that past temperature variability over the last 500 years is likely larger than

indicated by earlier PC regression reconstructions.

5.3 Reconstructions and their robustness over

the last millennium

Focusing on the results of European summer average temperature reconstruc-

tions over the last millennium, the MWP is not apparent, whereas evidence

is found for the LIA. However, the cooling during the LIA is mainly seen

in the RegEM result, and is not as pronounced in the results of PC regres-

sion and CPS. Generally, the ensemble of millennial summer temperature

reconstructions displays a rather diverse picture of past summer tempera-

ture amplitudes. We use the leave-one-out algorithm as a further tool for

statistical error characterization of reconstructions besides the associated 2

SE. The robustness exercise discloses that the influence of few proxy series is

considerable. New long and continuous proxy records enlarging the sample

size of the predictors are likely to further augment the confidence and re-

liability of the summer reconstruction results. Nevertheless, the robustness

using RegEM with TTLS in this context needs to be further optimized. A

first step towards this aim proves to be taking the European average series

as predictand and not the PC of the European spatial field. Furthermore, a

more rigorous adaptation for the selection of the TTLS parameters needs to

be developed in future.

5.4 Recommendations

From a theoretical point of view RegEM is an improvement compared to

PC regression. However, no method can be said to perform best in absolute

terms. Thus, RegEM too, has its deficits, e.g. with regard to robustness for

a small and incoherent sample size, and requires as well as PC regression
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future adjustments and optimizations. In this respect, specific analyses to

assess the skill and robustness of CFR methods for particular purposes are

crucial. “Surrogate climates” are a valuable tool to obtain “a priori” knowl-

edge of the performance of reconstruction methods, and offer the possibility

to test hypotheses about the nature of the proxy data. Nevertheless, as seen

in our results, the use of a “virtual reality” can also lead to discrepancies.

While for “surrogate climates” over the last millennium, temperature recon-

structions have higher skill for summer than for winter, it is the opposite for

real-world climate. On the one hand, this might be explained by the choice

of the calibration period or the quality and spatial distribution of the proxy

data. On the other hand, the fact that under ideal conditions, i.e. equal

strength of the temperature signal inherent to pseudoproxy data, the range

of European temperature variability is larger for winter than for summer,

possibly plays a more dominant role. Furthermore, as Europe is represented

by a very coarse grid in “a surrogate climate”, spatially higher resolved re-

gional climate model simulations are needed for more consistent comparisons

between physical climate model simulations (forced signals) and statistical

reconstructions (estimated variability).

• We recommend consequent use of several methods and climate variables

for reconstruction. An ensemble of reconstructions can help to either

disclose probable biases and inconsistencies or enhance the reliability

of estimated past climate amplitudes.

• We recommend to explore Bayesian approaches for obtaining robust

calibrations, integrating the high- and low frequency signals inherent

to proxy data by estimating Bayesian priors.

• We recommend to consider not only temperature, but other climate

variables for the robustness and skill tests of methods in “surrogate

climates”, and for real-world climate reconstructions.

Many conversations with colleagues about the SNR inherent to proxy data

and its quantification have accompanied this work. Much progress is being

made in filtering out climatic signals of proxies, and an impressive wealth of

knowledge exists about what individual paleoclimate proxy series respond to
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and what the associated uncertainties are. More conversations and specific

efforts are now needed to “translate” this expert knowledge of proxy data into

statistical terms and parameters. One of the most limiting factors, however,

is the finite length of instrumental records. All efforts to improve the target,

and each additional year of instrumental measurements, will in future help

to reduce uncertainties and strengthen the basis for calibration, and thus for

reconstruction.
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Appendix A

Skill assessment of two

reconstruction techniques for

three climate variables
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Skill assessment of two reconstruction techniques for three

climate variables

Introduction
Reconstruction of past climate variability is of high importance in the discussion on climate change. The question if caveats of climate field reconstruction (CFR) techniques lead to false interpretations and conclusions is crucial and has to
be addressed. In consequence, sensitivity tests and thorough evaluations are performed (1,2) and further needed. We present the skill assessment of principal component (PC) regression and regularized expectation maximization
(RegEM) for past temperature, precipitation and 500 hPa geopotential height reconstructions.
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Conclusion
Reconstructions with highest RE values are achieved for Z500, followed by LST and finally LSP. Furthermore, the RE values are 
rather higher for PC regression than for RegEM, especially for LSP. However, additional tests show that RE does not seem to fully
capture the performance of CFR techniques (4). We conclude that there are differences in skill between reconstructions of PC
regression and RegEM, and for LST, LSP and Z500. Thus more reliable measures to assess skill have to be developed in the future.

Average of reconstructed anomalies [shaded] and RE [contour] over the verification period using PC regression (top) and RegEM (bottom). For reconstructed LST and LSP the
anomalies are with regard to (wrt) the 1901 to 1960AD calibration period, and with verification over 1961 to 1995AD. The anomalies of Z500 are wrt 1948 to 1978AD for calibration, and
with verification from 1979 to 1995AD. Shown are the results for winter only. The order from left to right corresponds to the decrease in skill of the results.

Nadja Riedwyl, Jürg Luterbacher and Heinz Wanner
Oeschger Centre for Climate Change Research and National Centre of Competence in Research on Climate (NCCR), University of Bern, Switzerland
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Data and Methods
We independently reconstructed European land
surface temperature (LST), land surface precipitation
(LSP) and 500hPa geopotential height (Z500) fields
using PC regression and RegEM back to 1766 AD, as
in the reconstruction period 1766 to 1900 AD data
availabilty is well assured (3). The spatial resolution of
the LST and LSP gridded fields is 0.5° x 0.5°, and

of the Z500 grid. Figure 1 shows schematically
how the two CFR techniques are applied to predictor
and predictand data. Skill is assessed with the
commonly used reduction of error (RE), and by the
analysis of the reconstructed anomaly patterns over
the verification period. RE values in the interval ]0,1]
indicate reconstructive skill.

2.5°
x 2.5°

Figure 1

Scheme of the analogousness / differences between
PC regression (blue) and RegEM (red). PC regression
corresponds to “retrodiction” and RegEM to the
imputation of past temperature values. The input matrix
for both techniques is indicated in colors.
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