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Abstract

Lake ecosystems and their catchments are knowartespond to climatic change in a complex manner
and with implications for humans, animals and aritake water temperature can constitute a key
variable for investigations on the cause and impadctclimate variability on regional scales. Remote
sensing studies on long-time series satellite ®bsiens have revealed and confirmed the viability o
these data archives for spatially covering watefase temperature measurements with the split-windo
technique. The split-window technique utilizes fineportional relationship of the wave-length depamd
atmospheric attenuation and the measured radidffeeedce in two nearby wavebands, typically in the
atmospheric window around 8 — iB. A multi-linear regression from simulated brigkés temperatures

is able to deliver a set of regression coefficiemisich can be used for retrieving accurate estonatof

lake surface water temperatures from satellite mbsens.

In this study the split-window method proposed hylley et al. (2011) is used in order to retrievkela
water surface temperatures (LSWT) from satellitseplations of the NOAA AVHRR sensor series for
six large Swiss lakes. Atmospheric profiles of Eheopean Center for Medium-Range Weather Forecasts
(ECMWEF) are employed in combination with the Moder&esolution Transmittance (MODTRAN)
radiative transfer code in order to derive thetspindow coefficients. Finally, the accuracy ofghmodel

is evaluated against the institute’s operationalMISmodel that implements the Radiative Transfer for
TIROS (Television Infrared Observation Satellitg)ebational Vertical Sounder (RTTOV) code with the
help of in situ water temperature measurementsbidation sources. In this context, the study fabese
main objectives: (i) developing a routine that perfs radiative transfer simulations with the ragat
transfer model MODTRAN, (ii) deriving lake surfasater temperatures with the split-window technique
and (iii) comparing the MODTRAN computed LSWTs t&WTs derived from the radiative transfer
model RTTOV as well as to the in situ water tempararchive. The investigation is based on NOAA 17
and NOAA 18 AVHRR observations from 2003 to 201Mick were obtained from the data archive of



the Remote Sensing Group of the University of Bé&ilre comparison of the simulated LSWTs is carried
out on three selected in situ data sets of Lakestaoge and Lake Geneva from a larger in situ data
archive, which was collected from several SwisenEh and Austrian administration offices and sdient
institutions in the framework of this study. The aebperformance was evaluated in terms of the acgur
against locally measured water temperatures angha@d to the accuracy of a reference algorithm that

implements the RTTOV radiative transfer model.

The results indicate a good performance of the RI'Eyorithm and the MODTRAN algorithm, with
slightly smaller satellite-averaged root mean sguarors (~0.01 K) and biases (~0.07 K) for the RVT
model. A comparison of the raw simulated brightriessperature outputs for AVHRR channels 4 and 5
indicated a growing divergence for large viewingitte angles above 40° and a general dependenady of a
least one of the models on this parameter. Thierdance could however not been detected in thé fina
LSWTs anymore. An investigation of the simulated\Esensitivities against wind speed, viewing angle
and maximal relative humidity showed relative inaaces for both models. A spatial comparison of
LSWTs for Lake Geneva and Lake Constance suppdnedypothesis that MODTRAN and RTTOV
perform similarly with spatial standard deviationsthe between 0.006 K and 0.02 K for two selected
scenes in April, 2007. Considering these resultagbsas additional economic and performance dater
the decision for implementing RTTOV instead of MORAN into the operationally working LSWT
retrieval algorithm at the Institute could be jtisti and reasoned. With the approach and the paeasne
sets used in this study MODTRAN did not show supeperformance over RTTOV for lake surface
water temperature assessment from NOAA17 and NOAXNIERR satellite data.
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Chapter 1

Introduction

The unique role of terrestrial water in the climaistem has been the focus of extensive research
(Intergovernmental Panel on Climate Change (IPGS%0, 1995, 2001, 2007). Due to its physical
properties (e.g. high specific heat capacity, higlat of vaporization) small changes in the water
temperature might yield distinctive feedback efetd the interaction between the cryosphere,
hydrosphere and atmosphere (cf. Bindoff et al.,7208ccurate water surface temperature retrieval is
of crucial importance for the understanding andigeeprediction of the dynamics of energy fluxes in
the climate system and to addressing the raisisugis related with climate change (Bindoff et al.,
2007). Among others, these issues involve taskssezfsonal weather and ocean forecasting,
ecosystem assessment, industrial fishing and touresearch (Castro et al., 2010; Donlon et al.,
2007; and Walton et al., 1998, for further applmas and references). In the framework of the
Global Climate Observing System (GCOS) sea- anel takface water temperatures were defined as
two of 50 Essential Climate Variables (ECV) and evéncluded into the long-term monitoring
program for assessing the state of the climatesy$6COS, 2006). Hence, it is not surprising that
the research community involved in water surfacepierature retrieval is well organized and eager to
improve the retrieval techniques, e.g. the Group High Resolution Sea Surface Temperature
(GHRSST) (cf. Donlon et al., 2007; Kaiser-Weisalet2011).

Limnological studies revealed and confirmed theabdjiy of large inland water body temperatures
to serve as indicators of climate change (e.g.iIAtColman, 2007; Livingstone, 2003; Straile et

al., 2010). While lakes are known to exhibit sémsitesponses to climate in general (Rosenzweig et



al. 2007), the individual impacts of climate changelakes tend to vary distinctively with geographi
location, elevation, morphometry, regional climategetation in the catchment and the land use
(Adrian et al., 2010). Responses can include dirapticts on the chemical, physical and biological
properties of the lakes’ ecosystems as well asyddldeedback mechanisms (Adrian et al., 2010).
Consequences for Swiss lakes, for example, carerfirogn changes in the thermal structure, over
shifts from cold-water to warm-water fish speciesearlier onsets of algae blooms, and less frequen
and extended lake-ice coverage (OcCC, 2007 andewtinerein). Adrian et al. (2010) collected and
reviewed key response variables to climate changehave been used throughout numerous studies
in order to measuring the impact of climate chamgdakes. They identified seven indicators for key
lake properties: (1) water temperature, (2) waggel, (3) ice phenology, (4) chemical variables, (5
dissolved organic carbon (DOC), (6) oxygen conediuins and (7) lake biota. Particularly, water
temperatures of upper lake levels, termed epilimnievealed a high correlation with regional air-
temperatures trends in North America (Coats et 2006; Schneider et al., 2009), Europe
(Livingstone & Lotter, 1998; Peeters et al., 2008ia (Hampton et al., 2008) and Africa (O'Reilly
et al.,, 2003; Tierney et al.,, 2010; Verburg & Heck09). Additionally, Adrian et al. (2010)
reviewed a series of direct and indirect influenoé$ake water temperature to other key response
variables, which makes the rather easily accessilieer temperatures a prominent indicator for

alterations in the lake ecosystem.

Globe-covering satellite observations are well-knoto constitute a powerful instrument for
elucidating climate trends from the most recentades on various scales (GCOS, 2006). Satellite
images deliver valuable spatial data sets of lakdéase temperatures (e.g. Oesch et al., 2008;
Schneider & Hook, 2010; Schneider et al., 2009fdake-ice phenology (e.g. Latifovic & Pouliot,
2007). Especially thermal infrared studies revealedr potential for monitoring lake surface water
temperatures (LSWT) in distinct areas of the glébg. Hulley et al., 2011; Oesch et al., 2005;
Wooster et al., 2001). The split-window approacpresents a robust and effective procedure for
water surface temperature retrieval and is usethiooperational water surface temperature products
of the Moderate Resolution Imaging Spectroradiomé#ODIS; Brown & Minnett, 1999), the
Advanced Along Track Scanning Radiometer (AATSR;cMallum & Merchant, 2011) and the
Advanced Very High Resolution Radiometer (AVHRR]jpgitrick et al., 2001). The split-window
technique utilizes two nearby channels in the tlrmfrared (TIR) bands within an atmospheric
window, which can be modeled with radiative transéémulations, corresponding atmospheric
profiles and known surface emissivity (Hulley et &011). A subsequent multi-linear regression of

the simulated data against either modeled (Zavadsl.e 1995) or coincidently locally measured
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(Kilpatrick et al., 2001) water-surface temperasurgields the split-window coefficients for

derivations of satellite observed water-surfacepematures.

Water surface temperature measurements are traaltioperformed with ground-based or space-
borne sensors (Donlon et al., 2002a, 2007; Kilpltet al., 2001). While ground-based measurements
with calibrated instruments mounted on ships, buang research stations are known to deliver very
accurate results, their availability is constraimedime and space (Donlon et al., 2002a). Thermal
infrared remote sensing from space has recentlyeprdats capability to close this spatio-temporal
gap, with tenable constraints on absolute accufagy Castro et al., 2010; Gentemann, 2003; Hook
et al., 2003, 2004). A promising long time series ifivestigations on regional to global scales has
been acquired from the AVHRR on the United Statestiddal Oceanic and Atmospheric
Administration (NOAA) platforms and the Meteorologi Operational Satellites (MetOp) on the
European Organisation for the Exploitation of Metdogical Satellites (Eumetsat) platforms. The
AVHRR has been operating and recording data froenEhrth’s surface continuously in three and
later on four infrared (IR) channels since 19819&aet al., 2010; Walton et al., 1998). Exploiting
this time series the Remote Sensing Research Gafotlie University of Bern, Switzerland (RSGB)
has launched a project to deriving lake surfaceemwemperatures for Swiss lakes from 1989 until
today. The project is part of the Global Climates®ving System and funded by MeteoSchweiz,
Switzerland.

The RSGB adopted an algorithm proposed by Hullegle2011) in order to retrieve LSWTs for

Swiss lakes from the satellite archive (MichaelflBif results not published yet). This algorithm is
based on an inland water body split-window forniatatwhich utilizes regional atmospheric profiles
for radiative transfer simulations in order to #eria set of regression coefficients for a direct
computation of LSWTs from satellite data. Hulleyddms co-workers investigated the performance
of their regional model in comparison with the glbbonditions optimized standard products of the
Moderate Resolution Imaging Spectroradiometer (M&Dland the Along Track Scanning

Radiometer (AASTR), and when applied to two langsH-water lakes in the western USA. For their
model, they found root mean square errors (RMSEyragimately 0.35 K smaller than the

operational products of MODIS and AASTR. Basedtmndccurate results of Hulley et al (2011) the
RSGB decided to implement their concept with thediR#&ve Transfer for TIROS (Television

Infrared Observation Satellite) Operational Velti€ounder (RTTOV) radiative transfer code in
combination with regional temperature and relatienidity profiles obtained from the European
Center for medium-range weather forecasts (ECMW¥)tlie operational Swiss LSWT product

(results not published yet).



The current study is designed to investigate thdopmaance of the operational RTTOV-based
algorithm by means of a second radiative transfset algorithm. This algorithm was implemented
in the course of this study and is capable of periiog radiative transfer simulations for a prede€in
period and set of target pixels, of computing splitdow coefficients for these target pixels and of
calculating LSWTs. In this context, the Moderate s®tetion Atmospheric Transmission
(MODTRAN) model has been implemented based on pi@oach of Hulley et al. (2011). The
algorithm is optimized for lake-surface elevationdalocal atmospheric as well as surface
temperatures conditions of the assigned targetisince the RTTOV model has been optimized for
fast computation, it can be expected that the etdbd MODTRAN model might deliver smaller
overall errors in exchange for a prolonged peribdamputation. The model comparison is carried
out on three in situ water temperature data sets ftake Constance and Lake Geneva with a fine
temporal resolution for robust statistical inferesic The co-variables wind speed, viewing zenith
angle and maximum relative humidity are investidafier their influence on the accuracy of both
models. The performance statistics from the abowdioreed investigations is finally being used to
formulate an evaluation of the suitability of th FOV model and the MODTRAN model for LSWT
computations of Swiss lakes. Summarizing, thisstiades three main objectives: (i) to develop a
routine that performs radiative transfer simulagiovith MODTRAN, (ii) to derive lake surface water
temperatures with the split-window technique aiiyi¢omparing the MODTRAN computed LSWTs
to LSWTs derived from the radiative transfer mo@RITOV as well as to the in situ water

temperature archive.
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Chapter 2

Theory of LSWT retrieval

Chapter 2 covers the physical methods that areseapeto derive accurate LSWTs from satellite
data. In the first part the text will briefly guidlerough the fundamental physical concepts undeglyi
thermal infrared (TIR) remote sensing and radiatimasfer simulations. The second part explains the
emissivity model that is used for computing wateface emissivity. The third and last section gives
a brief overview of the methods utilized in mosegiional LSWT retrieval algorithms with a strong
focus on the split-window technique, which concamily represents the technique of choice for

LSWT retrieval in the present study.

2.1 Basics of thermal infrared remote sensing and t@di&ransfer
modeling

Understanding the transfer of electromagnetic tamtidan the atmosphere is of crucial importance to
remote sensing. Atmospheric transfer processeslvimvmultiple scattering and absorption by
atmospheric constituents such as gases and patdcobatter (Wendisch & Yang, 2012). The
methodogical framework to describe radiative transh detail consists of sophisticated methods
from mathematics and physics (see Liang, 2004;yP&®06; Wendisch & Yang, 2012 for
comprehensive overviews). A comprehensive revieshote methods lies far beyond the scope of
this study. However, the following section is agad to summarize the basic concepts, which are
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involved in TIR remote sensing of terrestrial saefa from space and briefly reviews the underlying

principles of radiative transfer in a very genevaly.

2.1.1 The fundamental laws of radiative transfer

The following section introduces the basic prinefplthat are exploited in radiative transfer and
thermal infrared remote sensing. Thereby this geatiraws fundamentally on chapters 6 and 8 of
Petty (2006).

The classical principles of radiative transfer, ahds of any remote sensing technique, were
developed by only a handful of scientists in theosel half of the 20 century. These principles
characterize the impact of electromagnetic radiatio particle matter, thereby obeying the laws of
thermodynamics. As formulated in Kirchhoff's lawn ithermal equilibrium and for a given
wavelengthA and viewing anglep, the amount of radiation emitted by an object dsia¢ to the

amount of radiation absorbed

e @) = a4 ¢) (2.1)

, Whereg(),0) is the object’s emissivity ana(),d) its absorptivity. An object with a temperature T

will emit radiation with an intensity &T) [W- mi?um™*- si'] according to Planck’s function

2hc?
By(T)dA = ————dA 2.2)
pE (em‘l)
, with Planck’s constant h = 6.626:%0J-s, the speed of light ¢ = 2.99¢ 1@-s" and the
Boltzmann’s constant k = 1.381:%0J-K*. The peak of Planck’s function at a wavelenith, is
inversely proportional to the object’'s temperatdre This relationship is described by Wien's
displacement law

Anax " T = ky (2.3)

, where kg = 2897 um-K denotes Wien's displacements constant. If geoblabsorbs radiation
perfectly — and according to Kirchhoff's law emitsrfectly — it is called blackbody. An object which
does not perfectly absorb radiation is often refétio as a greybody. While Planck’s function allows

to compute the monochromatic intensity of a blackbantegration of the Planck’s function over the
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entire electromagnetic spectrum and the entire $@mere equals the broadband flux & a
blackbody

FB =0" T4 (24)

, Whereos ~ 5.67-10 W-ni* K™*. This proportional relationship of the blackbodpddband flux to

the fourth power of its temperature T is referre@s the Stefan-Boltzmann law.

Keeping these rather idealistic but fundamentahgpies of radiative transfer in mind, one can
account for the concepts of emissivity, the derdratof the brightness temperature, the Beer-
Bourguer-Lambert law and Schwarzschild’s equatidrese principles form the basis for interpreting
satellite observations from space. Figuratively é&missivity concept apprehends the deviation in
emissivity of a greybody object from the same dbjesated as a blackbody (Petty, 2006). In this
way, emissivity in-between two wavelengthsandi, can be calculated with a simplified ratio of the
actually observed broadband fluXAEQ.,) to the virtually idealized blackbody fluxs@y, A,) from the

same object.

e = [Egraybody] _ F(AIAZ) (2.5)

Eptackbody]| Fz(AiAz)

As stated above Planck’s function directly relates temperature of a blackbody with its emission
intensity at a specific wavelength. The inversatiehship is exploited in thermal infrared remote

sensing during brightness temperature derivation
Ty = By ' (In) (2.6)

, where B is the inverse of the Planck function, apdhie actually measured intensity for a given
wavelength. Most land and water surfaces as wealkase cloud layers are almost blackbodies in the
thermal infrared spectrum of electromagnetic raaiafTIR), having emissivities close to 1. Hence,
their brightness temperaturg @an reliably be approximated with their physicahperature when
observed through a transparent atmosphere (Pe@6)2 The atmosphere appears relatively
transparent in regions of the electromagnetic spectwhere none of the abundant atmospheric
constituents possesses an intrinsic absorptiomri=al hese regions are most widely referred to as
spectral or atmospheric windows. An important séetindow for thermal infrared remote sensing
lies in the vicinity of 1im, which explains why the majority of operationakather satellites
contains at least one channel that acquires spedata within this region. Regarding many
applications in remote sensing, meaningful obsemanf the Earth’'s surface will only be feasible

within these spectral windows. Nonetheless, by ipleltscattering and absorption the atmospheric
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constituents make their contribution to the totaliation acquired at the sensor. Beer's law alltiws
guantify the reduction in radiant intensity for itn propagating through a homogenous, finite

layer between two points and s with a constant extinction coefficiepd
S2
I)(s2) = Ih(s1) - exp [— f Be(s) dS] ,Vsy 2 51 (2.7)
S1

, Where |(s;) is the initial radiant intensity when enteringtlayer at § l,(s;) denotes the radiant

intensity after propagation of the layer, and theamential termexp [— f:‘: Be(s) ds] is the

transmittance (or transmissivity) t of a finite IpaThe integra[:l2 B.(s) ds can be referred to as the

opacity t of the finite path.

Now, as the radiant extinction by the atmosphenstituents can be quantified for a given
homogeneous atmospheric path, Schwarzschild's iequatlows decoupling of the intensities

contributed by the atmosphere and by the surfacanfp given wavelength

I(t=0)=1I(1)-e "+ fTBe"' dr' (2.8)
0

, Where It = 0) means the radiant intensity measured atéheas, the first term on the right hand
side If)-€" represents the emission reduction by attenuationgathe atmospheric path of sight,
while the integral refers to the additional conitibn of each homogenous atmospheric layer to the
net emission observed. An important assumptionoégal by Schwarzschild’s equation refers to the
possibility of separating the entire optical patbni the surface to the sensor into individual
homogenous sub-paths, whose sum yields the totaabgath again (Petty, 2006). Petty (2006)
denotes Schwarzschild’s equation “[...] as the mostiémental description of radiative transfer in a
nonscattering medium” [p. 205]. This equation eaghdalculations of diffusive radiation in a plane-
parallel, horizontally homogeneous atmosphere arfddt, it constitutes the starting point for every
algorithm involving observations of surface watmperatures from space, although it might not be
mentioned every single time.

! Other widely used terms for opacity are opticahpaptical thickness or optical depth.
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2.1.2 Radiative transfer modeling in thermal IR satellite remote sensing

Section 2.1.2 is designed to sketch the idea ofetimogl radiation transport trough the atmosphere in
the thermal infrared spectrum of electromagnetitiatéon. In this context the Earth’'s longwave net
radiationAF can be quantified as the difference between tvendiard Flux F and the upwelling
Flux F..

AF = Fl - FT (29)

The longwave downward flux, juantifies the radiation (re-)emitted from the esphere. However,
surface temperature retrieval from space is primbdased on a characterization of the temperature
dependent upwelling flux, the surface broadbandssivity and the transmissivity of the atmosphere
(Liang, 2004).

Remember that Schwarzschild’s equation makes isiplesto quantify the radiant intensity in a
plane-parallel and horizontally homogeneous layst that radiant flux is nothing else than the
integration over the intensity contributions froith @ossible incident directions. Separation of the
atmosphere into several plane-parallel and horitgnthomogeneous layers and subsequent
integration over all layers then allows quantificatof radiation transfer for the entire atmosphere
For a satellite sensor above the top of atmosphatk viewing downward toward an idealized

blackbody surface, it is convenient to considdightly transformed Scharzschild's equation (2.8)
L(z=0)=B(Tg) -e "+ f B(z) - e~ dz (2.10)
0

, Where J(z =) specifies any point beyond the top of the atmesphB(Ts) is the Planck function
for the surface temperature @ittenuated by the transmittanceatong the path from the surface to
the top of the atmosphere, and the integral is &ghed sum of the individual attenuation
contributions & of each finite atmospheric layer z (Petty, 2008)e surface term depends on the
nature of the surface (i.e. its emissivity) as vasllon the upward reflection of incident radiatfimm

the surface. In the course of this study, the watamface is treated as a Lambertian reflector
throughout the thesis, which means that radiaterreiflected isotropically into space. Notice
however, that surface reflection beyondush is becoming negligible compared to the radiant
emission of the Earth (Petty, 2006). How surfacéssivity is treated during the radiative transfer
simulations is extensively described in section Zl2& second, atmospheric term of equation 2.10
depends on the extinction of radiation within eactlividual layer at height z. As atmospheric

scattering greatly depends on the particle sizattexing in the TIR can safely be neglected, when
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precipitation (e.g. droplets, ice crystals, patttel matter) within the observation period can be
excluded (Petty, 2006). Since only “clear sky” Baeobservations are considered throughout the
entire study, scattering in the TIR wavelengthsabyospheric constituents will not be considered.
The absence of scattering also simplifies the amgiépendence of radiance significantly, which now
only depends on the viewing zenith angle and isirasdl to be isotropic in azimuthal direction
(Liang, 2004).

With equation 2.10, one can compute the upwellingnochromatic intensity;Ifor any given
wavelength. For any given waveband however, a sgleotegration over a range of wavelengths is
needed. This integration has to incorporate theévidwhal absorption features of all atmospheric
constituents in the respective waveband. Clastchiniques range from very accurate but computer
intensive line-by-line methods, over less accubatiecomputationally more efficient band models, to
statistical techniques such as the correlated tkHglision method, which presents a good trade-off
between accuracy and efficiency (Liang, 2004). Deteoncerning these and other sophisticated
statistical methods can be reviewed in Liang (208d) Wendisch & Yang (2012). The current
version of MODTRAN uses the correlated k-distribatimethod, which determines the wavelength-
dependent absorption coefficient over a probahdégsity function (Kneizys et al., 1996).

Radiative transfer models are made to numericalbluate the radiation budget (e.g. heating and
cooling) at each particular layer, when properliated to profiles of temperature, humidity and
trance gas compositions (Petty, 2006). Simulati@ame typically run with either measured
atmospheric profiles or with idealized profileslled model atmospheres. Model atmospheres can be
provided for several climatic large-scale regimed most distinctively vary in their temperature and
water vapor profiles. In the context of this stulyODTRAN'’s standard atmospheres for mid-
latitude summer and winter profiles have been syomihed with atmospheric profiles from
reanalysis data (see chapters 3 and 4 for furtttaiilgl). In a final step the radiance output isghid
and integrated for the specific response of thesmem order to obtain band-specific averaged
radiances. Berk (2006) describes an analytic agpréar the convolution of spectral band average
radiances into sensor-specific brightness tempestas it is provided with the most recent veision
of the MODTRAN band model.
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2.2 Emissivity of large natural water surfaces in thel®um
atmospheric window

Water surface emissivity is one crucial parametertémperature retrieval with the split-window
techniqgue (Masuda, 2006), although water surfacessivity is known to be typically high and
spectrally flat (Hulley et al., 2011). In order toeet current accuracy requirements for LSWT
retrieval of £ 0.2 °C (GCOS, 2006) accurate wateface emissivity modeling has been a subject of
extensive research (e.g. Friedman, 1969; Masudig; M0asuda et al., 1988; Wu & Smith, 1997).

The following review of landmark studies on watarface emissivity modeling is arranged to give a
brief introduction into the topic. Cox and Munk B&) took aerial photographs of sun glitter and
developed a statistical slope characterizationhef wind-roughened sea surface. Saunders (1968)
used the slope statistics of Cox and Munk to compuviewing angle dependent rough sea surface
reflectivity, while accounting for effects of wawehadowing, multiple surface reflections and
anisotropic irradiance. On the basis of the modsletbped by Takashima & Takayama (1981),
Masuda et al. (1988) improved the sea surface @tisgnodeling by including the wavelength
dependent variations of the refractive index of weader derived by Hale and Querry (1973) with
salinity adjustments of Friedman (1969). Watts let(#96), and Wu and Smith (1997) used the
direct emission as a radiation source to obtairfitheorder surface-emitted surface-reflected (RES
emissivity. Recently, Masuda (2006) incorporateel second order SESR radiation into emissivity
modeling in order to improve the computation athhigmission angles, which was still
underestimated in the precursory model of Masudé €1988). In his model, Masuda (2006) utilizes
a weighting function derived from the slope’s priitity distribution function in order to determine

the probability for the source radiation to haverbeadiated from the sea.

A full derivation of the SESR emissivity is waivdakecause it is well documented in the publications
of Masuda et al. (1988) and Masuda (2006). Noniapists could additionally consider Takashima &

Takayama (1981) as well as Wu and Smith (1997), present a rather comprehensive derivation of
the direct and SESR emissivity respectively, whilere recent publications tend to presuppose
knowledge about former models. The following paagips will only capture the key equations and

ideas involved in the Masuda (2006) model.

For greybody surfaces, such as water in naturat@mments, the upwelling radiation 5 composed
of a reflected and an emitted part (Saunders, 1967)
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Fy = Frept + Femit (2.11)

, Wwhere Ry and Ky denote the reflected and the emitted Flux, respgt When the sea surface is
roughened by wind-driven motion the observer reegi@mission from numerous small facets in the
field of view (Wu & Smith, 1997). Consideration tife average emissivity of a wider sea surface
over a longer period of time yields a mean emiggiwithat represents the integral effect of all
contributing facets (Masuda et al., 1988). Follayvidox and Munk (1954), the wind-depended facet

slope distribution is Gaussian and isotrophic aamllte expressed as

P(Zx, Zy) = (mo?)™ - exp (2.12)

[ (zz + Zy)

, where z and z are the slope components in orthogonal x- andrgetion with zero mean and root
mean square of due to the isotropy assumption. Whilg and z are functions of the facet’s
geometryo is a function of wind speed. The equations arepnotided here, but can be reviewed in
Masuda et al. (1988), Masuda (2006) or Wu and S(t#87). Following Cox and Munk (1954) and
Saunders (1967, 1968), Masuda (2006) derived thanmsma surface emissivig(d) from a
horizontal unit area of wind-roughened sea suriafedirection$ as

+00 400
e = —— [ [ e cosy-secty Plrz)dnds, oy >0
1m
2 —4
- cosﬁffg()() ~cosy - P(2x,2y) - tn*dpndpy (2.13)
00

, Whereg(y) represents the emissivity from the fagete local emission angle to the facet afgtid,

the slope distributions componentsaiz converted into solid angles. Note, that directssioin from
the sea surface can be blocked either by themselvéy other waves appearing in the emission
direction, which leads to unboundedness approaches 90° (Masuda et al., 1988; Wu & Smith,
1997). While self-blocking can be excluded by impgscog > 0, so-called wave-shadowing or
slope-shadowing (P. M. Saunders, 1967, 1968) isetad with a normalization in order to obtain the

direct emissivitye (9).

In his recent model, Masuda (2006) introduces a®hing factor sf), which determines the
probability that emission emanates unintermitteginfra facet. For the backward unintermitted
trajectory, he defined s(180°9) as the probability for emission to originaterfriahe sky and
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w(9) =1 — (180° —9") (2.14)

as the probability for emission to originate frone tsea surface, which he denotes as the weighting
function. The angl®’indicates the direction of the direct emission. Missattributed the advantage
of the weighting function to varying with wind sgkedue to its dependence on the surface slope
distribution. The final surface emissivity; including SESR effects is denoted as

fror = £ (0) + Z 7 (9) (2.15)
i=1

, where 7 (9) are the SESR emissivities of order i into direc.

The current study utilized the above outlined emigsmodel of Masuda (2006). An elaborative
attempt to implement the entire model was regisgtdoe be too costly in the framework of this
project. Hence, the emissivity input for the MODTRAN railia transfer modeling was obtained
from the computations published by Masuda (2006)this concern, direct, first and second order
SESR emission were bilinearly interpolated betweard speed and viewing angle and summed up
to the total emissivities,(L) at 3.7um, 11 um and 12um. MODTRAN internal processing then

interpolates these obtained values over the espigetral range.

2 The existing documented, but not functional caslerovided with the data DVD, attached to this ihe&
handwritten derivation of direct emissivity afteru& Smith (1997) is at hand and can be providednupo
request.
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2.3 The split-window method for surface temperaturdeeal from
satellite data

Hulley et al. (2011) named three currently avagalind used techniques for surface water
temperature retrieval from TIR remote sensing, bfclw the split-window method constitutes the
most facilely applicable technique due to its modizga and processing requirements. The present
section 2.3 encloses the theory of the split-windgproach, the evolution of modern split-window
algorithms, such as the method used in this stadwvell as an overview on the limitations and

known problems arising with the method-inheritidgalizations.

2.3.1 The basic concept of the split-window approach

The underlying concept of most studies that aimetrieving surface temperatures from satellite data
refers to the utilization of two simultaneous radairic measurements, acquired either at different
observation angles or in different wavebands oflbetromagnetic spectrum. The principle exploited
therein corresponds to a proportional relationgbgiween the atmospheric attenuation and the
difference in the two radiance measurements (M@MilL975). Split-window methods (SWM) are
traditionally those methods that use two adjacéainoels from operational satellite instruments or
airborne sensors. In this context, the followingtiem is designed to briefly summarize the
milestones of the development of the nowadays mastmon forms of the SWM. The description
also covers the basic steps of the derivation@f3¥WM, which are considered to be essential inrorde
to understand the functionality of the SWM for fhéowing chapters.

Saunders (1967) was the first who published re$udta airborne radiometric measurements of sea
surface temperatures at different viewing anglesoider to remove the atmospheric effect.
Afterwards, Anding and Kauth (1970) proposed adimelationship between the surface temperature
and the radiances in two proper absorption bandseiin pioneering study. The theoretical basis for
the split-window approach evolved in the first hafithe 1970s owing to Prabhakara et al. (1974) and
McMillin (1971, 1975), who developed a justificatiof the split-window approach via the radiative
transfer equation. At that time, uncertainties wattdbuted to a dependence of surface reflectimity
both, angle (Barton, 1983; Chedin et al.,, 1982) amaVelength (e.g. Prabhakara et al., 1974,
McMillin, 1971). McMillin and Crosby (1984) carriedut the split-window approach with a dataset
from the AVHRR/1 instrument on NOAA 7 and found tthhe sea surface temperature can be

approximated with an accuracy of 1 K.



17 Chapter 2: Theory of LSWT retrieval

As discussed earlier in this chapter, extinctiomaafiation is a wavelength-dependent process. For a
cloud-free, non-scattering atmosphere under Idemodynamic equilibrium the radiative transfer
equation (2.10) states that the radiance receitélgeainstrument is the sum of the surface radiance
attenuated by the atmosphere and the radianceiemasng the atmospheric path. By assuming that
the water surface emits as a blackbody (Smith.etl8I74), by neglecting the attenuation of other
atmospheric constituents along the pathway, byrimig that atmospheric attenuation is solely caused
by variations in columnar water vapor and by ugimg mean value theorem of calculus (Walton et
al., 1998) the atmospheric term of the radiatiandgfer equation (2.10) can be linearized into the

following form
L(A;,T;,0) = B(A;,Tg) - t(4;,0) + B(A;,T,) - (1 —t(4;,6)) (2.15)

, Where t{;,0) is the wavelength-dependent atmospheric trarsnaig,6 the viewing zenith angle,sT

is the temperature of the surface dpdhe mean temperature of the atmosphere (c.f. Ma2004;
McMillin & Croshy, 1984). Recalling that (1 —At(0)) equals absorptivity as well as emissivity,
equation 2.15 states that the total intensity atsénsor is the sum of the transmitted intensitgnyf
object plus the Planck’s function times the totah@spheric emissivity (Petty, 2006). Since the
absorption by atmospheric constituents mainly tgitase in the lower levels of the atmosphere it is
reasonable to assume that the mean atmospherietatuge is the same for two nearby wavebands
(McMillin, 1971; Prabhakara et al., 1974). By conggg the assumption that atmospheric attenuation
within the window between 10 and i is mainly caused by columnar water vapor, tratianmge

per waveband can be approximated by
t(ﬂ-il b, 9) = exp(_ki) ' X(xpl 6)

~1—k; X(xp,0) (2.16)

, Where kis the absorption coefficient in channel i and Xuaction of the amount of the columnar
water vapor x at pressure level p and the viewing anglé.f. McClain et al., 1985; McMillin &
Crosby, 1984). Setting up equations 2.15 and 2d@& dinear equation system for two nearby
channels with different central wavelengths andiaglthe equation system via Taylor expansion of
the Planck function has been shown to disembogietliie basic form of the split-window method
(Barton, 1995; Walton et al., 1998)

Ts=a-Ti+y-(T;—Tj) +c (2.17)
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, where T is the surface temperature to be estimate@nd T are the brightness temperatures of
channel i and j, and a and c are constants. Thengaparameter or differential absorption term
(McMillin, 1975), depending on the author also dedowithT, is defined as

y=Q0Q-t) (t;—t) (2.18)

Several variations of the algorithm were estabtiskia modifications in the retrieval technique loét
gamma parameter. Propositions range from constantra parameters to proportionalities between
gamma and brightness temperature related parambietals about operational algorithms and their

gamma-parameter are outlined in section 2.3.2.

Coefficients, for algorithms of the form presentecquation 2.17, are typically retrieved in eitioér

two ways:

(1) A semi-empirical approach that uses multi-lineagression of brightness temperatures
derived from radiative transfer modeling (e.g. ldullet al., 2011; Zavody et al., 1995)
against an estimated surface or bottom-of-the-gihmre temperature. The data input for the
simulations is usually provided by radiosonde memments or by large scale climate
modeling reanalysis.

(2) A statistical approach in which the remotely senbdadghtness temperatures are regressed
against in situ measured temperatures from bubyss ®r whether stations (e.g. Kilpatrick et
al., 2001).

It is important to notice that the first approadivers surface water temperatures closely related

real skin-surface temperature, while the secondaoamh is tuned to the foundation temperature (or
historically “bulk” temperatures) (Donlon et al.Q@®). Water temperatures are however known to
vary diurnally and nonlinearly within the uppermdsim of the water surface (Donlon et al., 2002b,
2007; Minnett et al., 2011), depending on the ngxitynamics within the water basin. This problem

is apprehended in section 2.3.3, again.

Now, that the basic concept of split-window aldumithas been outlined, section 2.3.2 will review the
most important stages in the development of opmralisplit-window algorithms with a focus on
AVHRR data.
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2.3.2 Evolution of operational split-window methods

The first operational algorithm for the NOAA AVHHIRstrument series was proposed by McClain et
al. (1985) and utilized AVHRR channels 3, 4 andThis so-called multichannel SST (MCSST)
algorithm assumes a linear dependence of the éliféers in brightness temperatures among AVHRR
channels, i.e. a constant gamma in equation 21& gmma parameter of the MCSST was estimated
from a radiosonde dataset of temperature and htynpdofiles measured over the ocean. The great
advantage of the MCSST is that once its constargsdetermined, the equation remains invariant
(Martin, 2004). One of the major improvements, iempénted in a later stage of the MCSST,
incorporated a viewing zenith angle correctionrafiewellyn-Jones et al. (1984) in order to account
for the change of the atmospheric path with difie@bservation angles (Cornillon et al., 1987). Wit
the cross-product algorithm (CPSST), Walton (198&)posed a proportional relationship between
gamma and the brightness temperature in order psowe the atmospheric correction. The most
widely used form of the split-window technique ipevational mode today, refers to the nonlinear
SST (NLSST) algorithm presented by Walton et @9§g)

T5=a0+a1-Ti+a2-y-(Ti—Tj)+a3-(Tl-—Tj)-(sece—l) (2.19)

, where T is the water surface temperaturgthee split-window coefficients ariithe viewing angle.
The last term on the right hand side of equatid® 2lenotes the viewing angle correction. In the
NLSST algorithm the gamma parameter is assumedetproportional to a first-guess SST value
obtained from either in situ measurements (e.goafiick et al., 2001) or atmospheric modeling (e.g.
Hulley et al., 2011; Zavody et al., 1995).

The operational SST products of MODIS and AVHRRoiporate the NLSST. Whereas the MODIS
product uses radiosonde measurements and ECMWHRlyssndata for the computation of the
regression coefficients (c.f. Brown & Minnett, 199the AVHRR product uses in situ measurements
of an intergovernmental buoy network (c.f. Kilpekriet al. 2001). Both models, for MODIS and
AVHRR data respectively, derive different pairsamfefficients for different atmospheric regimes,
and include sophisticated statistical modeling ffacient weighting as well as extensive level-based
quality flagging of the computed SSTs. However, slugface temperature retrieval algorithms for
MODIS and AVHRR, respectively, provide sets of ¢médnts, which are designed for the prediction
of ocean water surface temperatures on a globld.deathis context the next section is designed to

introduce recent approaches to access LSWTs wgtbnmrally tuned split-window coefficients.
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2.3.3 Capabilities and challenges of operational split-window techniques
and requirements for lake surface water temperature algorithms

More recently, studies revealed the potential efgplit-window technique for exploiting lake-suréac
temperatures of larger inland-water bodies as ténparoxies for regional studies (e.g. Oesch et al.
(2005); Schneider & Hook (2010) and referenceseihir In this context it is reasonable to assume
that split-window models tuned to regional climataditions would deliver superior results over the
global algorithms. For a study on Lake Tahoe anitb8eSea, two lakes in the state of California
(USA), Hulley et al. (2011) received RMSE improvergeof 0.3 - 0.4 K compared to the globally
adjusted operational MODIS and AASTR split-windomgucts.

In general, the errors margins of operational nmodeave constantly been diminished by

improvements of the initial regression equation amdhe subsequent quality assessment, during
recent years. Requirements for operational watdace temperature retrieval algorithms generally
demand nominal accuracies below < + 0.5 K (e.g.&4tK on oceanic scales (Jeffery & Vazquez,

2011) to < + 0.2 K for lake water temperatures (&;2006)).

Limitations to the global approaches arise espgdat atypical atmospheric and oceanic conditions,
which violate the assumptions of the underling nhoHgamples refer to deviations from the global
mean atmospheric state (e.g. unusual atmosphetiger wapor or temperature profiles), which is
represented in the first-guess temperature, as agelio upper oceanic water stratification. While
atmospheric deviations are less likely to occurdaegionally tuned algorithm, as it is used irs thi
study, water stratification in lakes has been ifiedtas a major challenge to accurate surfacemwate
temperature estimations (Merchant et al., 2006 ces al., 2005). Radiometric water temperature
measurements access only the upper approximatelymlof the oceanic skin layer, while in situ
temperatures from ships, buoys or measuremenisretatre usually collected in 0.5 to 5 m below the
water surface (Emery et al., 2001). As for exangteensively discussed in Donlon et al. (2002,
2007), Emery et al. (2001) and Minnett et al. (20t upper 10 to 20 m of the ocean possess a
complex and diurnally varying temperature structunainly driven by wind and shear stress from
water flow and swell. Diurnal stratification on galdays is able to impose fluctuations around 2K
within the uppermost meters of the water body (@dnlon et al. 2002), which makes a correction for
comparing bulk and in situ measurements highlyrelbk. Minnett et al. (2011) compared in situ
SST measurements from the marine-atmospheric emittdiance interferometer (M-AERI) with
synchronously measured bulk temperatures in orderetrieve a correction for the thermal
stratification. In order to reduce the skin-effatie model of Minnett et al. (2011) incorporatetbin
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the algorithm implemented in this study. This moftemulates an exponential dependence of the

skin-effect on wind speed and is

AT = —0.130 — 0.724 - exp (—0.350 - Uy) (2.20)

, WhereAT is the skin-bulk temperature difference imposgdhe skin-effect and 14 the wind speed
in 10m height.

In addition to the abovementioned challenges fodeno SST (and LSWT) algorithms there are
numerous other triggers for uncertainties. Many tleém introduce variability into the mean
atmospheric model-state and therefore violate thdahnassumptions that underlie the split-window

approach. Some of them are listed below

* Injection of atmospheric aerosols due to large amilc eruptions, such as Mount
Pinatubo in 1992 (Kilpatrick et al., 2001; Li et,&001; Walton et al., 1998)

» Variability in the lower atmospheric state due twletected low level fog, especially in
the early morning during summer and for in situ genatures close to 4°C, which were
attributed to be more susceptible to ambiguitieth wiarm low clouds and fog (Li et al.,
2001).

* Uncertainties from sub-pixel clouds and cloud skddg (Castro et al., 2010; Hulley et
al., 2011; Oesch et al., 2005)

» Uncertainties evolving from littoral mixed land-veatpixels (Michael Riffler, results not
published yet)

» Sensor inheriting uncertainties from the calibmraimd sensor noise (Donlon et al., 2007;
Robel, 2009)
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Chapter 3

Data & Study Site

After the physical principles involved in radiatiteansfer modeling and LSWT retrieval were
clarified, chapter 3 wraps a specification of thkels, surface water temperatures are computedsor,
well as an introduction of the available data arebi The first three sections encompass the in situ
database, the AVHRR data archive and the ECMWFbdata The last section summarizes additional
archives that have been accessed during the cofiise study for minor adjustments of the model.

3.1 The study site and the in situ database

Switzerland is located in Central Europe and dotethdy an alpine landscape with various lakes
formed during the last alpine glacial period. Fegudr shows a masked map of Switzerland, where
only the Swiss boarders and the locations of thgekt inland water bodies on Swiss territory are
displayed. MODTRAN radiative transfer simulationsres computed for six, on the map marked and
named locations in the central areas of Lake ConetéBDS), Lake Geneva (GFS), Lake Lucerne
(VWS), Lake Neuchéatel (NBS), Lake Lugano (LGS) &a#te Zurich (ZUE). The lakes were selected
primarily for their comparatively large total laleea and for their spatial distribution. Firsthgntral
water pixels in large lakes can be assumed to gviaiel mixing with lakeshore pixels. Secondly,
large lakes can be assumed to play an importaata®la regional climate archive (cf. Adrian et al.,
2010), which can allow split-window coefficientsried for one large lake to be used for nearby

smaller lakes, as well (personal communication Wihhael Riffler). The spatial distribution of the
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selected lakes would support this overlapping @e&iown of split-window coefficients for smaller

lakes in the expanded catchment of nearby largeenbadies.

Table 1: List of the six Swiss inland water bodies constden the MODTRAN radiative transfer simulationglahe split-
window coefficient derivations.

Lake ID Lake Latitude [°N] Longitude [°E] Eleva[trlT(])]n as..
BDS Lake Constance 47.57 9.49 396

GFS Lake Geneva 46.42 6.42 372

LGS Lake Lugano 45.91 8.56 194

NBS Lake Neuchatel 46.96 6.92 429

VWS Lake Lucerne 47.03 8.37 433

ZUE Lake Zurich 47.22 8.71 406

6.0°E 6.5°E 7.0°E 7.5°E 8.0°E 8.5°E
48.0°N 48.0°N

° 47.5°N
47.5°N Brgz
\ \ Lake Zurich (ZUE)
)
/ S x s 1 e
47.0°N o&"‘ 47.0°N
4 Lake Lucerne (VWS)
7
Lake Neuchatel (NBS) i d
Lake Geneva (GFS)
46.5°N 46.5°N
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Lake Lugano (LGS) o Pre-defined
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o In situ water
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Figure 1: Map of large inland water bodies in Switzerlandx 8amed (bold) and marked (red dot) positions ikd.a
Constance, Lake Geneva, Lake Lugano, Lake Lucéaies Neuchatel and Lake Zurich are specified asesmmtative lake
pixels in the radiative transfer simulations wittOB@TRAN. The positions of the in situ temperaturaisns (INRA, Brgz,
UniK) at Lake Geneva and at Lake Constance areedarkth a yellow dot.

For the success of this study, several Swiss cahtmministration offices and universities provided
in situ lake water temperatures for a period betwg&®89 and 2012. The entire collected archive
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consists of 25 datasets, each provided with a ipatgpth profile and temporal resolutforThe
heterogeneity between the datasets, due to intensidata formats and especially non-standardized
measurement depths throughout the cantonal inetisjt accompanied with the low temporal
resolution of lake temperatures, remains a genemallenge for lake temperature studies (see
discussion section 5.5). The final comparison ofMIS derived from the MODTRAN- and the
RTTOV-algorithm is based on three validation dattsstwo of them acquired at Lake Constance
(UniK, 47.762 °N / 9.131 °E; Brgz, 47.507 °N / 9874E) and one at Lake Geneva (INRA,
46.453 °N / 6.589 °E). The locations of the thregiens are illustrated in Figure 1. The decision f
these datasets corresponds to the available ambuwatidation data points, supplied with a daily or
finer temporal resolution at these locations. Adllested datasets partially coincide with the
operational period of the selected satellite pratfto NOAA 17 and NOAA 18, which allows a
comparison between RTTOV's and MODTRAN's simulat&@WTs with reliable statistical analysis

and inference.

3.2 The AVHRR database

Satellite data are well known to provide an excelource for monitoring geophysical parameters
over long periods (GCOS, 2006). In this respeat, dbntinuously growing AVHRR dataset of the

University of Bern delivers an appreciated basigtie derivation of long-times series from the 1980

to the present day (e.g. Husler, 2012). The follmvbverview on the AVHRR sensor and on the
RSGB's database is designed to grasp the eligiafithis long time series for LSWT derivations.

Table 2: Approximated spectrometric characteristics ofttiree operational AVHRR instruments (Husler et2011).

Channel AVHRR/1 AVHRR/2 AVHRR/3
1 0.58 - 0.68 um 0.58 - 0.68 um 0.58 - 0.68 um
2 0.73-1.10 pm 0.73-1.10 pm 0.73-1.00 um
3A - - 1.58-1.64 um
3B 3.55-3.93 um 3.55-3.93 um 3.55-3.93 um
4 1050-11.50 um  10.30-11.30um  10.30-11580 p
5 Ch. 4 repeated 11.50-12.50 pm 11.50 - 12.50 pm

The first AVHRR sensor was originally designed tonitor cloud patterns on Earth within four
spectral channels in the VIS and NIR in the mid@9{Hastings & Emery, 1992). The sensor is

% A full overview of the available in situ datasetsgjiven in Appendix B.
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operating onboard of the NOAA Polar-Orbiting op&ma&l Environmental Satellites series at an
altitude of approximately 833 km above sea leval pnssesses a spatial resolution of 1.1 km? at
nadir and a swath width of 2700 km into off nadiredtion. Table 2 summarizes the radiometric
specifications of the instrument throughout its elepment stages (c.f. Husler et al., 2011). While
AVHRR/1, the first version of the AVHRR instrumemtas originally designed to obtain radiation in
four bands of the electromagnetic spectrum, AVHRRI& most recent version, provides six
channels, sensitive to radiation in the visiblearriefrared and thermal-infrared. The sensor’s
improvements made it a multifunctional monitoringolt with tasks far beyond the originally
intended scope. Within its lifespan, the AVHRR instent series has featured scientific
investigations on the composition and developmédntlauds (Turner & Warren, 1989), sea ice
motion (Emery et al., 1991), atmospheric aerosBlwili et al., 2011; Riffler et al., 2010), water
vapor contents (Sobrino et al., 1999), sea surtrperatures (Kilpatrick et al., 2001), land sugfac
temperatures (Tomlinson et al., 2011), snow deteaind analysis (Husler, 2012) and on vegetation
(Kogan et al., 2003). As illustrated in the bar reH&igure 2), AVHRR was mounted to various
platforms throughout its evolution. Starting withIRDS-N at first launch, the sensor was
continuously carried by the Polar Orbiting Enviremtal Satellites (POES) of NOAA or more
recently by the Meteorological Operational satellfrogramme (MetOp) of the European Space
Agency (ESA) and the European Organisation for Exploitation of Meteorological Satellites
(EUMETSAT). Launches of MetOp-B in 2012 and MetOpr016 are planned to be equipped with
AVHRR/3 and thus to extend AVHRR's acquisition peri at least into the year 2020

(http://www.esa.int).

The RSGB database of observations from the advarergthigh resolution radiometer (AVHRR) is

one of the most comprehensive in Europe, whichrefieunique potential for long-time studies of
various kinds (c.f. Husler et al., 2011). Availabkellite data range from 1981 to up-to-date stene
Additionally to the data gained from the local ligo®y station in Switzerland (46.93 °N / 7.41 °E),

the RSGB has put much effort into collecting ealdya from other institutions in order to build up a
long time series of continuous AVHRR (see Hislerakt 2011, for details). A comprehensive
overview of the RSGB database, including a datargg®on as well as details on the reception,

collection and calibration are provided in Hisleale (2011).
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Figure 2: Past, present and future service periods of thHéereint AVHRR sensors (data are obtained from
http://wdc.dlIr.de/sensors/avhrr/). Launches for ®@B and MetOp-C are scheduled for the second dfa2012 and for
2016, respectively. AVHRR/3 maintenance is plantodole extend at least into the year 2020 (http:iesa.in).

The data input for the LSWT calculations is basedasubset of the Alpine Region, obtained from
radiometrically corrected and geometrically ortieotified NOAA AVHRR Level 1B data, which
were reprojected onto the WGS84 spheroid. Thisetulpsm the European alpine region covers an
area between 41° - 50°N and 0° - 17°E, which spestyo integrates the study site. The
radiometrically corrected and ortho-rectified AVHRIRta of one observation consist of one zipped
file with pixel-wise radiometric information of AVRR channels 1 to 5 as well as one zipped
geometry file containing the pixel-wise viewing amdlar geometry at the acquisition time, each
existing with an equally named header file with tees-extension that contains file characteristics
The filename consists of a unique satellite id@tifthe observation date as well as the observatio
time in hours and minutes and a suffix which disdmiates between geometric and radiometric data,
respectively. A typical example of an ortho-reetifiAVHRR-file and its corresponding header file is

shown below.
N17_05apr08_1900 rect.ers

N17_05apr08_ 1900 rect.bz2

* The data are available on /data/sensor/avhrijutsttealtime_mr/SST/rectified/.
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3.3 Atmospheric profiles from the ECMWF database

The following section gives a brief overview of tbegin of the climatology data, used for the
MODTRAN radiative transfer simulations in this sju@’he information provided here, are extracted
from the official website of the European Centar ftedium-Range Weather Forecasts (ECMWF)
(http://mvww.ecmwf.int). The ECMWEF is an intergovemantal organization, which produces high-
quality operational medium-range numerical whetedictions. The ECMWF website also hosts
detailed reports about processing modalities, paranand data availability as well as the milessone
and the future aims of the project.

Forecast and analysis fields for this study wereessed from the operational global ECWMF
Integrated Forecast System (IFS). The multi-compbmeodel provides a deterministic forecast as
well as a 51-member ensemble, which combines diftersorts of observations and model
information in order to produce a consistent bsttraate of the atmospheric and oceanographic state
(Persson, 2011). The available dataset of the Rto8et | of the ECMWF deterministic forecast
model are on hand for the years 2000 to 2010, heffiegng a period of eleven years of coinciding
climatology and satellite data. The forecast datpessesses a daily temporal resolution (i.e. diata
12 UTC each day) and covers an area between 45N i latitudinal direction and 4.95° - 10.05°E

in longitudinal direction with a 0.15°-grid-resdh, such that overlapping with the satellite anel t

in situ data is guaranteed.

Table 3: List of the parameters obtained from the ECMWIegnated forecast system Product Set 1. Parameteessed
and utilized for lake surface water temperatureeeal are indicated with a do#) in the right column.

Parameter type Parameter Abbreviation Unit [SI] Utilization
Integrated or Surface pressure SP hPa .
single level parameter Mean sea level pressure MSL hPa
Total cloud cover TCC %
Low cloud cover LCC %
Medium cloud cover MCC %
High cloud cover HCC %
10 m U-velocity 10U m/s .
10 m V-velocity 10v m/s .
2 m dew point temperature 2D K .
2 m temperature 2T K °
Skin temperature SKT K .
Total column water vapor TCWV g/cmz .
Total column Ozone TCO3 DU/100 °
Pressure level Pressure (21 levels) P hPa °
parameter Relative humidity (21 levels) RH % °

Temperature (21 leve T K °
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Each time step includes at-the-time atmospheriorinition about the relative humidity and
temperature at 21 predefined pressure levels, sasvd 3 additional parameters on cloud coverage,
trace gas composition and the state of the bounidagmer. The 21 pressure levels range from the
1000-hPa-level to the 1-hPa-Level with a logarithirstaling. Table 3 lists an overview of the
available ECMWF parameters. A utilization of thegraeter for the radiative transfer modeling or

other aspects of the LSWT retrieval is indicated

®The cloud cover parameters provided with the sifglel parameters were not exploited for the aimly
since the reliability for cloud masking purposesildonot be ensured (personal communication withhdée
Riffler).
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Chapter 4

Methods & Implementation

Chapter 4 basically contains a description of thplémented algorithm from the input of the data to
the final LSWTs. Figure 3 displays scheme of thadeonof the steps as well as the main components
of this algorithm, and will be referenced at eatlhe steps during the course of chapter 4. At,firs
section 4.1 gives an overview on the software tatilized for the realization of the algorithml and
the visualization of the results. Afterwards, secté4.2 follows with a review of the MODTRAN
radiative transfer model, which embodies the caeeeof the algorithm. Section 4.3 describes the
arrangement of the input parameters for the MODTRRN model, and guides through the
implementation of the MODTRAN simulations. Sectibd concentrates on the computation of the
split-window coefficients as well as on the caltiola of LSWTs from actual AVHRR observations.
Readers with some small background in programmiegadvised to consider the documented IDL
code as supplementary material to chapter 4. Tleerdentation might give additional insights to
single steps of the algorithm in a greater deptieré&by, the header of each function gives detailed
information on the calling sequence, the name,pilmpose, the input and output parameters, and
other procedures that are being called within thigtion. A full list of all functions in use careb

accessed in Appendix A. The code is provided Withdata DVIS.

® Directory name: /IDL/
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MODTRAN LSWT Algorithm
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Figure 3: Simplified scheme of the implemented algorithmeTinocessing starts with a characterization otahget lakes
and the processing period (1) and ends with thiistital analysis (10). Step numbers at the bottdneach component
indicate the stages at which the specific compoisentn. The AVHRR database is accessed twice, faradoud masking
in the initial stage (2) and once for lake surfacger temperature (LSWT) computations a late s{ayjeParameters are
denoted as follows: BTx denote the brightness teatpee of channel 4 and 5 respectively, VZA isvfeving zenith angle
of the sensor,ato & denote the split-window coefficients, TAPE5-Buildi symbolizes the input-file generation for the
MODTRAN simulations, LSWT is the simulated lakefage water temperature of MODTRAN and RTTOV respety,
and Ty, the actually measured in situ water surface teatpeg. KH in the dashed black arrow summarizegrdresfer of
know-how from the existing and operational RTTOWLS algorithm into the MODTRAN LSWT algorithm.

4.1 Tools for data processing and data visualization

The performance of radiative transfer simulatichs, calculations of split-window coefficients and
the derivation of LSWTs are three computer-intemdizsks. Professional software is necessary in
order to solve the radiative transfer equation #uedmulti-linear regression for the available antoun
of data. The key-tool for joining the proceduregnirthe data import to the final LSWTs was the
Interactive Data Language (IDL) (ITT, 2009), whisha commonly used programming languages in
remote sensing applications. Radiative transferukitions are carried out with the commercial
Moderate Resolution Atmospheric Transmission m@gdMEDDTRAN) (Berk et al., 2008). Since the
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MODTRAN model is a tool of complex nature, desigrieda variety of applications in atmospheric
physics, section 4.2 gives a brief insight into fhactionally of the model in general sense. The
MODTRAN radiative transfer model is called by measfsthe graphical IDL front-end MODO

(Schlapfer, 2011). The graphical output is mainkgrfprmed with the open source statistical
programming language R (R Development Core Tea2)20vhich included an extensive utilization
of the ggplot2 package (Wickham, 2009). The worlartl{Figure 3) was made with the vector
graphics editing software Inkscape (www.inkscapg.ofhe visualization of the data involved data

export by IDL into a common ASCII format and datgort by R from the same format.

4.2 Development and general functionality of MODTRAN

This section is intended to give some insights itihe Moderate Resolution Transmission
(MODTRAN) program. Since MODTRAN does not only repent a radiative transfer model, but
also a multi-version project, developed over foecates, a comprehensive technical report that
explains the entire model does not exist. All infation that are supplied about MODTRAN 5.2 in
this study are based on a combination of referem@euals and technical reports (Berk et al., 2005,
2008; Kneizys et al., 1996), the FAQ on the officiavebsite of MODTRANS
(http://modtran5.com/fags/index.html) and  frequentorrespondence  with  the support

(modtran@spectral.com) as well as the lead develdiggander Berk in person.

MODTRAN's precursor, the Low Resolution Transmissjorogram (LOWTRAN), was developed
by the U.S. Air Force Geophysics Laboratories (#WomForce Research Laboratories) with a spectral
resolution of (20 c) in the early 1970’'s. LOWTRAN was improved and iified into several
updated versions and was re-named into MODTRAN withupgrade of the band model to a
1.0 cm' resolution by Spectral Science, Inc. (SSI). Afterds, the Air Force Research Laboratories
took over the support and validation, while SSI lcastinued MODTRAN's development. The
MODTRANS package provides six cloudless standambapheres for different seasons and climatic
zones with distinct differences in their atmospherompositions and their temperature profiles
(Kneizys et al., 1996). Additionally, it providesimerous options for the user to define the type and
the accuracy of the model, the constitution ofdhmosphere including cloud coverage, the viewing
geometry, the light source and the surface pragsemiith any specific set of parameters. These
options for atmospheric tuning have extensivelynbgsed in the course of this study.
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The functionality of MODTRAN follows the discretayler approach. This means, that MODTRAN
integrates over the radiance contribution of adimimount of homogeneous layers in order to obtain
the transmittance (or radiance) for the specifiadoaphere. Spectroscopic line compilation was
derived from the High-resolution Transmission malac absorption database (HITRAN) (Rothman
et al., 2009) and integrated into the MODTRAN 1rf'cband-model. The integration surpasses a
layer-wise adjustment of the absorption coeffigefur the pressure and temperature variations, a
subsequent calculation of the layers’ optical deptid the computation of the total radiance with th

radiation transfer equation (Kneizys et al., 199élby & McClatchey, 1975).

The input for every MODTRAN simulation consistsarfe single input file, the tape5-file. The tape5-
file enables the user to set parameters, to defs@e-specific atmospheres, to specify information
about additional files and to trigger different nebtiypes. The tape5-file is split into several CARD
of different categories. Six cards are compulsasy évery tape5-file in order to initialize a
MODTRAN simulation, while a variable number of schrds can be switched on and off, depending
on user’s objectives. A full overview of the CARRscessed and set for the RT simulations, the
parameters and their position in the tape5-filewal as of a short description of each parameter’s
purpose can be found in the MODTRAN_param.xls andhata DVD provided with this study. The
tape5-files are stored locally and jointly with tié®©DTRAN output-files. The number of output-files
for one simulation depends on the parameters déeitape5-file, but by default consists of siedil
with the following file extensions: .tp6, .tp7, c/splt, .psc, .chn.

4.3 Radiative transfer modeling with MODTRAN

Section 4.3 covers the steps (1) to (4) of the MBBN LSWT algorithm, symbolized by the blue
box in Figure 3. This algorithm has to ensure ttet ECMWF climatology is selected for the
specified target lake pixels, that cloudy or cotegpdates are omitted from the simulations, that
temporally and spatially matching data are seleéteth the ECMWF, and that the information
derived from the database are correctly transfeanetpositioned into the tape5-file, before acRigl
simulation can be started. The following sectiodasigned to cover this procedure descriptively and
guides along the cornerstones of the algorithm. MIRBN-inexperienced readers are advised to
keep the documented code, the parameter summadeypadvided on the attached data DVD and the
official MODTRAN manual (Berk et al.,, 2008) handin order to obtain the best possible
comprehension of the processing steps and thepasacheters.
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4.3.1 Import and selection of the AVHRR data

The import of the AVHRR data and the selection mfrapriate data is a necessary step in radiative
transfer simulation. Depending on the amount oflBtg data considered, this step can be relatively
time-consuming. The complete data import, the seleof the appropriate dates, the creation of the
input-files as well as the radiative transfer siatigins are performed with one comprehensive routine
At startup this routine needs to be called withtart;lg and an ending date for the requested
simulation period. Then, in a first step, a subtiriimports the lake identifiers (ID) of the faedr
lakes, the geographical coordinates of the taedet pixel and the elevation of the lake from aruthp
file almost identical to Table 1. Afterwards thegaiithm imports the C® (NOAA ESRL,
ftp://ftp.cmdl.noaa.gov/ccg/co2/trends/co2_mm_mtd.and the solar-constant-tables (Wang et al.,
2005). In a second and third step (see Figureh®)atgorithm accesses the AVHRR database and

selects observations based on two criteria;

(1) The AVHRR observation lies within a centered 4-heimdow around 12:00 UTC
(2) At least one of the specified target pixels possesalid and cloud-free spectrometric

information

The first criterion is tested with a sub-routinattimports the AVHRR filenames of one month into
an array, extracts the temporal information from titenames and verifies whether the observations
are located within the four-hour-window. If the ARR data passed the first test, another sub-routine
extracts the compressed AVHRR-data files into aptmary directory. Subsequently, the algorithm
imports the data iteratively, identifies the targetels in the gridded AVHRR and proceeds with a
verification of the second criterin The verification of the second criterion follovas two-step
testing. The first step extracts a 5x5-pixel-patehere the target pixel is centered within thischat
computes a simple ratio of the spectrometric infitiom of channel 1 over channel 2 per pixel and
verifies whether the threshold of at least 5 pixelshe 5x5-patch is smaller than a predefined
threshold of 0.08 (threshold determined from pesseommunication with Dr. Michael Riffler). The
test utilizes the discriminating spectral charastiess of water and clouds in the EM bands covered
by AVHRR channel 1 and 2. The reflectivity of waterthe near infrared band of AVHRR channel 2
is generally very low compared to the reflectivif clouds in the same region. The second test

follows the suggestions of Saunders and KriebeB$)%or a spatial coherence cloud test. Therefore,

" Remember, that the ECMWF-profiles are provided ¥8r00 UTC with a daily resolution. The variable
atmospheric water vapor column is assumed to resdfitiently constant within this window. The febour-
window is a tradeoff between availability of suféint AVHRR data and accuracy. The tolerance-windaw
be varied as in the input parameters of the subtimom.

8 A full description of the import and adjustmenttbé ECMWF climatology is provides in section 4.3.2
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the 5x5-pixel-patch is once again tested with annkk2-over-channel-1-ratio against a threshold of
1.0 in order to distinguish between land and wpteels. This is necessary because target pixels of
narrow lakes might not entirely be surrounded byepwater pixels. Subsequently, the obtained
small-scale land-water-mask is used to check, venetie standard deviation of the valid water pixels
surpasses a value of 0.2, as suggested by Sawemtbrsriebel (1988). The test exploits the small

variability that can be expected for undisturbed Aomogenous water surfaces. In addition to the
threshold-based test, the 5x5-patches are vedfigihst zero values, which can appear for corrupted

images or in case only parts of the entire scene wletained from the sensor.

The result of the time filter and the cloud cheeck @ point-in-time-specific data mask that
discriminates between valid, cloud-free target Igixand invalid target pixels for all AVHRR
observations in the four-hour-window around noohisTmask is applied to the daily ECMWF
database in order to implement only cloud-freenahsis days into the MODTRAN simulations.

4.3.2 Selection, adaptation and assignment of the ECMWF profiles

In step four, the MODTRAN LSWT algorithm importsettyearly ECMWF dafa Yearly in this
contexts means that the four-dimensional data sufnald daily surface and profile parameters for one
entire year. Remember, that the ECMWF climatolagypdies profiles starting at the 1000-hPa-level.
The lakes’ surface-water levels are however locatdtkights, where the pressure is frequently lower
than 1000 hPa and sometimes even lower than tlmddeCMWF pressure level at 925 hPa. For
matters of consistency the number of atmosphevieldewas decided to be kept constantly at 21
levels for every simulation, which can require ajuatment of the ECMWF profiles in order to fit

their corresponding ground parameters, as illlesras step five in Figure 3.

For these data that are not masked from the cloadtiane filter, the algorithm now selects the
corresponding daily ECMWF data. In a next step,algerithm adjusts every first ECMWF-profile-
level at 1000 hPa for the altitude and the grourebgure of the target pixels in question. In this
context, the entire 1000-hPa-profile-level is ovetten with the surface ECMWF parameters, i.e. the
surface pressure replaces the first pressure laeebm-boundary-layer-temperature replaces tke fir
temperature level, etc.. Thereby the relative hityifdr the surface level is approximated from the
dew-point-temperature with the August-Roche-Magmyproximation ([p.44] Etling, 2008§,
because the ECMWEF surface parameters do not conmgétive humidity information, directly.

® ECMWF data directory: /data/results/riffler/atmofiles/
10 Etling abbreviates the approximation with Magnossfula.
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Finally, the algorithm indentifies the first of themaining pressure levels that is larger thamtwaly

set ground pressure and, if necessary, linearrpotates the profile parameters to matching 21
levels again. The altitude of each atmospheric |légeapproximated from by means of the
hypsometric formula from the corresponding thespuee level ([p.92] Petty, 2008).

When the adaption of ECMWF profiles is finishedge timodified profile is assigned to the
MODTRAN input file on CARDs 2C and 2C1 of the tagf@d, where the specified parameters are
going to “overwrite” the standard mid-latitude plefof water vapor, temperature, altitude and
pressure. The concentrations of the remaining gihmer&c constituents are determined from one of
two of MODTRAN's internal standard atmospheres faummer and winter mid-latitudinal
conditions. The determination between summer andtewi standard atmosphere follows an
evaluation of the current day of year. Summer fesfare adopted for dates between Apfil,and
November, 8, respective winter profiles for the rest of theuyeOnset and end of the seasons are
obtained from the mean date between the vernaheguand the summer solstice for defining the
start of the summer period, and the mean date bettee autumnal equinox and the winter solstice
for defining the start of the winter period. Sale8 and equinoxes are obtained as mean values from
the last 120 years from the NASA database (httpri/giss.nasa.gov).

The highest profile level at 1 hPa corresponds @pprately to an altitude of 50 km, whereas POES
satellites operate in altitudes at ~ 830 km (RoB609). Since most of the atmospheric attenuation
takes place in the troposphere and stratosphéiés altitudinal difference would only slightlyfect

the radiative transfer simulation incase the lifisight-geometry is kept constant. MODTRAN,
however, resets the altitude of the observerttiesatellite) to the highest specified profileststhat

the viewing geometry as well as the atmospherity patuld be modifietf. For this reason, the
algorithm adds six supplementary levels at constambspheric altitudes (50, 75, 100, 200, 400, 830
km), for which the MODTRAN mid-latitudinal standardoncentrations of the atmospheric
constituents remain unchanged.

™ The atmospheric concentrations run against zemenvapproaching the satellite’s operating altitude.

2 The supplement of atmospheric levels between tgeekt ECMWF profile and the satellite altitude is
necessary in order to obey the original line-ofiigeometry between the sensor and the targetase c
ECMWEF profiles are consigned solely without thedementary levels, MODTRAN rescales the sensortteig
to the highest user-specified atmospheric level,+50 km in the present case. This however letlsreo a
significant deviation from the original VZA and thfrom the original atmospheric path or to a chaoigthe
latitudinal and longitudinal positioning of targatd/or sensor. The insertion of those gap-filliegels tributes
to the extinction within upper atmospheric levels ane hand and ensures a rather realistic sengmtta
geometry on the other hand.
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4.3.3 Running MODTRAN with user-specified tape5-files

The derivation of the tape5-input-file is a cruciatk in the preparation of the radiative transfer
simulations with MODTRAN (steps six and seven imgUfe 3). Only a valid combination of
parameters exactly placed at the location thatsenved for the corresponding parameter will lead t
a full run of the MODTRAN code. The atmospheric dibions for one radiative transfer simulation

in this study are specified via CARDs 1, 1A, 1A32€, 2C1, 3, 3A1, 3A2, 4, 4AL1, 4L2 and 5 of
the tape5-filé®. In order to capture a broad range of satellitgeh geometries and surface
temperatures, RT simulations were performed fonteigewing zenith angles [0°, 15°, 30°, 40°, 45°,
50°, 55°, 60°] and five surface temperature vasisibetween -10 K and + 10 K (Hulley et al., 2011),
resulting in forty simulations and forty tape5-§ilper input date. Thereby, the surface temperatures
are obtained from varying the ECMWF skin-temperdgurby a 5-K-increment within the

aforementioned range.

The tapeb-files are generated via an iteration tierlake-target-pixels, the five ECMWF surface
temperatures and over the eight viewing zenithemgrhe corresponding ECMWF profile as well as
the surface parameters are transferred into thebtfile and are put into their specific format and
location. The total wind speed is calculated asEbelidian distance of the u- and v-component from
the ECMWF surface parameters. Subsequently, total speed and viewing zenith angle are used to
generate a spectral-albedo-file from the bi-linganterpolated emissivity of Masuda (2006). The
computation of the albedo exploits the fact thatdb and emissivtiy sum up to unity (Petty, 2006).
The total column water vapor and the total colurmone, provided by the ECMWF reanalysis data,
are simply assigned as the corresponding tapesneéea MODTRAN uses them for rescaling of the
humidity profile and the standard ozone profile. Monthly carbon dioxid concentration for
Switzerland is approximated form a longtime recofrthe NOAA Earth System Research Laboratory
on Mouna Loa, Hawaii, USA (http://www.esrl.noaa.fgmad/ccgg/trends/). The exact regional £0
concentration is of minor importance for atmosphedttenuation, when compared to the
concentration of water vapor (c.f. Petty, 2006)néte this approximation is considered to deliver
reliable results. In order to receive sensor-charmtic brightness temperatures, MODTRAN is
provided with the spectral-response file obtainedifthe NOAA KLM User's guide (Robel, 2009).

The geometry parameters are specified on CARDAB,atd 3A2 of the tape5-file. There are several

options to customize the geometry parameters urgarabsly. Based on the available parameters, the

13 Details on the technical functionality of the paeders can be reviewed in the official manual dor-all
parameters actually used in the current model aindd from the MODTRAN parameter file provided wikie
data DVD.
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line-of-sight geometry was chosen to be computech fihe altitude of the sensor (H1), the altitude of
the target (H2) and the observation zenith anglBSZEN)". MODTRAN computes the solar
geometry from the day of the year and the decirbakovation time, autonomously. The observation
zenith angle corresponds to 180° minus the viewbnegith angle. The satellite’s altitude is
approximated with ~830 Km, as stated in section34.Bhe target’s latitude, longitude and altitude
are obtained from the initial lake-input-file. Aérssor brightness temperatures were calculateckin th

spectral range of 10 - 48n and at a resolution of 0.Qn.

When the input file generation has finished, thgoathm starts the IDL-interface MODO, from
which MODTRAN is called iteratively. The MODTRAN taut is manifold and comprises a full
characterization of the simulated atmosphere amdatiation transfer therein. Most important fa th
subsequent computation of split-window coefficieistshe content of the tape5, tape6 and chn-files.
The tapeb-files remain the same before and aftersimulations, hence provide a summary of the
input parameters for each model-run. The tape6-titmtain log-entries from the simulation and can
be particularly helpful for debugging the code. Tha-files contain the AVHRR channel brightness

temperatures in the computed spectral range.

4.4 Derivation of split-window coefficients and calctitan of
LSWTs from AVHRR observations

Step eight of the MODTRAN LSWT algorithm starts lwihe import of the simulation output from
the tape5- and the chn-files. Particularly, thidudes reading the brightness temperatures of AVHRR
channels 4 and 5 from the chn-file, of the simalatviewing zenith angle, the maximal relative
humidity of the underlying ECMWEF profile, the totalmospheric water vapor and ozone columns,
the wind speed, the simulated skin-temperaturetia@dimestamp of the simulation. In addition the
algorithm applies the skin-to-bulk-correction fodated in equation 2.20 (Minnett et al., 2011). The
actual derivation of the split-window coefficienssperformed by a routine, which implements much
of the code provided by Dr. Michael Riffler, forshcomputations of the RTTOV split-window
coefficients. In order to apply this split-windowefficient routine with the MODTRAN data, the
MODTRAN output-storage-files were transformed iat®TTOV-matching-format.

14 A sketch with all available MODTRAN line-of-siglgeometry parameters is provided in figure 4 of the
MODTRAN FAQ (http://modtran5.com/fags/index.html).
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In step nine of the algorithm, daily split-windowefficients are computed based on a two-stage

multi-linear regression with the following modifi®&L.SST equation after Hulley et al. (2011)
Ts=ap+a, Ty+a, (Ty—Ts)+az - (T, —Ts) - (1 — sech) (4.2)

, Where T refers to the skin-temperature used in the sinuurlat a to & represent the split-window
coefficients, |, and & denote the simulated brightness temperatures iR channels 4 and 5,
respectively, an@ denotes the simulated viewing zenith angle (Hudewl., 2011). The first multi-
linear regression is computed under consideratioatdeast 15 valid simulations in a 360-day
running-window centered at the date of the curiteméation, which are limited to observations with
VZAs smaller 55°, to physically reasonable briglssreemperatures of 268.15KT, o5 < 308.15 K

for channel 4 and 5, to maximum relative humiditsesaller 85% and to differences between the
simulated skin-temperature minus the simulatedhitmigss temperature in channel 4 greater 0.5 K.
Data points with residuals larger than the resglugithndard deviation of the first fit and gredten

a threshold are not considered in the second hindtir regression. In this way, the second multi-
linear regression derives robust estimates forddity split-window coefficients.. Coefficients are
computed per lake (i.e. predefined target pixel) aer satellite, individually. Finally, the split-
window coefficients are stored into the IDL-intersave-format in order for them to be available for

repeatable usage.

The final step of the MODTRAN LSWT algorithm compstlake surface water temperatures for the
specified AVHHR observation corresponding to equatit.1. The algorithm uses the lake- and
satellite-specific split-window coefficients, &0 &, the actually observed AVHRR brightness
temperatures jJJand T and the satellite viewing zenith anglg¢o calculate a satellite based LSWT
estimate. Similar to the cloud masking procedure, dlgorithm extracts 3x3-pixel-patches from the
satellite images and distinguishes between landaaatdr with a ratio of channel 2 over channel 1. If
at least 2 pixels are identified as water, the @doce obtains the mean LSWT from contributing
water pixels and assigns this value to the targetl.pEight simple quality checks at the end of the
computations are implemented for ensuring a cemairimal quality of the final LSWTs, most of
them adopted from Kilpatrick et al. (2001). Thessts comprise a uniformity (or spatial coherence)
test for detection of small cloud contaminatiotest for physically reasonable BT4, BT5 and LSWT,
a check for suspiciously high reflectance in th&Nile. in channel 2), another test of the cha2nel

over channel 1 ratio, but with a stricter rejectitmeshold of 0.75 than used for the LSWT
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computations above, a test against a cutoff arfgés9° and a check of corrupted satellite geometry

parameters.

For an iterative computation of LSWTs per satelbted target pixel over longer time periods,
AVHRR observations were imported satellite-wise avete saved into IDL data array for simple

data handling.

15 The justification for the introduction of a cutaffigle can be found in section 5.1.
16 Additionally, there is an optional test of the rimaal relative humidity against a maximum of 85%,ieth
was not activated for the derivation of the resuitshapter 5.
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Chapter 5

Results & Discussion

Chapter 5 provides a comparison of the performah®dODTRAN and RTTOV for LSWT retrieval

from AVHRR observations. This includes an inspettid the computed brightness temperatures as
well as a validation and an analysis of the complt8WTs against in situ temperatures of three in
situ stations at Lake Constance and Lake Geneuwac&® of uncertainties such as large viewing
angles, high wind speeds and high relative humilieyevaluated for their impact on the accuracy of
simulated LSWTs. Finally, a pixel-wise comparisdrLake Geneva and Lake Constance is used for

an indication of distinctive spatial differencesvoeen the models.

5.1 Comparison of simulated MODTRAN and RTTOV brightaes
temperatures

Section 5.1 covers a comparison of thw simulated brightness temperatures for MODTRAN and
RTTOV. In this contextraw refers to the brightness temperatures of AVHRRnob&s 4 and 5
obtained from the radiative transfer simulatiorlits. Thereby this comparison is designed to give
first indications on the variability of the models well as on particular deviations of the modets f

the different simulation viewing angles.

" Notice, that in the following sections brightnessnperatures are going to be referred to the bragst
temperatures actually acquired by the satellite
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Figure 4 shows the simulated NOAA 18 (N18) brigsm¢emperature differences (BTD) between
RTTOV and MODTRAN for AVHRR channel 4 (BTD4; topwd channel 5 (BTD5; middle row)
and for their difference (BTD45; bottom row) asuadtion of the viewing zenith angle (VZA) for
half a year from December 2007 to May 280&his includes simulations for the eight simulated
VZAs (0°, 15°, 30°, 40°, 45°, 50°, 55°, 60°) anc tfive skin-temperature-variations proposed by
Hulley et al. (2011). The six lakes are color-codgdtheir in Table 1 defined lake IDs. The two
panels in the left column comprise BTDs for VZA=ater or equal 45°, the two panels in the right
column show BTDs for VZAs greater 45°. Channel DBTfrom 0 to 45° range relatively consistent
for all six lakes from —-0.8 K to +1.5 K. Offsetsofn zero-mean are slightly negative for small
viewing angles and become positive for VZAs gredi@t. Channel 5 BTDs show slightly larger
variability with distributions between -1.5 K and.6 K and minor enhanced offsets from zero-mean,
but into the same directions as the BTDs of chadndlhe tendency for growing offsets from zero-
mean and increasing variability with increasing \&A&ecomes considerably more pronounced
towards larger viewing angles. For VZAs greater #6th channels exhibit BTDs an order of
magnitude higher than for VZAs less or equal #0The distributions for all six lakes show distinct
offsets of approx. +1 K for BTDs at 55° and +2 K BTIDs at 60°. The inter-quartile-ranges of the
BTD distributions at 60° span ~6 K in the BTD4 gland ~8 K in the BTD5 plots. Outliers at 60°
even approach +10 K. However, since BTDs are ofl@irmagnitude in both channels, these model
deviations cancel out in the BTD45 plots (bottom),owhere the distributions reach moderate zero-
mean offsets of about 0.2 K to -0.3 K and considgramaller variability, especially at large VZAs
(e.g. ~2 K at 60°).

It is evident that MODTRAN and RTTOV perform difeartly at different VZAs. Compared to
RTTOV the MODTRAN atmosphere seems to attenuatétiad substantially stronger at VZAs
greater 40°. However, whether RTTOV underestimaties true brightness temperature or
MODTRAN overestimates the true brightness tempeegatudifficult to say at this stage. Reasons for
discrepancies between the models can be manifotd vesuld require a much more detailed
comparison of the input parameters limth models. Hulley et al. (2011) reported incohereands

for brightness temperatures at large viewing anfgleswo different lakes and algorithms, as well. |
order to minimize the viewing angle effect and aghi high accuracies with their regional approach,
they restricted their data set to VZAs of 45°. Besmit was observed that the viewing angle effect
propagates into the final LSWTs, where it had tethtgely incoherent deviations from the validation

18 The selection of this period is arbitrary.
¥ The scaling of the ordinate differs from paneptmel. In the top and the middle row, the scalinanges by
one order of magnitude from the right to the lefhel.
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data and hence between the models, the suggedtidulley et al. (2011) is adapted here as well.
This means that satellite observations with VZAgéa than 45° are not considered within the further

analysis.
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Figure 4: Box-Whisker-Plots for the simulated NOAA18 (N18)TROV minus NOAA18 MODTRAN brightness
temperature differences of AVHRR channels 4 (BTipg row), 5 (BTD5; middle row) and their differen¢BTD45;
bottom row) as a function of the viewing zenith lenfgr six large Swiss lakes and for a period betwBecember 2007 and
May 2008. Lake IDs refer to Lake Constance (BD8),reake Geneva (GFS; orange), Lake Lugano (LG8ow Lake
Neuchatel (NBS; green), Lake Lucerne (VWS; lighid)land Lake Zurich (ZUE; dark-blue).
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5.2 Comparison of RTTOV and MODTRAN lake surface water
temperatures

In the second step of the model analysis, the tadtes drawn to the accuracy of the simulated
LSWTs when compared to the locally measured insitfiace or near-surface temperatures. In this
context, and as already described in section 3dataset of the in situ water temperature station
INRA at Lake Geneva and two datasets of the inw#ter temperature stations Brgz and UniK at
Lake Constance with a daily or finer temporal ragoh are selected for a linear regression analysis
As described in section 4.4, the split-window ciméfhts were computed individually per model, per
satellite and for six Swiss lakes. The in situ pési for the comparison were selected, based on the
operational periods of the satellites and on tralahle periods of the in situ d&taln situ data were
re-sampled to daily means, in case their temp@sdlution outvalues the required daily resolution.
The analysis of NOAAL17 (N17) data is based on arHRRR observation period from March 2003 to
August 2008. The analysis for NOAA18 data is carieit on an AVHRR observation period from
May 2005 to December 2010. Notice that all threesitn stations provide water temperatures
acquired in different depths of the epilimnon, njmat the surface (Brgz), in 0.5 m (UniK) and
1.0 m (INRA). Since UniK and Brgz are both repreéatimes for Lake Constance, the LSWT
computation for both of them is based on the sahefscoefficients.

Figures 5, 6, 7 and 8 visualize the accuracy ofLlB&/Ts as predicted from the model-, lake- and
satellite-specific split-window coefficients whenorapared to the locally measured in situ
temperatures at the three in situ temperatureostatin this context, all four figures show scatets

of simulated LSWTs as a function of in situ wamperatures for the three selected measurement
stations INRA, Brgz and UniK (top row), time ser@sthe differences between simulated and in situ
water-surface temperatures (middle row) and theesponding, lake-, model- and satellite-specific
split-window coefficients @ a, & and @ according to equation 4.1 (bottom row) per model
(MODTRAN, RTTOV) and satellite (N17, N18). The regsion models of the scatterplots (top row)
are generally of good quality with R-squares ab6v@5. Hence, most of the variability in the
simulated temperatures can be explained with ths#tuntemperatures. This supports the overall good
agreement of the simulated temperatures with thalllo measured temperatures and underpins the
capability of the split-window approach, in generthe slopes of the regression lines approximate

20 An unidentified technical problem with the radiatitransfer simulation did not allow coverage dbmager
period for NOAAL7. A technical problem with the calation of the brightness temperatures from thellgta-
specific spectral response function for NOAA19 anetOp-A denied an inclusion of those satellite® itite
comparison.
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unity in all cases (i.e. 0.98 slope< 1.08) and vary only in the decimal digits betwd4@DTRAN

and RTTOV for the same in situ station. To someg@aiage the tilt of the regression line must be
attributed to the statistical distributions of fhesuit data, which are generally skewed towards &
temperatures. This phenomenon might be of mereniteahreasoning, since maintenance of outdoor
measurement stations can be significantly morelagihg within winter weather conditions and
cold temperatures. In situ data gaps are more émtuduring winter times. However, due to the
very low level of information on the methods of thesitu data sampling, the reason for the skewing

of the regression lines remains uninvestigated. here

The intercepts of the linear regression models \a@tween -1.31 and 0.27, but with an overall
tendency towards negative values. Systematic ghiftards negative temperatures do however likely
appear for satellite based LSWTSs, when validateadnag) in situ temperatures that were not being
measured at the actual water surfaddis is supported by the fact that the smallefstets as well as

the overall best statistics in all four figures @along with water temperatures actually obtairted a
the water surface, as being the case for the Brg#u station at Lake Constance (middle column in
figures 5 - 8). The differences between simulated measured temperatures (middle row) range
from -5 to 5 °C. They do not indicate a trend agacly visible seasonal signal. Apparent abrupt
changes in time series of the split-window coediité do not appear in parallel with periods oféarg

differences. A seasonal decomposition (resultsshotvn) of the dataset did not show any significant
and meaningful seasonal variation. Compared to NOAMess data points per in situ station are
available for NOAA18. This is on account to the ited availability of continuous in situ

measurements over the entire comparison periodaatmhsequence of the frequency of NOAA17
and NOAA18 overflights per day. While NOAA18 uswyalbasses Central Europe once around
midday and once around midnight, N17 passes twidagime, once in the morning and once in the
evening (Husler et al., 2011) . Effectively, N17aisle to deliver a larger amount of valid daytime

overpasses.

1 See section 2.3.3 for a more detailed descrififdhe problem and corresponding references.
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Figure 5: Performance oMODTRAN NOAA 17 (N17) simulated laksurface water temperaturfor valid and cloud-free
satellite observations against locallyeasured in situ wateemperatures obne fixed station at Lake Gen¢ (INRA
46.453°N / 6.589°E) and tivo fixed stations at LakConstanceRrgz 47.507°N / 9.748°E; UniK 47.762°N / 9.13)) for
a fiveyear period from March 2003 to August 2. The top row shows scatterplots and regression statistics fe
simulated lake surface temperatuegginst the measured water surface or-surface temperatures. The regression
(blue) includes 95% confidence regions (grey sha The dashed black line indites the optimal regression line with
bias and with unity slope. Theiddle rov visualizes the difference between simulated andsored surface watt
temperatures. Theference plots are supported with thistribution statistics (i.e. mean, medid® and 3 quartile). The
polynomial fit (blue)is obtained from ilocally weighted regression with a span of (.. 10% of the points in the vicini
are used for the fit) and displayeith a 95%-confidence region (grey shaded). Bht#om rowdispleys the four lake- and
model-specific spliwindow coefficients ( (green), a (orange), a (blue) and a(red) for the period of considerati,
whereas GFS denotes Lake Geneva and BDS denotesQaistanceRemark: The splivindow coefficients for Brgand
UniK are identical.
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Figure 6: Performance oRTTOV NOAA 17 (N17) simulated lakeurface water temperatureor valid and cloud-free
satellite observations against locally measurediin water temperatures at one fixed on at Lake Geneva (INRA
46.453°N / 6.589°Eand two fixed stations at LalConstance (Brgz 47.507°N / 9.748°E; UniK 47.762°WN131°E for a
five-year period from March 2003 to August 20Thetop rowshows scatterplots and regression statistics & simulated
lake surface temperatures against the measured watiace or ne-surface temperatures. The regression line (t
includes 95% confidence regions (grey shat The dashed black line indicates the optimal regoadse without bias an
with unity slope. Theniddle rowvisualizes the difference between simulated andsaored surface water temperatures.
difference plots are supported with the distributitatistics (i.e. mean, mediar® and 3 quartile). The polynomial fit
(blue) is obtained from cally weighted regression with a span of 0.1 (1@ of the points in the vicinity are used foe
fit) and displayed with a 95%enfidence region (grey shaded). Tbottom rowdisplays the fol lake- and model-specific
split-window coefficients @(green), , (orange), a(blue) and g(red) for the period of considerat, whereas GFS denotes
Lake Geneva and BDS denotes Lake ConstéRemark: The splitvindow coefficients for Brgz and UniK i identical.
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Figure 7: Performance of MODTRAN OAA 18 (N18) simulated laksurface water temperatureor valid and cloud-free
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46.453°N / 6.589°Eand two fixed stations at LalConstance (Brgz 47.507°N / 9.748°E; UniK 47.762°WN131°E for a
five-year period from May 2005 to December 20The top row shows scatterplots and regression statistics fe
simulated lake surface temperatures against theurns@d water surface or n-surface temperatures. The regression
(blue) includes 95% confidence regions (grey sha The dashed black line indites the optimal regression line with
bias and with unity slope. Theiddle rov visualizes the difference between simulated andsored surface watt
temperatures. Theference plots are supported with the distributitatistics (i.e. mean, medic1% and 3 quartile). The
polynomial fit (blue) is obtained fromlocally weighted regression with a span of 0.1 (L@ of the points in the vicinii

are used for the fit) andisplayed with a 95-confidence region (grey shaded). Tdwtom rowdispleys the four lake- and

model-specific spliwindow coefficients ( (green), a (orange), a (blue) and a(red) for the period of considerati,
whereas GFS denotes Lake Geneva and BDS denotesQaistanceRemark: The splizvindow coefficients for Brgznd

UniK are identical.
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Figure 8: Performance of RTTOV OAA 18 (N18) simulated laksurface water temperaturfor valid and cloud-free
satellite observations against locally measurediin water temperatures at one fixed statiorLake Geneva (INRA
46.453°N / 6.589°Eand two fixed stations at LalConstance (Brgz 47.507°N / 9.748°E; UniK 47.762°WN131°E for a
five-year period from May 2005 to December 20The top row shows scatterplots and regression statistics fe
simulated lake surface temperatures against theurne@d water surface or n-surface temperatures. The regression
(blue) includes 95%onfidence regions (grey shadt The dashed black line indicates the optimal regrasie without
bias and with unity slope. Theiddle rov visualizes the difference between simulated andsored surface watt
temperatures. Theference plots areupported with the distribution statistics (i.e. meenedian, 3 and 3 quartile). The
polynomial fit (blue) is obtained fromlocally weighted regression with a span of 0.1 (L@ of the points in the vicinii
are used for the fit) andisplayed wih a 95%-confidence region (grey shaded). Bogom rov displays the four lake- and
model-specific spliwindow coefficients ( (green), a (orange), a (blue) and a(red) for the period of considerati,
whereas GFS denotes Lake Geneva and BDS dencke ConstanceRemark: The splivindow coefficients for Brgz ar

UniK are identical.
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Overall, similarities are strong between the radéatransfer models MODTRAN and RTTOV. For
the individual stations and satellites, neithettecplots or -statistics nor difference-plots datistics
seem to differ in a distinct manner, although tharse of the split-window coefficients per model,
per satellite and per lake varies individually otiere, most notable for coefficients and a. From

the coefficient differences of RTTOV minus MODTRABEe Appendix C) it becomes apparent that
the variability of the coefficientg,aa, and a fluctuates around zero incoherently. The viewingia-
dependent coefficienbahows a relatively consistent positive bias fédakes. This could however
been expected, since coefficientimherits the brightness temperature differencehainnel 4 and 5

as well as the viewing zenith angle.

Regardless of the consistent bias fothee concurrence in the model accuracy is undemidilis fact

is additionally supported by Figure 9, which shawe Box-Whisker-Plots (upper panel) and the
density distribution functions (upper panel) foe ttlifferences of simulated minus locally measured
temperatures per in situ temperature station atellisa There is a strong agreement of the density
curves and Bow-Whisker-Plots for both models.

It should be noted, that only the density distitnutfor the Brgz station can clearly be assumed to
obey the central limit theorem and thus originatemf a Gaussian distribution. Particularly, the
density shapes of the N18 INRA and the N18 Unikadsgem to possess a minor secondary peak in
the range between 0.5 °C and 2 °C. A possible reesold be the skin-effect in combination with the
relatively regular overpasses of the satellitespatific daytimes. The skin effect is able to impas
positive offset to the satellite temperature meedwat the surface against the in situ temperature
measured at 1m depth, especially in the diurnatssoaf a warm summer day (c.f. figure 1 and 2 in
Donlon et al. (2002), which in turn can yield atsysatic shift in the density distribution of the
differences for summer temperatures, finally naad a secondary peak. Further investigations with
a particular focus on the diurnal and seasonattsire of simulated LSWTs would have to verify this
assumption. Since this secondary-peak appearsTT@OR and MODTRAN concurrently, it can be
assumed that it does not trigger major differefeda/een the models.
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Figure 9: Statistical distributions and Box-Whisker-Plots thie differences between locally measured and sitedi
temperatures per satellite (N17, N18), in situ terafure stations (INRA 46.453°N / 6.589°E; Brgz507°N / 9.748°E;
UniK 47.762°N / 9.131°E) and radiative transfer mo@MODTRAN, RTTOV).

A full test-based comparison of the means, varighegors and coefficients has been considered to
be inappropriate for an investigation of the didfer performance of the two models in a practical
sense. Even though paired and unpaired Studertést tand Wilcoxon singed-rank-tests were
performed (data not shown), they solely helpeddanmiify the existence of a difference between the
models, which could not be inferred from a visunepiection of the statistics and plots of figurde 5

9. However, since the magnitude of the variancebeaattributed to lie in the order of the acquisiti
error?, the knowledge about a statistically verified &ige of a minor model difference is of
inferior importance. Thus it was decided to perfahm analysis of accuracy in terms of the root mean
square error (RMSE) and the bias after Hulley e{2011). The RMSE represents a widely used

% Hulley et al. (2011) incorporated noise-equivaldifferential temperatures (NE) of ~0.5 K for AVHRR/3.
Trishchenko et al. (2002) attributed noise-equinaldifferential temperatures of ~0.12 K to AVHRRJ8 the
NOAAL15 and NOAA16 platforms.
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parameter for the assessment of variability in rhodmparisons, is relatively sensitive to largeoesr

and is expressed in the same unit as the varidlglensideration (Willmott & Matsuura, 2005).

Table 4 summarizes the linear regression statisticgure 5, 6, 7 and 8 including RMSEs and
biases. The weighted arithmetic means were computed a summation of the multiplied lake-
specific statistical parameters by its correspopdibservation number n, and subsequent division by
the total amount of satellite observations. Thiscpdure is considered to give a better indicatibn o
the overall performance than a recalculation ofréwression parameters with pooled dataséfbe
weighted mean RMSEs indicate model variances di18 for NOAA17 and NOAA18, likewise.
Weighted mean biases differ by about ~0.07 K. Agdiese variances range among acquisition errors

and should not lead to any final conclusion abbetrhodel performance.

Table 4: Summary of the linear regression statistics ofuFég5, 6, 7 and 8. The weighted mean was compudeitiea
average per statistical parameter over all lakegghted by the number of available data points n.

MODTRAN RTTOV
Weighted Weighted
INRA Brgz UniK arithmetic INRA Brgz UniK arithmetic
mean mean
NOAA 17 Slope 1,009 0,984 1,028 1,002 1,011 0,988 1,027 1,00¢
Intercept -1,291 -0,170 0,193 -0,595 -1,313 -0,168 0,236 -0,596
R2 0,971 0,972 0,953 0,968 0,971 0,973 0,953 0,968
RMSE 1,602 1,286 1,597 1,48¢F 1,597 1,259 1,595 1,477
Bias -1,144 -0,409 0,608 -0,538 -1,130 -0,351 0,636 -0,505
n 429 356 187 429 356 187
NOAA 18 Slope 1,015 0,994 1,080 1,02( 1,015 0,997 1,081 1,022
Intercept -1,156 0,098 -0,634 -0,576 -1,066 0,114 -0,581 -0,522
R2 0,970 0,969 0,969 0,969 0,969 0,969 0,968 0,969
RMSE 1,459 1,208 1,399 1,352 1,419 1,211 1,430 1,34°
Bias -0,938 0,008 0,414 -0,307 -0,853 0,069 0477 -0,235
n 294 265 142 294 265 142

In the next section the differences between modatetimeasured LSWTs are investigated for their

dependencies on parameters that are able to vibkatssumptions in the split-window method.

% Reasons lie in the different biases for the irdiial lake regression lines due to the variant nreasent
depths, and in the inconsistent number of obsemati.
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5.3 Analysis of influencing factors on the model penfiances

In order to inspect the robustness of the simula@d/Ts for RTTOV and MODTRAN, this section
dwells on the variability of simulated LSWTs withet water vapor profile, the surface emissivity and
the atmospheric optical path. In particular, timgolves investigations of the simulation errorg.(i.
simulated minus in situ LSWT) against the maximwtative humidity, the wind speed and the
viewing zenith angle.

Figure 10 shows the simulated MODTRAN and RTTOV LB3ninus the in situ temperatures as a
function of the zenith viewing angles of the cop@sding satellite measurements for N17 and N18.
Within a total range of -5 to 5 °C, temperaturefedifnces appear invariant with view angle. The
differences in brightness temperatures for diffengAs that have been encountered in section 5.1,
seem to can hardly be traced in the final simula®d/T errors.

N17 N18

Model
MODTRAN
+ RTTOV

Simulated minus in situ temperature [°C]

T T T T T T T T T
0 10 20 30 40 10 20 30 40

0
Viewing zenith angle [°]

Figure 10: Differences between simulated lake surface waemperatures and in situ temperatures as a funofidhe
viewing zenith angle.

Figure 11 shows the MODTRAN and RTTOV LSWTs minls in situ temperature differences as a
function of the maximal relative humidity of thederlying ECMWF profile (upper panel) and of the
wind speed (lower panel) for N17 and N18. Thenmoisndication for a dependency of the simulation
errors on the maximal relative humidity of the uglag climatology. The data show homogenous
point clouds for both models. A similar invariarfoglds for the simulation errors when plotted as a
function of wind speed. Both models show an apgax@ustness against singular large wind speeds
and large amounts of water vapor, which suppoggthality of the modeling approach undertaken in
this study and underpins the equal sophisticatesl l&f the radiative transfer models in use.
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Figure 11: Simulated minus in situ water surface temperattmeMODTRAN and RTTOV as function of the maximum
profile relative humidity (top panel) and wind spggbottom panel).

5.4 Spatial comparison of RTTOV and MODTRAN lake suefac
water temperatures

By now the differences in the RTTOV and the MODTRA&¢dliative transfer simulations have been
examined as the difference between the actuallysomed and the simulated LSWTs of one single
validation pixel. In section 5.4, the model diffeces are accessed directly by a subtraction of the
simulated LSWTs for two clear sky satellite sceime&pril 2007 as being computed not only for one
target pixel, but for the entire target lake. Foatiars of consistency this investigation remains
focused on Lake Constance and Lake Geneva.
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Figure 12shows the differencen RTTOV minus MODTRAN LSWTs for Lake Constance dradke
Geneva. The displayedgions cover areas from 47.9°N / 8.9°E to 47.49BFE in panel (a) and (c
and from 46.6°N / 6.05°E to 46.2°N / 7.05°E in daft} and (d).One pixelrepresents an area of
1.1km?2 and corresponds to tispatial resolution of the AVHRR/3 sensband pixels were maske
with the Channel 2 over Channel 1 r, which is described in the LSWT p-quality assessment
(see section 4.4pngainst a rather stricutoff-threshold of 0.75. A positiveonsequenc of this strict
threshold becomeapparent fror the small amount of highly biased sbline pixels, whichwere
being flaggd incase the risk of land contamination was hicthan allowed by the threshold. In
exchange, only fewixels from the narro, northeastern parts of Lake Consta (Lake Uberlingen
and Lake Radolfzellpre displaye. The mean, standard deviation amgmber of water pixels pi
lake are given within the corresponding pa.
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Figure 12: Plots of Lake Constance [(a) and (c)] and Lake @aré¢b) and (d)] with the pix-wise differences of
simulated RTTOV minus MODTRANake-surface water temperatures and the viewing zenitiea(VZA) for two

AVHRR subsets in April 2007. Panels (a) and (b)amaputed from a NOAA 17 observation of April, 2007 at 10:50
UTC. Panels (c) and (d) are computed from a NOAAobservation of April 18, 2007 at 12:02 UTCThe subsets
correspond to aredsom 47.9°N / 8.9°E to 47.4°N / 9.8°n panels (a) and (gnd from 46.6°N / 6.05°E to 46.2°N

7.05°E in panel (b) and (dPne pixel represents the area of-km?-area, i.e. the spatiresolution of the AVHRR-3
sensor. The spatial standard deviation (Stdv)sgiatial mean (Mean) and the number of valid waitegl® per plot (n) ar

indicated in the upper left corner of each paRemark: The scalesf the viewing zenith angles (Vzdiffer from panel to
panel.
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RTTOV minus MODTRAN LSWT differences range from amamately 0.0 K to -0.14 K with total
bias of -0.066 K on April 10 2007 and from approximately ~0.5 K to 0.14 K wattotal bias of
+0.088 K on April 18, 2007 for Lake Constance. For Lake Geneva the LS¥fiRbility is generally
lower and shows only on April 62007 a distinct difference from zero bias (~0.6530verall, the
models perform with less variability for Lake Geaeshoreline-pixels tend to show the “largest”
deviations. This could be expected, since both isodse the same split-window linear regression
method optimized for surface water temperatureienait. When the probability for pixel-land-
contamination raises (as it is the case for shweglixels), so that the surroundings of the model
assumptions are violated, divergence in the siradlaSWTs become likely. Without any technical
investigations this can be inferred from the sérigjtof the split-window technique to channel 4dan

5 brightness temperatures, which can be distindifffierent for land and water pixels. Although
overall gradients of less than 0.1 °C are almostgimall for any reliable statistical inference, one
could argue about a dependency of the LSWT diffesron the viewing zenith angle (VZA). Panel
(a), (b) and (d) show an anti-proportional relation LSWT differences against growing VZAs.
LSWT differences decrease with growing VZSs. Lake$ance on panel (c) does however indicate
a comparably “strong” reversed behavior for growifigAs. Overall, this dependence is considered
to be of minor importance. An investigation on temporal development of the kernel with methods
from spatial statistics might give additional ifstigiwhether there is a VZA-dependency presenten th

data.

Overall, the spatial deviations between the modedssmall and lie within the data acquisition eror

The findings confirm the results discussed in ttevipus sections of chapter 5.

5.5 Summary of results and general discussion

Both models, MODTRAN and RTTOV, have shown to delisplit-window coefficients derived
LSWTs with promising accuracies for Lake Constanoel Lake Geneva. The accuracy of both
models is attributed with approximately 1.5°C, whits, however, not representative for the
achievable accuracy that could be accomplished avitelaborated quality assessment (cf. Kilpatrick
et al., 2001; Hulley et al., 2011). In the framekvof this study only basic quality checks have been
implemented in order to verify the validity of thesults in a general sense. The best overall s2sult
were detected if the simulated LSWTs are compaoedctual surface-water in situ temperatures.
Validations of simulated LSWTs to “bulk” in situ tea-temperatures showed larger biases. This was
expected and can be reliably attributed to the ndiurskin-effect, which is well-known and
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documented in the literature (e.g. Donlon et @102 2007; Gentemann et al., 2003; Minnett et al.,
2011). The calculated statistical parameters osljale in the decimals for simulated RTTOV and
simulated MODTRAN LSWTs per lake and satellite. @feed NOAA17 and NOAA18 averages of
those parameters indicate a fairly better perfomeanf RTTOV in terms of smaller RMSEs
(~0.01 K) and smaller baises (~0.07 K).

As has been shown in section 5.1, simulated MODTR¥W RTTOV brightness temperatures for
channel 4 and 5 distinctly diverge with growingwieg zenith angles. This divergence is strongly
mediated in the channel BT differences, becausdekimtions increase with the same magnitude and
into the same direction for both channel 4 and parallel. The split-window multi-linear regression
has shown to be robust against such BT deviatiomssidering that a consistent divergence of the
models into one direction could not be traced i@ fimal LSWTs anymore. This result is rather
unrewarding, because it makes the detection ofsthat arise from BT differences, as well as an
appropriate decoupling of these errors a challengisue. The equalization of the model differences
by the subtraction of BTs in channel 4 and 5 isstgred to be the main reason for the invariance of
the individual signatures of MODTRAN and RTTOV hetfinal LSWTSs.

The spatial comparison (see section 5.4) depicspanoach to visualize model differences that had
not been detected with the single-pixel-comparisbrihe previous sections. In this context, two
cloud-free satellite scenes of April 2007 were ctelé for the calculation of a pixel-wise difference
map of RTTOV minus MODTRAN LSWTs. Once again, tesults only indicated small deviations
for the models for data of Lake Constance and L@k@eva. A visual inspection of the LSWT
variability as a function of VZAs for the same lakdid show inconsistent trends for different sub-
scenes, hence allow no unambiguous conclusion. répgg, the lack of spatially covering in situ

data does not allow an extensive examination diadifferences against a validation source.

As reported by Hulley et al. (2011), one problemrigional LSWT studies of this kind remains the
availability of reliable validation data sets framsitu lake water temperature measurements. Most o
the collected in situ datasets for this study pteviemporal resolutions of one measurement per
month at one specific lake location. Although measient periods might reach back into to the start-
up of the AVHRR observation period, available itusilata coinciding with cloud free satellite
observations are of very limited occurrence. Camirsly measure in situ data from fixed
measurement stations have shown to be a very visblece for validation data. However,
measurement stations close to the shoreline aedylio be contaminated with land pixels in the

satellite observations and therefore obey the mpigel-problem. This problem also becomes
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apparent from Figure 12, where the largest LSW1Tedthces become visible in the vicinity of the

Brgz in situ station at the south-eastern sholea&& Constance (compare with Figure 1).

All results point into the same direction, indicatithat the performance of RTTOV and MODTRAN
is similar in the context of regional LSWT derivatiwith the split-window technique. Even though
RTTOV yielded fairly better averaged RMSEs and é&éasee Table 4), the encountered differences
are very small. Accordingly, the question ariselsetluer the criteria for a decision-making should be
reweighted and/or reconsidered. Criteria in thinoson could consist of economic reasoning (e.qg.
software license fees, know-how) or of other perfance parameters than mere accuracy (e.g.
simplicity, computation speed). It has to be ndtet some of these criteria had already determined
the decision for choosing RTTOV over MODTRAN in tfiest place — at that time, when the
realization of an operational algorithm was in anpling stage at the RSGB. Because the RTTOV
LSWT algorithm can be considered to work fastempdéer and less computing-power-intensive, a
MODTRAN LSWT algorithm would have to show conspiasty higher accuracies in order to justify

a model exchange at the present stage, where tA®©RTalgorithm is fully implemented and
validated. With a sufficient expertise a paralielplementation of a MODTRAN algorithm might
however be viable, since MODTRAN still offers a iedy of functions for adjustment and tuning,
which could not be evaluated in the framework @& gtudy.

According to section 2.3.3, there are other nanmetiumnamed sources of uncertainty that could not
be explicitly reviewed and examined in the framewof this study. In particular, this corresponds to
low level fog, sub-pixel clouds and cloud shadowindpich would not be filtered with the rather
simple quality check applied here. A sophisticagtedt-processing quality management that is tuned
to regional climatic phenomena might be a powerigchanism to screen uncertainties of this kind.
Although the absence of such a screening mechan@miributes to a minor accuracy of the
simulated LSWTs in total, it is assumed that botbdels, RTTOV and MODTRAN, obey the
introduction of such uncertainties to the same rektédence, it is likely that a sophisticated post-
processing quality check would reduce the accud#égrences of the models even further.
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Chapter 6

Conclusion & Outlook

In the framework of global climate change, altenadi of lake ecosystems and their catchments can
have serious implications for humans, animals aamtp. Lake water temperature has shown to
constitute one key factor for obtaining systematidts within such ecosystems. In this context, the
assessment of lake surface water temperatures (LSMtii modern space-borne remote sensing
technigues is capable of delivering lake covergmperature data sets, which can provide a viable
complementary data archive for investigations aiaoreal climate change over the past decades. The
AVHRR instrument is one representative from thdetgrof sensors mounted on satellite platforms,
whose first observations date back to the endefl8v0s. The Remote Sensing Group Bern (RSGB)
extensively collected AVHRR observations over therdpean Area and now possesses a

continuously growing archive, available for mulégurposes and enquires.

This study utilized a recently published algoritiminHulley et al. (2011) for LSWT retrieval from
inland water bodies in combination with the MODTRA&Hiative transfer model in order to derive
LSWTs for Swiss lakes from the AVHRR archive of tR&SGB. The model performance was
evaluated in terms of the accuracy against locathasured water temperatures and compared to the
accuracy of a reference algorithm that implemehis RTTOV radiative transfer model. The
comparison of the simulated LSWTs is carried outtloree selected in situ data sets of Lake
Constance and Lake Geneva from a larger in sita dathive, which was collected from several
Swiss, French and Austrian administration officed acientific institutions in the framework of this

study.



5.5 Summary of results and general discussion 64

The results indicate a good performance of the RIEyorithm and the MODTRAN algorithm,
with slightly smaller satellite-averaged root meguare errors and biases for the RTTOV model. A
comparison of the raw simulated brightness tempezabutputs for AVHRR channels 4 and 5
indicated a growing divergence for large viewingitte angles above 40° and a general dependency
of at least one of the models on this parameteis divergence could however not been detected in
the final LSWTs anymore. An investigation of thenslated LSWT sensitivities against wind speed,
viewing angle and maximal relative humidity showethtive invariances for both models. A spatial
comparison of LSWTs for Lake Geneva and Lake Caowstasupported the hypothesis that
MODTRAN and RTTOV perform similarly, with final diérences of LSWTs in the order of the data
acquisition error and below. Based on the resuftined from the investigations above, other
economic or scientific criteria would have to besidered within the decision-making for one model
or the other. However, since the RTTOV algorithrfulby implemented, validated and operational at
the Geographical Institute of Bern, a MODTRAN-basalternative would have to show a
conspicuously better performance in terms of aayuthan the fast and accurate working RTTOV

code. With the approach and the parameters sedsmusais study this goal could not be achieved.

At this point further investigations could focus tre discrepancies that have been encountered
during this study. Although, changes in the modet®re not apparent in the single target-pixel-
comparison a spatial comparison with the skin teatpees provided by the ECWMF database could
be estimated to giving some insight into the spat@uracy of the models. Additionally, a full
implementation of the Masuda emissivity model (Misu2006) might yield a performance
enhancement for the MODTRAN algorithm. For regiostaldies, it is also imaginable that the split-
window approach proposed by Hulley et al. (2011luld¢obe tuned with additional regression
coefficients in order to capture and represent gmgrtropospheric disturbances, such as Saharan
dust events or volcanic eruptions. This would imeoldetailed investigation on the deviations
between simulated and in situ measured LSWT unatesideration of the causing event itself. As has
been described, water stratification in Swiss lad@sbe of complex nature. A correction of the skin
effect in epilimnic water layers for a range ofibgl surface-near measurement depths would greatly
help to incorporate more data into the validatisacpdure. A review of in situ data measured in
different surface-near depths and calculating o statistics against satellite data could help
develop depth-dependent corrections for inland mladelies. The linear regression statistics derived
for the in situ stations in 0.5 m and 1.0m deptlightngive an indication of the general magnitude of
an offset that would have to be expected for sitedld SWTs validations in the European alpine

region.



65 Chapter 6: Conclusion & Outlook

The split-window approach in combination with radie transfer simulations has generally
confirmed its viability for assessing lake surfagater temperatures. Thereby, the modern elaborated
radiative transfer codes RTTOV and MODTRAN havevalmdo achieve similar accuracies. In the
same context, AVHRR observations have reaffirmedir thotential for spatially covering long-time
series water temperature measurements. In comtrinaith sophisticated lake stratification models,
such as presented by Peeters et al. (2002), sjpae-vater temperature measurements could greatly

help to describe lake ecosystems and their respaasegional and global climate change.



5.5 Summary of results and general discussion
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Appendix A

IDL Routines

The following list contains the names and shortdpson of the main purpose of the IDL routinesitth

have been developed during the course of the thesis

Routine Purpose

adapt_atm_profile.pro -IDL function that adapts the variables for thetfiEECMWF profile
levels in order to match the atmospheric stateadlgtpresent at the
geographic location of the target pixel

cloud_corruption_filter.pr - IDL function that performs two simple cloud tests for hVHRR

observation provided with the calling sequence

compare_BTs.pi - IDL procedure for exporting coincident brightnessperature from
the RTTOV and MODTRAN IDL-save files
compute_s.prc - IDL Function that computes the wesurface temperatures from

IDL save-file with AVHRR observations for a prededd period and
a specified split-window-coefficients-file in th®IL-save format for
a single pixel and performs some basic quality kbec
compute_s:_bypatcl.prc - Enhanced compute_sst.-IDL-Function thatis able tocompute
mean water-surface temperature for a quadratichpafca user-
specified size around the target pixel (see comstepro for further

details)
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Routine

Purpose

import_avhrr_data.pro

make_spectral_albedo_file.|

modtran_main.pi

nisst_main.pr

read_atm_profile.pi

read_chn_file.pr

read_co2_data.p

read_lakes_info.rg

read_modtran_filename.f

read_spec_response.

read_stations_info.p

read_tp5_file.pr

read_tsi_data.p

rescale_spec_resp.|

-IDL Function for importing AVHRR observations frothe database
into an IDL-save file for a predefined period
IDL function that imports the emissivity as complitey Masud:
(2006) via a bi-linear interpolation from the capending tables for
AVHRR channels 3, 4 and 5
IDL function thatincorporate the entire processing chain incluc
into the radiative transfer simulations startingnirthe cloud-testing,
over the input-file generation, to the actual MODANNR simulations
(includes steps 1-7 in Figure 3)
IDL function that was intended to compute the -window
coefficients form the MODTRAN simulations, but wdegraded to
call the store_variabeles.pro for a user-specjfieod
IDL functior thatimports the ECMWF profiles into variabl
IDL function that imports the brightned¢emperatures from tt
MODTRAN chn-output-files
IDL function that imports thNOAA ESRL CO,-table: obtained or
Mouna Loa, Hawaii, USA
IDL function thatreads andimports information for the target pixe
i.e. geographic location, elevation, ID
Function that rear and import the systematically generat
MODTRAN filenames into variables
Function that readand importsthe spectral response functions
the NOAA satellites
Function thalreads andmports information for the target pixels, i
geographic location, elevation, unique lake-ID
IDL function that reads the MODTRAN Ifiles and extracts th
relative humidity, the wind speed, the total watapor column and
the total ozone column
IDL function that imports thdotal solar irradiance table (i.e. t
solar-constant) modeled by (Wang et al., 2005)
IDL function for rescaling of NOAA satellite specific spect

response functions as provided by the NOAA KML Usguide
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IDL Routines

Routine

Purpose

run_all.pro

run_modo.pr

splitwindow_coefficients.pi

spatial_comp.pi

store_variables.p

time_shift_filter.pr

tp5_creator_lakes.p

IDL procedure for running all, or particular maiongponents of the
algorithm consecutively and without interrupt

IDL function that startthe MODTRAN fron-end MODO, and
afterwards calls MODTRAN iteratively for the tp3efs that are
existent in the user-specified input directory

IDL function thatcalculates spl-window coefficients for a give
period and a provided model output file. The fumttican handle
RTTOV or MODTRAN outputs, dependent on the usercHissl
input parameters

IDL procedure that computes we-surface temgratures for twc
specific AVHRR scenes in April 2007. The functiororks very
similar to the compute_sst_bypatch.pro functiort, tmmputes the
water-surface temperatures for the entire AVHRRhaeqeer provided
set of split-window coefficients and computes thrEmperatures
difference between both models, i.e. RTTOV minusIM&®AN

IDL function that collects the necessary paramefersthe spli-
window coefficients computation from the MODTRAN tput files
for user-specified period. The functions stores timeported
parameters combined into one IDL-save file.

IDL function thatremoves entries an AVHRR «-filename array an
a corresponding AVHRR data-filename array in themmemn RSGB
file-format, which are not within a user-specifisthdow around 12
UTC

IDL function that generates the -input files for MODTRAN

radiative transfer simulations
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The functions that are listed below comprise thiénished and therefore not implemented water serfac
emissivity module after Masuda et al. (1988) andiuia (2006):

Routine Purpose

compute_p.pro - IDL function for computing the normalization factor
compute_roh.pi - IDL functionfor computing themear reflectivity rhc from the face
compute_sesrl.p - IDL function for computing thel® order surfac-emitted surfac-

reflected emissivity
mean_emissivity.pl - IDL function that implements all other emissivitynictions in order t
obtain the mean emissivity from the facet, inclgdithe ' order

surface-emitted surface-reflected emission

read_refractive_index.p - IDL function that reads the refractive index of eraas computed &
Hale & Querry (1973)
write_spec_alb_dat.p - IDL function for writing the spectral albedo file ithe appropriat

MODTRAN file format



Appendix B

Complete overview of the in situ database

Lake Elevation Latitude Longitude Reference Measurment period Temporal Measurment Datasel
a.s.l. [m] [°N] [°E] Institution P resolution depths [m] ID

;2";“ 7 47123 8.618 AfU Zug 17.01.1990 - 15.11.201  monthly 0 - 80
Lake 5 no information UWE Luzern 09.01.1989 - 13.12.2011 monthly 0 - 65
Baldegg
E"i":ﬁne 39 47.104 7.198 AWABemn  28.02.1994-22.02.201, monthly 0 - 10
E?iléiz 29  46.718 7.952 AWABemn  15.02.1994-21.02.201, monthly 0 - 10
Lake 541  47.624 9.375 LUBW 29.03.1989 - 27.06.201. monthly 0 - 65
Constance
Lake 541  47.521 9.721 LUBW 10.01.1989 - 09.01.201, monthly 0 - 250
Constance
Lake 541  47.720 8.986 LUBW 18.02.1997 - 10.01.201, monthly 0 - 19
Constance
Lake 541  47.707 9.066 LUBW 03.01.1989 - 22.03.201. monthly 0 - 46
Constance
Lake .
e 541  47.676 9.001 LUBW 03.01.1989 - 10.01.201. monthly 0 - 22
Lake 541  47.761 9131 Universityof o) 61 19872003200 20min* 01 - 9.6*
Constance Konstanz
Lake 541  47.762 9.131 Yniversity of - 54 44 5004 - 20.08.200 hourly 05 - 104 UniK
Constance Konstanz

Amt der
Lake 541 47507 9748 YO'AOerger 4 411997.12312000  hourly 0 - 23  Brgz
Constance Landes-

regierung
Lake 583  46.453 6.589 CIPEL 16.01.1989 - 07.12.2011 monthly 0 - 10
Geneva
Lake 583  46.453 6.589 CIPEL 16.01.1989 - 08.12.2011 twoweeks 0 - 10
Geneva
Lake 583  46.453 6.589 INRA 10.06.1991 - 31.10.201 daily 0 - 1*  INRA

Geneva
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Lake Elevation Latitude Longitude Reference Measurment period Temporal Measurment Datasel
a.s.l. [m] [°N] [°E] Institution P resolution depths [m] ID

Lake 583 46.297 6.220 EPFL 03.02.2000 - 02.10.201. hourly 1 EPFL*

Geneva

Lake 113 no information UWE Luzern 01.02.1989 - 04.10.2011  quarterly 0 - 40

Lucerne

Lake AfU .

Neuchatel 215 46.904 6.843 Neuchatel 27.06.2001 - 16.02.201. monthly 0 - 10

Lake DGT

Neuchatel 215 46.909 6.845 Neuchatel 06.03.1989 - 16.11.201.  monthly -

k/l%";t 22 noinformation  AfU Fribourg 25.01.1989 - 11.10.201 quarterly* 0 - 40

Rotsee 0.5 no information UWE Luzern 14.03.1989 - 02.11.2011 biannually 0 - 15

Lake 14 noinformation ~ UWE Luzern 03.01.1989 - 06.12.2011 monthly 0 - 85

Sempach

Lake Thun a7 46.681 7.730 AWA Bern 02.03.1994 - 20.02.201: monthly 0 - 10

Lake Zug 38 47.101 8.493 AfU Zug 22.01.1990-20.12.201.  monthly 0 - 197

Lake 88 47312 8569 UMVErSIyOl g 031089-16.03.201  weekly* 0.05

Zurich Zurich

* Varying or inconsistent within the dataset.
# Data not shown. The ID could be encountered withinR and IDL source code.

Abbreviations

AfU Amt fur Umweli, Switzerlani

AWA Amt fir Wasser und Abfe, Switzerlan:

CIPEL Commission internatiolle pour la protection des eaux du Léi1, Switzerlan
EPFL Ecole Polytechnique Fédérale de LausaSwitzerlanc

INRA Institut national de la rechercagronomique, Fran

LUBW Landesanste fur Umwelt, Messungen und Naturschutz, En-Wirttember,

Germany



Appendix C

Differences of model split-window coefficients

N17 RTTOV minus MODTRAN split-window coefficients mar2003-aug2008
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Figure 13: Model differences between the lake-specific splitdow coefficients for NOAA 17 (N17) observatiorisach panel
refers to a different coefficient, which is indiedtin the grey array on the right hand side ofptweel. The coefficientg o g are

denoted as in equation 4.1. Lake ID refer to Lakestance (BDS, black), Lake Geneva (GFS, red), Lakmno (LGS, orange),
Lake Neuchéatel (NBS, green) and Lake Zurich (ZUEe)h respectively. As indication for the variabyilithese differences
represent when compared against the total vamahifi the corresponding coefficients, the minimulhi) and the maximum

(Max) are displayed in the upper left corner ofrepanel.
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N18 RTTOV minus MODTRAN split-window coefficients may2005-dec2010
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Figure 14: Model differences between the lake-specific splitdow coefficients for NOAA18 (N18) observationsadh panel
refers to a different coefficient, which is indiedtin the grey array on the right hand side ofpiweel. The coefficientg o a are
denoted as in equation 4.1. Lake ID refer to Lakestance (BDS, black), Lake Geneva (GFS, red), Lakmno (LGS, orange),
Lake Neuchatel (NBS, green) and Lake Zurich (ZURkeh respectively. As indication for the variatyilthese differences
represent when compared against the total varilmfithe corresponding coefficients, the minimumhir() and the maximum
(Max) are displayed in the upper left corner oftepanel.
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