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Abstract

The demand for local weather predictions along with uncertainty information increases. Var-
ious end-users need probabilistic forecasts to assure and optimise their activities. The energy
sector uses weather forecasts to predict the production and consumption of energy (e.g., solar
and wind energies). Depending on the temperature and other controlling factors, buildings
have to be cooled or warmed to ensure optimal comfort. In this sector, there is unexploited
potential to save energy (and ultimately, CO2 emissions) and to reduce costs based on good
probabilistic forecasts.

Numerical weather prediction (NWP) models have been strongly developed in the last
decade. In contrary to global NWP models, high-resolution limited-area models (LAMs)
allow better simulations of small-scale weather processes which play an important role for
local forecasts. However, uncertainties arising from a complex interplay of the chaotic na-
ture of atmospheric processes, model errors, and local conditions remain. Based on global
ensemble prediction systems (EPS), limitead-area EPS (LEPS) downscale the ensemble fore-
casts (members) to the local scale. Along with their improved formulation, LEPS are best
suited to provide an estimate of local uncertainties in weather predictions. However, due to
the differences between model world and reality (e.g., different orography), local forecasts
are often biased. Post-processing methods are used to adapt grid point values to the local
characteristics (e.g., Kalman filter).

This study aims at combining the strengths of a LAM, i.e. the best local forecast available,
and a LEPS, i.e. an uncertainty information along with a forecast. For this, the relationship
(SSR) between the spread of the limited area ensemble prediction system COSMO-LEPS and
the skill (measured as the root mean square error [RMSE] between the prediction and the
local observation) of the LAM COSMO-7 for station-based 2 m temperature forecasts is first
investigated. This is somewhat unusual as it combines the output of different model systems.
The resulting relationship is predominantly linear indicating that the distribution of COSMO-
LEPS ensemble predictions contains precious uncertainty information that can be used to
predict uncertainty in the deterministic Kalman filtered COSMO-7 forecasts (COSMO-7-
KAL), supporting the new approach introduced in this study. Following influencing factors
with decreasing importance for the shape of the SSR have been identified: the season, the
location and the time of the day. These influences motivate the use of adaptive station-based
uncertainty models. The performance of an adaptive linear model (ALM) was investigated
using an optimal period of 30 days of past data (NWP model outputs and observations) and
evaluated for one year of independent data. The performance of the uncertainty prediction
has been increased by 66% compared to the use of the spread derived from the raw COSMO-
LEPS ensemble as uncertainty information. Given that the variability of the daily cycle
in RMSE is not fully simulated with the ALM, an extended ALM is introduced where the
residuals from ALM are added to the uncertainty predictions. The extended ALM allows
increasing the performance of the ALM by 15% compared to the ALM. On average, the
uncertainty predictions using the persistence (derived from the past errors of COSMO-7-
KAL only) performs the same. However, for a majority of stations (58%) the extended ALM
is better than persistence, especially for low-level stations. This shows that the day to day
variability of the uncertainty predictions for temperature based on ensemble information is not
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very high. Nevertheless, the new approach developed in this study opens new opportunities
in the field of NWP models post-processing. In particular, this model-integrating approach
could be applied to other variables such as humidity or wind speed. Furthermore, if successful,
it could be seen as a logical extension to any statistical bias correction of deterministic model
output to infer probability distributions given a suitable PDF of the prediction errors and an
appropriate ensemble prediction system.
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Chapter 1

Introduction

’No forecast is complete without a forecast of the forecast skill.’

(Tennekes et al., 1987)

Motivation

More and more users are interested in local weather predictions with uncertainty information,

i.e. probabilistic forecasts. The economy is interested in probabilities to minimise costs (Mur-

phy, 1977). For example, the probability that the 2 m temperature will reach or undershoot

the 0◦C threshold can be of interest for the agriculture. Frost can damage young plants or

blooming trees and lead to economic lost. If the probability that there is frost is higher than

the ’cost-loss ratio’ (costs of the preventive action(s) divided by the economic loss if no ac-

tion is conducted and the event occurs), provisions should be taken. Also the transport sector

(e.g., probability of frozen roads or fog at an airport) or the energy sector are dependent on

the weather and need accurate forecasts to guaranty and optimise their activities. To optimise

the trade and distribution of electricity (e.g., from different sources), predictions of the pro-

duction are needed. The production of renewable energies are particularly dependent on the

weather (e.g., solar radiation or wind strength). The needs in electricity depend on the mete-

orological conditions (e.g., use of air-conditioning in summer when temperature exceeds some

threshold). The value of probabilistic forecasts (in particular of temperature) for optimising

building climate control is being investigated (www.opticontrol.ethz.ch, MeteoSwiss is part-

ner of this on-going project). There is potential to save energy, reduce costs and increase the

comfort (e.g., natural cooling of the buildings during night in summer). Probabilistic weather
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predictions are also important as inputs in hydrological models (e.g., He et al. [2009]). In

fact, such models need probabilistic meteorological inputs like precipitation and temperature

to estimate discharge probabilities. The temperature is of particular interest in mountain

regions such the Alps where snow melting in spring and glaciers melting in summer are main

sources of water. Precipitation (rain and snow) and discharge forecasts are needed in natural

risk management (e.g., prediction of flood events). A broad scope of applications can make

use of (probabilistic) forecasts provided by numerical weather prediction (NWP) models. Also

forecasters need probabilistic forecasts to estimate the certainty of the current model outputs

and to communicate qualitatively and quantitatively the uncertainties of weather predictions

to the public (Ban, 2006; Eckert and Cattani, 2006).

NWP performance increases, uncertainties remain

NWP models have been strongly developed in the last decades and their performance con-

stantly increases with the computational power (Lynch, 2008). The challenge of NWP is to

mathematically describe the atmospheric phenomena and their interactions (Holton, 2004).

Those processes occur on manifold spatial and temporal scales: large-scale (e.g., planetary

waves), synoptic scale (e.g., low/high pressure systems, persistent blocking situations), meso-

scale (e.g., orographic effects) and micro-scale (e.g., short-lived small-scale turbulences, single

clouds, cloud microphysics). For local weather predictions, the realistic simulation of small-

scale processes is of importance. Therefore, beside global circulation models, higher-resolution

models resolving smaller-scale processes have been developed. They allow a better representa-

tion of regional weather conditions. Nevertheless, uncertainties remain in weather predictions

(Palmer et al., 2005). Due to the chaotic nature of the atmosphere, minimal deviations in

the initial conditions of NWP models lead to different forecasts of the large-scale flow devel-

opment (Lorenz [1963] and chapter 2). The initial conditions are not known with exactitude.

The meteorological observational network is heterogeneously distributed around the world.

Moreover, the observations are punctual and do not allow the monitoring of the current state

of the atmosphere in the three dimensions. Additionally, there are measurements errors. For

those reasons, the ’predictability’ of weather is limited. This is the so-called predictability of

the first kind, the predictability of the second kind arising from uncertainties in the boundary

conditions (Lorenz, 1975). There is no analytical solution for the equations that describe the
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atmospheric flow, therefore numerical methods are needed. The integration of the governing

equations forward in time occurs on a three-dimensional (3D) grid. Due to the limited spatial

resolution of NWP models the models topography is a smoothed representation of the real

orography, especially in mountain areas (e.g., non-representation of a valley / mountain ridge

), ignoring local characteristics (e.g., valley winds or orographic forcing of precipitation). Also,

land cover specifications need to be averaged over whole grid cells. As a result, unresolved

sub-grid scale processes (e.g., sub-grid scale effects of topography and land cover) are not

directly resolved and must be parametrised empirically using known grid scale parameters.

Deterministic high-resolution limited-area models

One approach to reduce the uncertainties in NWP is followed by running limited-area high-

resolution models. Limited-area models are best suited to provide local forecasts due to

the high spatial resolution and therefore the better representation of physical processes at

the respective scales. However, they cannot be calculated globally due to computational

restrictions and they need boundary conditions from global models (e.g., from the European

centre for medium-range weather forecasts [ECMWF], Persson and Grazzini [2005]). The

uncertainty about the further development of the atmospheric flow on the large scale is

flow dependent, i.e., it depends on the weather situation (chapter 2). These ’large-scale’

uncertainties propagate into limited-area models through the boundary conditions.

Ensemble prediction systems

Due to the sensibility of NWP models to initial conditions, ’ensemble prediction systems

(EPS)’ have been developed based on Monte-Carlo experiments (Epstein, 1969; Leith, 1974;

Palmer et al., 2005; Leutbecher and Palmer, 2008). Instead of performing one single determin-

istic forecast, a set of predictions (so-called ’members’ ) is calculated using disturbed initial

conditions (chapter 2). EPS allow to estimate probabilities (e.g., probability of precipitation,

probability of exceeding a certain threshold of precipitation or temperature). Ensemble pre-

dictions enable the estimation of the forecast accuracy or level of confidence for the ensemble

mean [EM] which is linked to the predictability of the current flow. In other words, from the

divergence of the members around the mean one can infer an error probability density func-

tion (PDF) or assess the uncertainty of the current forecast (Ehrendorfer, 1997). A measure
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of divergence is the spread, defined here as the standard deviation of the members forecasts

around the EM. Note that ensemble averaging does not lead automatically to realistic synoptic

situations, especially by large spread.

In the last decade, the probabilistic approach gained importance in NWP and also limited-

area EPS (LEPS) have been designed. They have a higher spatial resolution than global EPS

and more complex model formulations. Therefore, they are more capable of capturing local

uncertainties. An example of LEPS is COSMO-LEPS, the limited-area probabilistic model

used in this study. Nested in the EPS system of the ECMWF (Molteni et al., 1996; Leutbecher

and Palmer, 2008), COSMO-LEPS is developed within the ’COSMO’ consortium (Steppeler

et al., 2003) and delivers operational local ensembles for Europe (Marsigli et al., 2005). Figure

1.1 shows the topographies applied in the ECMWF-EPS (roughly 80 km horizontal resolution)

and in the COSMO-LEPS (10 km). Better forecasts can be expected from COSMO-LEPS,

especially in regions with complex terrain like the Alps.

Figure 1.1: (a) ECMWF EPS (80 × 80km) and (b) COSMO-LEPS (10 × 10km) topographies over central

Europe. Courtesy: A. Walser, MeteoSwiss.

Statistical post-processing increases model performance

Ångström (1814-1874), well-known for his research in spectroscopy, already recognised sources

of uncertainties in weather predictions such as incomplete observations and suggested the use

of statistics and physics to produce forecasts (Liljas and Murphy, 1994). Various statistical
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postprocessing methods have been developed: Well-known are the ’model output statistics’

(MOS, Glahn and Lowry [1972]) and ’Kalman filtering’, (KAL, Persson [1989]) amongst

many others. All statistical methods are used to adapt the direct model outputs (DMO) to

local characteristics using historical model outputs and observations, whereas the causes of

forecast errors in the NWP models remain. They statistically remove the systematic error

(bias) of the DMO predictions.

Similar to deterministic forecasts, the EM of an EPS can be biased. To correct for this

bias, the same post-processing methods can be applied by treating the EM as one determin-

istic model run. The divergence of the ensemble (the spread) is often too small compared

to the variability of errors of the EM (underdispersion). In an perfect EPS, the averaged

spread (e.g., over a season) would be equal to the root mean square error (RMSE, Palmer

et al. [2005]) of the EM. The relation between both, the spread and the RMSE of the EM, is

called ’spread-skill relationship’ and is one important definition for this study. The underdis-

persion (RMSE>spread) in EPS is due to underdisturbed initial conditions, no consideration

of inherent model uncertainties and finite ensemble size (Buizza et al., 2005). To consider

model inherent uncertainties, various parametrisation schemes can be used for the same sub-

grid scale process. There are different methods to produce initial conditions and there is no

agreement about a ’best method’ (Hamill et al., 2002).

To tackle the underdispersion and the bias in EPS, various post-processing method exist

(ensemble-MOS methods). They are station-based and need observations. Ensembles can

also be based on predictions generated by different models (’poor man’s’ or multi-ensemble

approach) for which similar post-processing methods are used. ’Bayesian model averaging’

(BMA, Raftery et al. [2005]) weights the single members based on historical data (model

outputs and observations). Ensemble dressing is similar to BMA, with the difference that

the shape of the distributions can be different for each member (Roulston and Smith, 2003).

Also the use of ’reforecasts’ can be useful. This is done at MeteoSwiss for 2m temperature,

precipitation and wind gust based on 20 years COSMO-LEPS hindcasts and observations

(Fundel et al., 2009). For each station and each variable, a PDF for the reforecasts and one

for the observations are built. The relation between both PDF is then used to calibrate the

ensemble members of future forecasts. Hamill et al. [2004] used reforecasts to estimate MOS

coefficients for logistic regressions between the ensemble mean and the PDF of the predicted
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variable (temperature or precipitation).

Jewson [2004] and Gneiting et al. [2005] suggested to include the spread as predictor in a

linear regression framework (non-homogeneous Gaussian regression NGR) where the spread

is used to define the standard deviation of the PDF. Wilks [2006] compared several ensemble-

MOS post-processing methods and found ensemble dressing, logistic regression and NGR to

be most promising post-processing methods in the Lorenz model. However, empirical studies

are needed to confirm these results for more realistic NWP models.

Hitherto, the studies focused on the post-processing of EPS or deterministic forecasts sep-

arately. The combination of the strengths of deterministic and ensemble forecasts was only

poorly investigated. Deterministic models have often higher spatial resolutions and more

complete formulations. However, they are single forecasts without uncertainty information.

On the other hand, EPS provide several forecasts and thus, include an indication about the

uncertainty of the forecasts. Therefore, it would be intriguing to benefit from the strengths of

both NWP approaches to produce improved forecasts. Rodwell [2005] combined deterministic

and ensemble forecasts for precipitation. He ’enlarged’ the ensemble by weighting the deter-

ministic forecast more strongly than the single members of the ensemble to better predict the

occurrence of precipitation, the weights decreasing with lead time. Apparently, there are no

studies about such combinations for 2 m temperature. Therefore, the goal of this study is to

use the spread information contained COSMO-LEPS to predict the uncertainty of determin-

istic COSMO-7 2 m temperature forecasts. In contrary to Rodwell [2005], the deterministic

forecast will not be treated as a member of the ensemble. Rather, the spread of the ensemble

will be used to derive a distribution around the deterministic forecast.

The thesis is organised as follows: In chapter 2, a short introduction to numerical weather

prediction is given. The principles of NWP models are illustrated along with the main sources

of uncertainties remaining in NWP models. The deterministic model COSMO-7 and the

probabilistic model COSMO-LEPS are described. Chapter 3 evaluates the performance of 2m

temperature predictions of the COSMO models. The data used and their representativeness

are shortly discussed in chapter 4. In chapter 5, the spread-skill relationship is investigated.

First, the spread-skill relationship between the spread of COSMO-LEPS and the RMSE of

the EM is investigated. In a second step, COSMO-7-KAL is introduced and the relationship

between its RMSE and the spread of COSMO-LEPS is investigated. The data analysis allows
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to identify potential uncertainty models. Based on these investigations, uncertainty models

are identified and evaluated in chapter 6. In the conclusion, a suitable uncertainty model

setting is proposed for operationalisation at MeteoSwiss. In the outlook, further investigations

are suggested.



Chapter 2

Numerical weather prediction

’One flap of a seagull’s wing

may forever change

the future course of the weather...’

Lorenz, 1963

2.1 NWP model formulation

Charney published 1953 a simple set of equations capable of simulating planetary waves

(birth of the global circulation models) and demonstrated the potential of NWP (Charney,

1953). The atmosphere can be described by the Navier-Stokes non-linear equations for fluid

motion containing seven unknowns: pressure p, temperature T , 3 wind components (U, V,W ),

density ρ and water content q. These equations satisfy mass continuity, momentum and heat

conservation. There is no analytical solution for these complex, partial differential equations

(PDE) and the only possibility is to solve them numerically (Lynch, 2008). For that, a 3-

dimensional grid has to be defined (Figure 2.1) and the equations are discretised. With given

initial conditions, the time integration of the governing equations allows to predict the new

state after a predefined time step. Grid point distance, time step and maximal velocity are

important parameters to assess the stability of the integration scheme (Courant-Friedrichs-

Levy condition), which will affect the forecast quality (Ruddiman, 2001).

The limited spatial and temporal resolutions of NWP models do not permit to describe di-

rectly sub-grid scale and short-lived physical phenomena (e.g., small-scale turbulences, single
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clouds, thunderstorms). Therefore parametrisations are needed to account for such processes.

Parametrisations are either statistical, physical or both together. For example the occur-

rence of clouds or the tendency for thunderstorms are estimated by means of known large

scale parameters in the corresponding grid boxes. For instance, the instability of the air

column, which can be depicted in the temperature and dew point profile, or humidity in the

boundary layer and wind field play a crucial role to enable deep convection. The induced

turbulences mix the components (water, aerosols, etc.) in the troposphere (e.g., through

updraft, downdraft, entrainment and detrainment processes) and change the temperature

profile (stabilisation). Single cells can develop into self-sustained and long-lived systems like

super cells or organised mesoscale convective systems when certain conditions are fulfilled.

Such events can cause severe damage (e.g., hail damage). However, most NWP models are

not ’convection resolving’ due to their spatial resolution (< O(1 km) is needed) and several

microphysical interactions can still not be included in the physics of NWP models (e.g., hail

formation), so that the model formulations remain incomplete. Current research activities

go toward ’stochastic-dynamic parametrisations’ (Palmer et al., 2005; Berner et al., 2005;

Palmer and Hagedorn, 2006) that account for uncertainties in the parametrisations.

2.2 Data assimilation

An immense amount of weather data is continuously collected and made available for weather

centres all over the world through the Global Telecommunication System (GTS, Figure 2.2).

These data have to be processed prior use in NWP models such as the ECMWF integrated

forecast system (IFS). Synoptic, ship, buoys, aircraft, radio soundings, profilers and satellite

observations are controlled and selected. The step of optimally combining observations with

short-term model forecasts is called data assimilation. Combined with recent model outputs,

analyses are performed delivering initial conditions, also for data-sparse region such as the

southern Pacific. As an example, the ECMWF applies a variational assimilation in the space-

time domain (4D-Var) that aims at matching best analyses and observations over a defined

time interval by minimising a ’cost function’ whereas COSMO-7 uses a latent-heat nudging

scheme (see later in this chapter).
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Figure 2.1: The principle of weather and climate modelling: The atmosphere is fragmented into numer-

ous grid boxes for which the thermodynamic state and concentrations of chemical components are averaged.

Topography and land type distribution are adapted to the model resolution. Sub-grid scale processes are

parametrised. Source: Ruddiman, [2001].

2.3 Ensemble forecasting

In 1963, Edward N. Lorenz, the father of the chaos theory, published a paper with simulations

that illustrated the sensitivity to initial conditions of a simple atmospheric flow model derived

by Barry Saltzman (Lorenz, 1963). Minimal deviations of the initial conditions from the reality

lead to various possible developments of the later state (Figure 2.3). With time, the different

forecasts evolve differently depending on the state in the phase space. This divergence, or

’spread’, can be used as indicator of predictability. The sensitivity of weather prediction

to initial conditions (predictability of the first kind) underscores the importance of suitable

initial conditions of the NWP models derived from a global measurements network and a data

assimilation procedure.

At the time of the discovery of Lorenz, the computational power was not large enough to

compute ensemble predictions, thus the meteorologists had to be satisfied with single, deter-

ministic forecasts. The forecasters continued to estimate qualitatively the reliability of their
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Figure 2.2: An immense amount of weather data is continuously collected and made available for weather

centres all over the world through the Global Telecommunication System (GTS), representing precious infor-

mation for initialising NWP models. Here the observations received at ECMWF are shown for the 5 July 2004.

Source: Persson and Grazzini [2005].

predictions by experience until operational probabilistic systems became realisable in the early

1990’s (Murphy [1998] for an overview about early history of probabilistic forecasts). During

that time span, better data assimilation (e.g., of satellite observations), improved determinis-

tic numerical models and enhanced resolution led to large improvements in numerical weather

and climate prediction. Nevertheless, due to the chaotic nature of the atmosphere, remain-

ing uncertainties in the initial conditions and in the model formulations, the predictability

of weather is still limited. Therefore, large efforts were made toward ensemble prediction

systems (EPS) in the last decade. There are various proceedings to design an EPS (short

review: Hamill et al. [2002]). The initial conditions have to be disturbed in such a way

that the ensemble covers the full uncertainty range (Ban, 2006; Palmer and Hagedorn, 2006).

Many different approaches to generate perturbed initial conditions have been developed but

there is no agreement about which method is best (Hamill et al. [2002]).

2.4 Weather predictability

Predictability is flow dependent (see Figure 2.3). Applied on weather, this means that pre-

dictability is a function of the large-scale situation. For example, the development of a sus-
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Figure 2.3: A well-known representation of the simple atmospheric model by Lorenz [1963] with a butterfly

shaped phase space. In each figure, the primary circle delimits the set of initial conditions with equal uncer-

tainty. Their temporal evolution is also plotted. Both fix points can be exemplarily interpreted as ’sunny’ or

’rainy’. The uncertainty growth with time is flow dependent (common feature of non-linear systems such as

the atmosphere): a) high predictability of the system, small ensemble spread during the whole period; b) low

predictability, strong enlarging ensemble spread with time; c) flow becomes unpredictable after a very short

time. Source: Palmer et al. [2005].

tained zonal flow with repeated cyclogenesis is ’less predictable’ than a stable high pressure

system (well-known example: storm ’Lothar’, 26 und 27 December 1999, Western Europe).

Blocking situations for example are generally quite stable and can hold two weeks or more.

However, the correct forecast of their onset is difficult. Early predictions of such events have

a high societal and economical relevance as they can cause long-lasting climatic extremes

like the well-known 2003 summer heat wave in Western Europe (impacts on mortality, water

supply, agriculture, air pollution, energy production, etc.). They are the consequence of a

subtle interplay of synoptic and planetary scales (Glisan and Lupo, 2008). Note that the

global model of the ECMWF underestimates the blocking frequency by 10% in summer and

40% in winter in the medium to extended forecast range (Persson and Grazzini, 2005). In the

Northern Hemisphere zonal flow, storm tracks and jet streams are slightly shifted poleward

(ECMWF model). As the large-scale setting from ECWMF is used to drive limited-area

models (e.g., COSMO models used in this study, see next section), ECMWF model errors

propagate into them. Concerning the predictability of temperature (ECMWF model), the

next three days are generally well predictable. Between 3 and 5 days, there is skill in fore-

casting daily extremes and between 5 and 10 days in estimating daily means (Persson and
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Grazzini, 2005).

Interestingly, the density and quality of observations where the atmospheric flow passes

impacts particularly the predictability (Figure 2.4). According to the origin of the air masses

(regions with abundant or sparse observations), the development is more or less predictable,

respectively (Persson and Grazzini, 2005). Especially in ’dynamically sensitive’ baroclinic

regions where instabilities produce eddy kinetic energy which propagates downstream, dense

observational data are necessary to assure good predictability (in terms of timing, location

and intensity of the weather phenomena) downstream.

In summary, weather predictability depends on the:

• model quality (e.g., resolution, formulation);

• initial conditions (predictability of the first kind);

• boundary conditions (predictability of the second kind);

• current weather situation (predictability is flow dependent);

• location on Earth (there are ’more and less predictable’ regions depending on the

weather variability and local characteristics: e.g., deserts vs. Alps).

A large scope of uncertainties (from the large-scale to the local scale) are responsible for

the errors in local weather predictions. However, for short-term point forecasts, the local to

regional uncertainties are expected to be dominant. Regions with complex topography (e.g.,

the Alps) need high-resolution NWP models to simulate small-scale complex processes (fronts

deformation, lee cyclogeneses, valley winds, orographic effects, snow and fog). Therefore,

deterministic and probabilistic limited-area models (LAM) have been developed. The LAMs

used in this study are introduced in the next subsection.

2.5 The COSMO model suite

The Consortium for Small-scale Modeling (COSMO) was formed in October 1998. Its general

goal is to ’develop, improve and maintain a non-hydrostatic limited-area atmospheric model

(COSMO), to be used both for operational and for research applications by the members of
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Figure 2.4: Error propagation impacts predictability. Areas (circles) in the northern hemisphere (NH) where

analysis errors D-N days back in time will most affect the predictability over Europe at D+0. During sum-

mer, the main flow passes over the coarse observation network of Alaska, Northern Canada and Greenland.

At wintertime, the zonal flow is predominant and crosses the dense US network (dashed circles) increasing

predictability over Europe. Source: Persson and Grazzini [2005].

the consortium’ (currently Germany, Italy, Greece, Poland and Romania and Switzerland)1.

The approach of COSMO is to dynamically downscale the global ECMWF model to higher

horizontal and vertical resolution over Europe. COSMO is designed to combine reliable large-

scale predictions of the atmospheric flow from the ECMWF model with a better description of

the local meteorological processes (higher resolution, more complex parametrisation schemes,

see Steppeler et al. [2003]). COSMO is formulated in terrain-following vertical coordinates

(Schär et al., 2002; Leuenberger, 2002). The vertical grid-spacing in COSMO varies from

roughly 50 m close to the surface to a few 100 m at the top of the model. Sub-grid scale

1http://cosmo-model.cscs.ch/, 21.08.2008. In contrary to global models, COSMO considers vertical motion

in the model formulation (’non-hydrostatic’). For the COSMO model, an extensive documentation is accessible

under http://www.cosmo-model.org/content/model/documentation/core/default.htm. In particular, 3 parts

are available about Dynamics and numerics, Physical parametrisation and Data assimilation. The chapter

Postprocessing is not disposable yet.
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processes are parametrised: vertical diffusion (turbulence), cloud and precipitation formation

(condensation), convection and radiation. A one-dimensional soil model is coupled to the

atmospheric model.

Figure 2.5: COSMO-7 topography (6.6 km resolution) over Switzerland with most of the inshore waters and

the political boundaries. The colour shading corresponds to the altitude in [m]. This mask (in grey shades) is

used in the background of the maps present in the thesis for highlighting the effect of topography.

Different COSMO model suites are operational at MeteoSwiss and other weather centres

such as the ’Deutscher Wetterdienst’ (DWD) in Germany (DWD, 2002). At MeteoSwiss, two

deterministic models with different spatial resolution, frequency of new forecasts and pre-

diction horizons are operational. They are computed at the Swiss national supercomputing

centre (CSCS). COSMO-7 produces hourly predictions for the next 3 days on a 7 × 7 km

grid (two daily runs at 00 and 12 UTC). In February 2008, the resolution of COSMO-7 has

been reduced to 6.6 km to allow the operationalisation of the new COSMO-2 version with

2.2 km resolution. Figure 2.5 shows the 6.6 km topography of COSMO-7 over Switzerland.

With COSMO-2, short-time forecasts for the next 24 hours (actualised every 3 hours) are per-

formed for the Alpine region. With a higher resolution of the topography and a more complex

description of microscale processes (e.g., turbulence, cloud formation), more precise and accu-

rate forecasts – especially of local wind systems and precipitation events (e.g., thunderstorms

in summer) – are expected. The data assimilation of COSMO-7 and COSMO-2 is based

on nudging (Leuenberger, 2005; Stoll, 2005). Note that the assimilation of non-prognostic
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variables is not straightforward. Diagnostic variables are variables that must be deduced

from prognostic grid point values or that must be interpolated. 2 m variables are diagnosed

given that the lowest level in NWP models is above 2 m. In COSMO-7 and COSMO-2 2 m

temperature observations are not directly assimilated to avoid potential negative impacts in

the boundary layer (Stauffer et al. [1991]). The 2 m temperature data is only employed to

determine the stations’ specific humidity content that is considered for assimilation, the 2 m

temperature itself is not assimilated. Therefore, 2 m temperature model outputs and station

observations can be considered as almost independent. Beside the higher resolution and the

better formulation of limited-area models, the own assimilation of meso-scale observations is

necessary to improve the forecasts of limited-area models compared to global models (De Eĺıa

et al., 2002), especially in regions with complex terrain like the Alps (Schraff, 1997).

In addition, the members of the COSMO consortium have developed a limited-area en-

semble prediction system (Montani et al., 2003). COSMO-LEPS, issued at 12UTC each day,

delivers 3-hourly forecasts for the next 5.5 days with 10 km spatial resolution. In Germany,

an ensemble based on the convection resolving model COSMO-DE (roughly 3x3 km) is in

development (www.dwd.de/modellierung).

2.6 The COSMO-LEPS methodology

The COSMO-LEPS model has been developed by researchers at ARPA-SMR (Italy), pri-

marily for the prediction of extreme precipitation events (Montani et al., 2003). COSMO-

LEPS demonstrates a high skill in forecasting intense and localised events and is very useful

for meteo-hydrological applications (Marsigli et al., 2005). The boundary and initial con-

ditions are delivered by the ECMWF-EPS. This is a downscaling approach, alternatively

it is also possible to use own assimilations and initialisations (e.g., COSMO-DE ensemble).

The ECMWF-EPS ensemble consists of 50 members and a control run initialised with the

resolution-degraded ’best guess’ initial conditions used to perform the deterministic ECMWF

forecast (total: 51 members per run). Starting from probability density functions (PDF)

of possible initial conditions for each grid point, 50 forecasts (’members’) are generated by

randomly selecting conditions from these PDFs. A ’singular vector’ approach is applied to

identify directions with regard to the control initial conditions that will lead to the largest

error growth over a particular forecast period in order to cover the full uncertainty range as
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realistic as possible (Molteni et al., 1996).

To select a suitable range of boundary and initial conditions for COSMO-LEPS, the two

daily EPS runs (00 and 12 UTC) are used to build a ’super-ensemble’ of 102 members (Figure

2.7). These are first grouped into 16 clusters through a hierarchical analysis. Note that there

is no ’best’ clustering method, moreover it depends on the weather situation (Persson and

Grazzini, 2005). The geopotential height Z, the wind components (U , V ) and the specific

humidity Q at three pressure levels (500, 700 and 850 hPa or roughly 5500, 3000 and 1500

m, consecutively) and at two forecast times (4th and 5th forecast days, 12 UTC) are used as

clustering variables. The clustering and integration domains are shown in Figure 2.6. The

COSMO-LEPS domain extents over central and southern Europe at a resolution of roughly 10

km (resulting in 78’948 grid points) and with 40 vertical levels (ECMWF-EPS for comparison:

80 km/40 levels, interpolation of initial and boundary conditions is needed).

Figure 2.6: The clustering and integration domains of COSMO-LEPS. The clustering area (30◦N-60◦N,

10◦W-30◦E) is slightly larger than the integration domain (blue circles). Source: Montani et al., 2004.

Within each of the 16 clusters, one representative member (RM) is selected (Molteni et al.,

2001).The RM has to be ’closest’ to the members of its own cluster, but most ’distant’ from

the remaining members in terms of the clustering variables. Each of the 16 RM provides

initial and boundary conditions for one simulation with COSMO-LEPS, so that a small-size

high-resolution ensemble can be built. The clustering and RMs selection methods offer a
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Figure 2.7: Schematic of the COSMO-LEPS methodology in the operational chain. For explanations, please

refer to the text. Source: Montani et al., 2004.

compromise between processor time constraints and full coverage of uncertainty. To account

for model inherent uncertainties, the convection scheme (Tiedtke or Kain-Fritsch: Tiedtke,

1989; Kain, 2004) is randomly chosen.

The 12 UTC ECMWF-EPS is available in the evening (ca. 22 UTC) and COSMO-LEPS

around 00 UTC. Several fields are postprocessed to get probabilistic products (e.g., precipi-

tation’s intensity probability maps, probability of the 2 m temperature being above or below

a certain threshold in the last 24 h, probabilities of snow fall and wind strength, etc.) or

station-based products like meteograms (precipitation, 2m temperature, surface wind, see

Figure 2.8).
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Figure 2.8: Example of a COSMO-LEPS and COSMO-7 meteogram issued 16.07.2009 12 UTC. The panels

show the simulations for the next 5.5 days for the station Bern-Zollikofen: (a) total cloud cover [%], (b)

precipitation in the last 3 hours [mm], (c) 10 m max. wind gusts in the last 3 hours [km/h] and (d) 2 m

temperature [C]. There are 16 ensemble members. The median is plotted in red, the interquartile range (25

to 75%) in grey. The dotted lines are the minimum and maximum values. In blue the deterministic COSMO-

7 run (higher spatial resolution). The spread of the COSMO-LEPS members is linked with the degree of

predictability (predictability decreases with increasing lead time). Source: MeteoSwiss.



Chapter 3

Data and methods

3.1 Observations

Three years (January 2006 to November 2008) of quality controlled high-resolution instanta-

neous 10 minutes 2m temperature data (± 0.1◦C) are available for the automatic SwissMetNet

stations of MeteoSwiss (Figure 3.1). A year is defined as the period December to November.

For the year 2008, this means from the 1st of December 2007 to the 31th of November 2008.

The seasons are defined as follows: winter (December to February, DJF), spring (March to

Mai, MAM), summer (June to August, JJA), autumn (September to November, SON).

The height of 2 m is the standard of the World Meteorological Organisation’s (WMO)

height for measuring near surface temperature. The stations should measure the weather vari-

ables in ’undisturbed’ locations. 67 stations are used in this study, they are homogeneously

distributed covering regions of the Swiss Plateau, the Jura, the Alps and the Tessin. A wide

range of altitudes is included from 203 m (Magadino, MAG) to 3580 m (Jungfraujoch, JUN).

The maintenance of the dense Swiss observational network is expensive and time-consuming,

but it is of high importance. First, these data are necessary for climate monitoring (climate

warming, extreme events frequency). Second, any NWP model needs initial conditions which

are delivered through the assimilation of observations. A high observations density is partic-

ularly important in regions with complex topography like the Alps (Schraff, 1997). Third,

current observations are necessary to post-process DMO in real time (e.g., using a Kalman

filter). As last example, observations are necessary in order to verify the model outputs, for

instance to investigate cases when the model does not perform well or for combining rain
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gauge and radar information to get high-resolution precipitation fields (Erdin, 2009). In this

study, we neglect the uncertainties due to observation errors. We assume that they are far

smaller than model forecast errors (large signal to noise ratio).

Figure 3.1: Stations of the Swiss meteorological network used in this study, the codes are given with stations

height [m]. Source: MeteoSwiss.

3.2 COSMO model outputs

Daily at 12 UTC and for the period January 2006 to November 2008, deterministic (COSMO-

7) and probabilistic (COSMO-LEPS) 2 m temperature forecasts are available for the stations

used in this study. COSMO-7 provides three days of hourly forecasts, while COSMO-LEPS

delivers 5.5 days of three-hourly forecasts. The COSMO-7 DMO are operationally post-

processed at MeteoSwiss with an algorithm based on a Kalman filter to remove systematic

errors (hereafter COSMO-7-KAL data). COSMO-7-KAL can be assumed bias free. The

temperature is used as error predictor in the algorithm as well as the error structure of the
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previous day, so that the errors emerging from systematically unresolved processes can be

partly corrected. Note that the ’lead times’ are defined as the time spans in hours between

the forecast issuing time (here, daily at 12 UTC) and the times the forecast is valid for.

In Table 3.1, the most significant changes in COSMO-7 and COSMO-LEPS in the last

three years that are relevant for the 2 m temperature forecasts are summarised. In partic-

ular, changes in boundary conditions relaxation, grid mesh, amount of vertical layers, soil

model and temperature diagnostics have induced ameliorations of the forecast quality. For

the stations used in this study (last section), Table 3.2 gives stations name, abbreviations,

locations, stations height and the differences between stations height and grid points height.
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Date Change Impact
01.02.2006 (00 UTC) New high-resolution global forecast-

ing system of ECMWF (horizontal
mesh size of about 25 km).

Higher ECMWF forecast skill,
(http://www.ecmwf.int/products/
changes/high resolution 2005.html),
positive effects on COSMO-7 ex-
pected (COSMO-News 19).

February 2006 New COSMO-LEPS version (Mon-
tani et al., 2008): Ensemble size
enlargement from 10 to 16 mem-
bers weighted according to the clus-
ter populations. Random choice
between two convection schemes
(Tiedtke or Kain-Fritsch).

Better cover of the uncertainty
range, in particular of the model in-
herent uncertainties arising from the
parametrisation of convection.

18.12.2006 (12 UTC) COSMO-7 assimilation cycle: new
snow analysis, using observations
from satellite (Meteosat Second
Generation) and snow height mea-
surements from ground stations.

More realistic 2 m temperature fore-
casts in winter (COSMO-News 22).

31.10.2007 (12 UTC) New COSMO-7 version 4.0.4 (new
microphysics and treatment for the
lateral boundaries for snow and
rain), new numerical solver: Runge-
Kutta.

The new Runge-Kutta scheme is
more accurate than Leap-Frog at
the same efficiency. Strong posi-
tive effects during the winter period
for almost all parameters (COSMO-
News 25).

01.12.2007 COSMO-LEPS: Introduction of
perturbations in the turbulence
scheme (Montani et al., 2008).

Improved consideration of uncer-
tainties in the model formulation.

19.02.2008 (12 UTC) COSMO-7: Grid mesh of 6.6 km in-
stead of 7 km and new rotated grid
centred over Switzerland; 60 verti-
cal layers (instead of 45); The low-
est model layer is at 10 m (instead
of 30 m); New external parameters
(e.g., soil type).

The 2 m temperature shows a
clearly reduced negative bias over
Switzerland by 0.3-0.5K (COSMO-
News 26).

04.06.2008 (12 UTC) New 2 m temperature and humidity
diagnostics in COSMO-7.

More realistic diurnal cycle
(COSMO-News 29).

Table 3.1: Temperature relevant COSMO (COSMO-7 and
COSMO-LEPS) changes since 2006 and impacts.
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n◦ Code Name Alt. [m] Lat. [◦ ] Long. [◦ ] LEPS C7-07 C7-08

27 ABO Adelboden 1320 46.5 7.5667 346.6 301.1 232.2
11 AIG Aigle 381 46.3259 6.9208 514.9 365.1 388.2
33 ALT Altdorf 449 46.8667 8.6333 651.1 741.1 636.2
14 BAS Basel-Binningen 316 47.55 7.5833 -13.3 0.1 -27.8
17 BER Bern-Zollikofen 553 46.9907 7.464 5.1 80.1 33.2
19 BUS Buchs-Suhr 387 47.3833 8.0833 19.1 101.1 57.2
5 CDF La Chaux-de-Fonds 1018 47.0833 6.8 18.3 64.1 59.2
7 CGI Changins 430 46.4 6.2333 -5.3 66.1 -16.8
6 CHA Chasseral 1599 47.1333 7.0667 -538.2 -487.9 -510.8
51 CHU Chur-Ems 555 46.8667 9.5333 711.3 705.1 501.2
64 CIM Cimetta 1672 46.2 8.8 -545.6 -440.9 -203.8
60 COM Comprovasco 575 46.4667 8.9333 906.1 613.1 656.2
56 COV Corvatsch 3315 46.4167 9.8167 -716.2 -554.9 -568.8
53 DAV Davos 1590 46.8167 9.85 128.8 207.1 153.2
50 DIS Disentis 1190 46.7 8.85 669.3 776.1 699.2
2 DOL La Dole 1670 46.4333 6.1 -444.2 -416.9 -397.8
32 ENG Engelberg 1035 46.8167 8.4167 337.6 505.1 236.2
45 EVO Evolene-Villa 1825 46.1167 7.5167 18.3 65.1 -136.8
13 FAH Fahy 596 47.4333 6.95 -4.7 3.1 -73.8
3 FRE La Fretaz 1202 46.8333 6.5833 -148.5 -57.9 -70.8
35 GLA Glarus 515 47.0333 9.0667 421.1 663.1 476.2
47 GRH Grimsel-Hospiz 1980 46.5667 8.3333 273.6 268.1 224.2
44 GSB Grand St.Bernard 2472 45.8667 7.1667 21.8 -66.9 -46.8
49 GUE Guetsch 2287 46.65 8.6167 -10.4 -114.9 -0.8
25 GUT Guettingen 440 47.6 9.2833 -22.9 -6.9 7.2
1 GVE Geneve-Cointrin 420 46.25 6.1333 1.4 -70.9 -14.8
57 HIR Hinterrhein 1611 46.5167 9.1833 152.5 703.1 498.2
26 HOE Hoernli 1144 47.3667 8.95 -278.4 -247.9 -285.8
28 INT Interlaken 580 46.6667 7.8667 430.1 528.1 451.2
48 JUN Jungfraujoch 3580 46.55 7.9833 -830.4 -536.9 -469.8
22 KLO Zuerich-Kloten 436 47.4833 8.5333 -10.1 17.1 33.2
20 LAE Laegern 868 47.4833 8.4 -351.7 -380.9 -372.8
66 LUG Lugano 273 46 8.9667 237 328.1 209.2
31 LUZ Luzern 456 47.0333 8.3 88.8 180.1 74.2
63 MAG Magadino 197 46.1667 8.8833 360.6 525.1 401.2
10 MLS Moleson 1972 46.55 7.0167 -453.3 -652.9 -530.8
41 MVE Montana 1508 46.3167 7.4833 -12.6 200.1 -25.8
29 NAP Napf 1406 47 7.9333 -159 -397.9 -104.8
4 NEU Neuchatel 485 47 6.95 0.5 34.1 -61.8
62 OTL Locarno-Monti 366 46.1667 8.7833 169.2 315.1 232.2
9 PAY Payerne 490 46.8167 6.95 18.3 42.1 1.2
30 PIL Pilatus 2106 46.9833 8.25 -947.9 -1007.9 -876.8
65 PIO Piotta 1007 46.5167 8.6833 617.9 835.1 717.2
12 PLF Plaffeien-Oberschrot 1042 46.75 7.2667 80.3 -78.9 96.2
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72 PSI PSI Wuerenlingen 334 47.5333 8.2333 76.3 86.1 90.2
8 PUY Pully 461 46.5167 6.6667 -33.4 -27.9 99.2
21 REH Reckenholz 443 47.4333 8.5167 17.7 24.1 38.2
59 ROB Robbia 1078 46.35 10.0667 367.7 1026.1 519.2
61 ROE Robiei 1898 46.45 8.5167 -40.4 -52.9 32.2
15 RUE Ruenenberg 610 47.4333 7.8833 -54.1 -11.9 -46.8
37 SAE Saentis 2502 47.25 9.35 -1323.9 -1104.9 -1073.8
55 SAM Samedan-St.Moritz 1705 46.5333 9.8833 478.7 529.1 562.2
58 SBE San Bernardino 1639 46.4667 9.1833 124.5 497.1 195.2
67 SBO Stabio 353 45.85 8.9333 19.9 46.1 -0.8
54 SCU Scuol 1298 46.8 10.2833 735.7 735.1 727.2
16 SHA Schaffhausen 437 47.6833 8.6167 11.9 13.1 -4.8
39 SIO Sion 482 46.2167 7.3333 762.9 533.1 567.2
23 SMA Zuerich SMA 556 47.3833 8.5667 -20.8 -22.9 -79.8
36 STG St.Gallen 779 47.4333 9.4 -23.2 -65.9 -19.8
24 TAE Taenikon 536 47.4833 8.9 -40.9 -6.9 66.2
42 ULR Ulrichen 1345 46.5 8.3167 846 879.1 859.2
38 VAD Vaduz 460 47.1333 9.5167 411.3 376.1 429.2
40 VIS Visp 640 46.3 7.85 1048 782.1 866.2
34 WAE Waedenswil 463 47.2167 8.6833 72.2 137.1 20.2
52 WFJ Weissfluhjoch 2690 46.8333 9.8167 -450.5 -594.9 -332.8
18 WYN Wynau 422 47.25 7.7833 77 69.1 76.2
43 ZER Zermatt 1638 46.0333 7.75 995.6 1187.1 1088.2

Table 3.2: Table of the stations used in this study. The abbre-
viations, altitudes and locations are given. Under LEPS diff.
the differences between COSMO-LEPS grid points height and
stations height (grid point height minus station height) are
given. The same is available for the COSMO-7 grid points
prior to 19.02.2008 (C7 diff. 07 ) and afterward (C7 diff. 08 ).
The differences are lower for COSMO-7 due to the higher
spatial resolution. However, they are very strong correlated
(R=99%). Generally, mountain stations exhibit larger height
differences (R=86%).

3.3 Combination of deterministic and probabilistic forecasts

For a fictive forecast (Figure 3.2), an ensemble of 16 members with the same assumed prob-

abilities ( 1
16) and one deterministic forecast are available. The NWP models forecast errors

for 2 m temperature can be reasonably assumed normally distributed (chapter 6). Thus, the

standard deviation (Equation 5.1) of the members (spread) is used to infer a normal PDF

around the EM (black). The approach in this study is to use the spread information from
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COSMO-LEPS to predict the uncertainty of the deterministic forecast COSMO-7-KAL, i.e.

to predict its own error PDF. To determine the uncertainties of COSMO-7-KAL, a sample

of forecast/observation pairs is needed (e.g., for a season). Determining the uncertainty of

COSMO-7-KAL and the mean spread of COSMO-LEPS for each lead time, it is possible to

investigate the spread-skill relationship (chapter 5) and to model it (chapter 6). The uncer-

tainty of COSMO-7-KAL (skill) is measured using the RMSE (chapter 4). Using the identified

uncertainty model, the instantaneous uncertainty of COSMO-7-KAL can be estimated using

the spread of COSMO-LEPS as predictor. The use of the RMSE as predictand allows to con-

sider possible bias in the COSMO-7-KAL forecasts for the uncertainty prediction. Seasonally,

the COSMO-7-KAL forecasts are assumed bias-free.

−10 −8 −6 −4 −2 0 2 4 6 8 10
Temperature [°C]

Figure 3.2: Fictive probabilistic and deterministic forecasts. The members of the ensemble are plotted in

blue, the deterministic forecast is given in red. Based on the members, a normal PDF can be estimated around

the EM. The deterministic run with more complex formulation has no uncertainty information. The goal of

this study is to develop an uncertainty model capable of predicting the uncertainty of deterministic forecasts

based on probabilistic information.
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Local 2 m temperature prediction

in COSMO

In chapter 2 the limitations of global models in NWP were discussed, motivating the use of

limited-area models for short-term weather forecasts in areas with complex orography. Due to

higher spatial resolution and more complex formulation (e.g., non-hydrostatic), better fore-

casts can be expected from limited-area models. In this chapter, the ’local uncertainties’ in

COSMO-7 and COSMO-LEPS 2 m temperature predictions are discussed, that arise when

comparing predictions at a model grid point with measurements at one specific location. To

understand the uncertainties in local weather forecasts, the error structures must be under-

stood. Typical errors in COSMO-7 forecasts will be presented in the second section of this

chapter.

The association of a model grid point to a particular measurement site in COSMO-7 and

COSMO-LEPS is facilitated by an automatic algorithm. If the nearest neighbour grid point

has less than 100 m height difference to the station height, this grid point is chosen. Elsewise,

the grid point with the smallest height difference in the vicinity of the stations (scanning

3× 3 grid points or 2× 2 grid points in 2007) is selected. The surface conditions at the grid

point (e.g., land or lake) and its altitude often differ from which prevailing at the station.

As the lowest atmospheric model level (COSMO-7 and COSMO-LEPS) is at 10 m, the 2m

temperature is interpolated using the soil surface and the lowest model level temperatures

(see first section of this chapter). Finally, the temperature is adapted to the altitude of the

station considered. In doing so, a constant moist adiabatic gradient of 0.6◦C
100m is assumed.
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The question of the representativeness of grid point values for the observations at weather

stations is an important point. Grid point values are averaged values representative for an

entire grid box. On the contrary, SwissMetNet measurements are taken at specific site with

standard surrounding conditions (see chapter 3). Therefore, even if the model was perfect,

model forecasts at a neighbouring grid point could be quite different to local observations.

Therefore, statistical post-processing is used to adapt NWP model outputs to the local con-

ditions.

4.1 Diagnostics of 2 m temperature

Given that the lowest model layer in COSMO-7 is not located at 2 m, but at 10 m (since

19.02.2008, 30 m before), an interpolation technique is applied between the lowest atmospheric

level and the ground (upper most soil model level) – the so-called ’surface layer’ – to diagnose

this variable. The same method is used for COSMO-LEPS (lowest model layer at 10m). The

surface layer is crucial because of the interaction of the soil with the atmosphere and needs

special treatments. The fluxes (essentially energy and water or water vapour) between the soil

and the atmosphere must be parametrised and are modelled using a turbulent kinetic energy

scheme. Surface exchange coefficients are computed using land cover and soil parameters

defined for each grid cell:

• fractional area covered by plants;

• leaf area index : depends on the soil and vegetation type and shows large seasonal

variations;

• root depth, important for plants water availability and evapotranspiration;

• 9 soil types: each characterised by 19 parameters such as pore volume, field capacity,

minimum infiltration rate, air dryness point, hydraulic diffusivity and conductivity, heat

capacity and conductivity;

• total roughness length: or height where wind speed becomes zero, calculated on the

basis of the local coverage and local orography (the local canopy term and orography

term are added to get the total roughness length).
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In COSMO-7 and COSMO-LEPS, the roughness height is determined by considering land

use type and sub-grid scale topographical variances. The local orography part of the total

roughness length is needed to encompass drag due to unresolved topography and gravity

waves. A canopy height is estimated using the total roughness length. This leads generally to

an overestimation of the real canopy height in mountain areas (large local orography term).

Depending on the emplacement of the 2 m level (below or above canopy height), the diagnose

algorithm is different (exponential or logarithmic profile, respectively). As the canopy height

is overestimated in mountain regions, the exponential profile is used too often (even though

the local canopy is very small: grass, glacier, etc.). Consequently, systematic errors have been

identified: The 2m temperature is too closely coupled to the surface temperature, resulting in

a systematically overestimated amplitude and a phase shift of the daily maximum temperature

by 1-2 hours.

A new diagnostics was operationalised for COSMO-7 in May 2008 (Buzzi, 2008). It is based

on the diagnostics from the DWD. It is tuned for typical SwissMetNet station conditions and

only logarithmic profiles are used for the interpolation. The new method is significantly

better for all seasons and particularly during stable conditions. The mean daily cycle is

improved (shift and amplitude). On average, the negative bias in winter and the positive bias

in summer are reduced. As the new diagnostics is only effective in COSMO-7, inconsistencies

can be expected when combining COSMO-7 and COSMO-LEPS forecasts. However, solely

the spread (and not the single temperature forecasts) of COSMO-LEPS will be used for

uncertainty predictions in COSMO-7-KAL in this study. The bias of the ensemble mean

has therefore no implications for the spread. When comparing the daily cycle of RMSE

of COSMO-7 and COSMO-7-KAL with the daily cycle of the mean spread values of the

summers 2007 (old diagnostics in COSMO-7 and COSMO-LEPS) and 2008 (new diagnostics

in COSMO-7), no time shifts were observed in 2008 (not shown). Probably the spread is not

sensitive to the diagnostics method. Note that on the 25.02.09 the new diagnostics was also

adopted for COSMO-LEPS. Since then, COSMO-7 and COSMO-LEPS use again the same 2

m diagnostics.
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4.2 COSMO performance in predicting 2 m temperature

In order to describe the performance of the COSMO temperature predictions quantitatively,

several verification studies have been carried out. First, the annual verification results of the

2m forecasts of COSMO-7 and of the mean of COSMO-LEPS (COSMO-EM) for 2006-2008

are compared. Second, situations that cannot be modelled satisfactorily are discussed (focus

on COSMO-7). The importance of post-processing methods to account for non-resolved

and local processes is underlined. However, specific situations are highlighted where post-

processing methods are not able to correct for model deficiencies.

Increased performance in 2008 compared to 2006-2007

The three-hourly forecast/observation pairs of the period 2006-2008 for all stations are used

to determine the change in performance in 2008 compared to 2006-2007. As skill measure,

the root mean square error (RMSE) is used:

RMSE =

√√√√ 1
M

M∑
m=1

(ym − om)2 (4.1)

where ym is the mth forecast value and om the mth observation. M is the amount of

forecast/observation pairs (e.g., 366 days × 25 lead times in 2008). The RMSE is used to

evaluate the average magnitude of the forecast errors (accuracy). The difference is squared in

order to weight large deviations more strongly (Wilks, 1995) and thus, the RMSE is partic-

ularly useful when large errors are undesirable. The RMSE can vary between 0 and infinity.

The RMSE is a negatively-oriented score, i.e., the smaller the RMSE value, the smaller are

the forecast errors.

Figure 4.1 shows the relative difference of the RMSE in 2008 compared with the RMSE

estimated for 2006-2007 for COSMO-7 and COSMO-EM for all stations investigated. The

mean increase in skill for COSMO-7 is 18%. Only three stations exhibit a slight decrease.

These results are confirmed by operational verification activities at MeteoSwiss. For COSMO-

EM, the performance increased by 6% averaged over Switzerland. However, about a third of

the stations (mostly low-level stations) showed less skill in 2008. Note that the EM shows a

cold bias (on average for all stations and the year 2007: -0.94◦C). One reason for this is a wet

bias in the soil model in COSMO-LEPS (personal communication of A. Walser, MeteoSwiss).
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For comparison, the overall mean bias in 2007 of COSMO-7 was 0.05◦C. Assuming that the

inherent predictability of the atmospheric flow in 2008 was comparable with 2006-2007, the

improvements (COSMO-7 and COSMO-EM) can only be explained by model changes (see

Table 3.1).

COSMO-7 behaves similar to the COSMO-LEPS members and it is known that the EM

is on average better than any ensemble member (Leith, 1974). It explains why COSMO-7

was 2008 on average 2.5% less skilful than COSMO-EM. However, when Kalman filtering the

COSMO-7 data, the best results are achieved (COSMO-7-KAL: -17% compared to COSMO-

EM, Figure 4.2). In 2008, the COSMO-7-KAL forecasts were on average 18% better than

the COSMO-7 DMO forecasts (Figure 4.3). Kalman filtering led to a RMSE reduction for

all stations, especially for mountain stations illustrated by a strong correlation of the RMSE

reduction with station height (R2=53%). Note that R is the standard Pearson’s correlation

coefficient for linear relationships (Wilks, 1995). The values of R can vary between -1 and

1. 0 means no association, 1 perfect association with positive slope, -1 perfect correlation

with negative slope. R2 is Pearson’s coefficient of determination equivalent to the explained

variance of the predictand (e.g., RMSE reduction) using a certain predictor (e.g., station

height). R2 can vary between 0 (predictor does not explain the variance of the predictand at

all) and 1 (100% explained variance).
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Figure 4.1: (a) COSMO-7 and (b) COSMO-EM performance in 2008 vs. 2006-2007. Mapped are the relative

RMSE differences [%] between 2008 and 2006-2007. Negative values (blue) indicate skill improvement. Observe

the different colorbar ranges. In this study, blue (red) always indicates improvement (degradation) of the score

investigated.



36 4. LOCAL 2 M TEMPERATURE PREDICTION IN COSMO

Figure 4.2: COSMO-7-KAL vs. COSMO-EM performance in 2008. COSMO-7-KAL delivers better forecasts

principally due to post-processing.

For evaluating the quality of an EPS as COSMO-LEPS, the spread-skill relationship must

also be considered. This will be investigated in the next chapter. Probabilistic verification

methods taking into account the spread and the bias of EPS exist (e.g., Murphy, 1970; Müller

et al., 2005; Gneiting et al., 2005; Mason and Weigel, 2009) and are needed to fully evaluate

and compare EPS skills. However, they are not applied in this study. In contrast, this study

focuses on the prediction of local uncertainties and how to combine the strengths of two

models: COSMO-7-KAL delivering bias-free deterministic forecasts and COSMO-LEPS the

uncertainty information.

In Figure 4.4 the RMSE for COSMO-7-KAL (period 2006-2007) are shown. This will be

used in the verification (with independent 2008 data) as ’simplest’ model for comparison. The

RMSE is quite strongly correlated with the altitude of the attributed grid points (R2=58%).

This indicates that despite the strong ameliorations of the forecasts through Kalman filtering

(up to -37% in RMSE values, Figure 4.3), particularly for mountain stations, the variability

of the local errors remain dependent on the altitude. The performance of Kalman filtered

forecasts is linked to the performance of the DMO forecasts. There are difficulties in modelling

weather in complex terrain (see next section) and to expect the same performance in the

Alpine region as in the Swiss Plateau, higher spatial resolution and better simulation of solar
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Figure 4.3: COSMO-7-KAL vs. DMO performance in 2008 (relative differences in %). Negative values

indicate skill improvement.

radiation would be necessary. Precisely, this is done with the new high-resolution COSMO-2

model (chapter 2).
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Figure 4.4: RMSE of COSMO-7-KAL in 2006-2007. All forecasts and lead times are considered. These data

will be used in the verification of the developed uncertainty model (chapter 6).

Typical problems in 2 m temperature prediction

In winter, two processes are particularly difficult to simulate: the dynamics of temperature

inversions and snow cover. Inversion situations are frequent during high pressure influence.

Due to the low incoming solar radiation during the day and the strong outgoing long wave

radiation from the surface during the night, cold air pools can develop. As examples, the

stations ’La Brevine’ [BRV] in the Jura (1048 m, situated in a small vale, Swiss cold temper-

ature record of -41.8◦C on the 12.01.1987) or stations in the fairly flat ’Engadine’ valley (e.g.,

Scuol, 1304 m) record the coldest winter temperatures in Switzerland due to local character-

istics. COSMO-7 and COSMO-LEPS are not able to predict such local cold air pools and

Kalman filtering can help improving the forecasts (personal communication of F. Schubiger,

MeteoSwiss).

Combined with low wind speed and high humidity, inversion situations are often charac-

terised by fog formation (example in Figure 4.5). Fog acts as an absorber and backscatterer

of solar radiation, leading to a radiation deficit at the ground during the day (low tempera-

tures, no or weak daily cycle) and to a temperature increase within the inversion. Descending

and adiabatically warmed air in a high pressure system (subsidence) amplifies the positive

temperature anomaly above the inversion, strengthening the inversion. Such stable boundary
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Figure 4.5: (a) Analysis from the global forecasting system (GFS, www.wetter3.de) on the 22.12.2007 12

UTC. Shown are the geopotential height at 500 hPa [gpdm, black lines], surface pressure [hPa, white lines]

and thickness between 1000 and 500 hPa [gpdm, coloured surfaces]. (b) Visible satellite picture (1045 UTC,

Terra/MODIS satellite: http://rapidfire.sci.gsfc.nasa.gov/realtime/2007086/) on the 20.12.2007. The stratus

layer is visible over the Swiss Plateau. At the time the satellite picture was taken, a slight ’bise’ (North-East

wind) stream was established. Afterwards, a slight ’Foehn’ (mild southerly wind) tendency prevailed.

layers are still difficult to reproduce in NWP models. In general COSMO tends to simulate

too weak and too low inversions that are too rapidly dissolved (Hess, 2009). The parametri-

sation of turbulence (i.e., mixing) plays an important role to correctly predict the height and

the strength of inversions. The capacity of NWP models to predict inversions with fog is

crucial for the correct forecast of 2 m temperature (see examples in Figure 4.7). The amount

of solar radiation at the ground affects the daily temperature cycle and its amplitude. In

the case that there is an inversion and the model did not predict any inversion, the stations

situated under the fog will register lower temperatures than predicted (positive forecast er-

rors). The stations laying at the height of the inversion or slightly above would exhibit higher

temperatures than predicted (negative forecast errors). Remember that the height difference

between model grid point and station is considered using a constant moist adiabatic gradient

(decreasing temperature with height). This is definitely a bad assumption in the particular

case of inversion, given that temperature increases with height within the inversion.

To illustrate the problems of COSMO-7 forecasts during fog events, the case of the forecast

on the 22.12.2007 is explained in more details. On the 22.12.2007 and during the following

days, the region from the Azores up to Eastern Europe was characterised by high surface
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pressure (>1015 hPa). The pressure distribution above central Europe was not very pro-

nounced (see Figure 4.5, left). At the beginning, there was a slight Foehn tendency. Over the

Swiss Plateau, the St. Galler Rhinevalley and up to the Urner Reussvalley a fog layer was

present with top at 700-1000 m. The temperatures are cold and the amplitude of the daily

cycle is reduced due to low irradiance (see Figure 4.7). Above the fog layer, mostly cloud free

and mild temperatures are observed during the day. In the Tessin, there was high fog on the

23.12.2007 (MeteoSwiss, 2007). The errors are related to the height of the stations (R2=40%,

Figure 4.6). Below 1000 m positive model biases are generally observed and negative biases

are observed above (Figure 4.6). This corresponds to the observation of fog top. Clearly,

this case illustrates the difficulties of COSMO-7 to predict an inversion. The positive bias

underneath 1000 m reveals the inexistence of the fog layer in the model, or at least a too fast

dissolution of it. The negative bias above 1000 m is also an indication for a wrong prediction

of the inversion.

The Kalman filtered data were even more biased (Swiss mean of 1.62◦C, instead of 0.48◦C

with the DMO). The extension and location of the fog layer can be highly variable spatially

(e.g., depending on wind strength, direction and topography) and temporally (change of
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Figure 4.6: Fog event: dependence of the COSMO-7 error on the altitude. See explanations in the text.
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the synoptic situation, advection of dryer air, etc.). This explains the bad performance

of the Kalman filter during such situations as only the past error is used to correct the

forecast. Figure 4.7 shows the meteograms for the 22.12.2007 forecasts for two stations:

one underneath/in the fog (Zurich) and another above it (Hoernli). Typically, the model

overestimates the amplitude of the daily cycles for stations situated below the fog layer (Figure

4.7). During the night, the large surface long-wave radiation and no or low backscattering

lead to a strong surface cooling in the model. During the day, too much solar radiation

and therefore too high temperatures were predicted. Above the fog layer overall too low

temperatures were predicted.

Another challenge in winter, but also in spring and autumn, is the forecast of snow cover

around the snow line (Figure 4.8). Due to the interpolation of the 2m temperature, the pres-

ence or absence of snow in the model world is decisive especially prior to the implementation

of the new 2 m diagnostics in COSMO-7 in June 2008, when the 2m temperature was coupled

too strongly to the soil temperature. The snow cover in COSMO-7 and COSMO-LEPS tends

Figure 4.7: Meteograms for (a) Zurich [SMA, 556 m] and (b) Hoernli [HOE, 1144 m] during a fog event

(22.12.2007 and following days). Plotted are: the interquantile range (grey patch), the min./max. of the

members (thin black lines), COSMO-EM (blue), COSMO-7 (red), COSMO-7-KAL (green) and observations

(bold black line). Pay attention to the different temperature scales. Zurich was probably underneath the

fog layer and the station Hoernli above. Observe the different daily cycles of the model outputs and of the

observations. In Zurich, the predicted night temperatures were too low: an evidence that no fog was predicted.

For Hoernli, COSMO-7 predicted too low temperatures. Probably snow melting (remember, 2 m temperatures

are too strongly linked to surface temperature until June 2008 in COSMO-7) exacerbated the effect of the

wrong prediction of the inversion (max. of COSMO-7 forecasts around 0◦C).
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to melt too rapidly, leading to positive temperature biases. When snow is present, the sur-

face temperature is 0◦C or less. Without snow, the surface temperature varies depending on

the radiation budget. Another factor is the difference between model grid point and station

height. If the grid point is at higher elevation than the station itself (this is the case for over

60% of the stations investigated here) and if the model predicts snow for the grid point but

the station is snowfree, the predicted temperature will be too low.

General properties of the 2 m temperature forecast error

The error is correlated with the magnitude of the temperature: in summer, the temper-

ature exhibits a strong amplitude of the daily cycle due to the duration and strength of

the solar radiation. Convective cloud cover and precipitation typical for a summer day are

more difficult to predict than stratiform clouds and precipitation due to their local and rapid

emergence. Given that cloud cover can indirectly affect temperature through diminishing

irradiance and precipitation through evaporative cooling, temperature forecasts are more un-

certain in summer. Also evapotranspiration plays a role: during the vegetative period green

plants transpire cooling the environment (e.g., forests cooler than the surroundings). The po-

Figure 4.8: Visible satellite picture (1020 UTC, Terra/MODIS satellite:

http://rapidfire.sci.gsfc.nasa.gov/realtime/2007361/) on the 27.12.2007. The snow is visible (Alps,

Jura). The snow in the Swiss Plateau has already melt due to a rapid temperature increase. Snow tends to

melt too rapidly in COSMO-7.
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tential soil evaporation is also larger in summer (larger irradiance, higher temperatures). The

actual evaporation depends on the soil moisture content. The importance of soil moisture-

atmosphere interactions was investigated for the 2003 heat wave, for instance (Fischer et al.,

2007). Large precipitation deficits over Europe in the months prior to the heat wave led to

decreasing soil moisture content limiting strongly the evaporation rates. The weak evapo-

rative cooling allowed the temperatures to increase strongly during the heat wave. These

supplementary, very local processes in summer are not fully resolved in NWP models (e.g.,

land cover distribution, soil moisture content) leading also to forecast errors.

Note that depending on the season, the sunrise and sunset times vary. In COSMO, the

solar radiation is only actualised each hour and assumed constant in the meantime. Radiation

is assumed vertical in COSMO and the slopes are not considered (’flat’ terrain). Clouds over

the surrounding grid cells hiding or reflecting sun radiation to the surface are not regarded.

Mountains shadows (e.g., in Alpine valleys) are not taken into account. These simplifications

in the model formulation lead to forecast errors of 2m temperatures that can only be partly

corrected through the Kalman filter.

Summary

During winter, inversion situations are responsible for 2 m temperature forecast errors due

to unsatisfactory simulations of inversions and differences between model world and reality

(e.g., height difference between grid point and stations, bad constant lapse rate assumption).

In autumn and spring, there are problems around the snow line. Particularly in summer,

the boundary layer is well-mixed (e.g., through convection) and the constant lapse rate ap-

proximation is more realistic, but other processes linked with soil, vegetation and convection

complicate 2 m temperature forecasts. Post-processing methods are helpful to adapt forecasts

to the current weather situation and to local characteristics. The Kalman filter particularly

improves predictions at mountain stations. However, the Kalman filter is not able to account

for all forecast errors. On the one hand, COSMO-7 is not able to simulate all weather pro-

cesses satisfactorily (e.g., fog, snow melt). If the differences between model world and reality

change abruptly (e.g., too rapid snow melt or too rapid fog dissolution in the model compared

to reality) during the 3-days forecast, the Kalman filter does not perform well. On the other

hand, ’random’ errors remain due to uncertainties arising from larger scales (meso-scale, syn-
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optic and also large-scale). These uncertainties are called ’atmospheric uncertainties’ in this

study. The strength and frequency of ’random’ errors determine the uncertainty in COSMO-

7-KAL forecasts. In the following chapter, the information content of the spread of the

limited-area ensemble COSMO-LEPS will be investigated along with its ability to represent

the uncertainties of local deterministic COSMO-7-KAL forecasts.



Chapter 5

The properties of the spread-skill

relationship

5.1 Definitions and introduction

EPS are designed to represent the full uncertainty range as realistic as possible (Ban, 2006;

Palmer and Hagedorn, 2006). To assess if this is the case, the spread-skill relationship (SSR)

is often investigated. Palmer et al. [2005] showed that in a ’perfect ensemble’ the mean

(e.g., over a season, a year) of the spread (Equation 5.1) should be equal to the root mean

square error (RMSE, see Equation 4.1 in chapter 4) of the EM over the same period. In this

study, the same definitions of spread and skill are used. As the ensemble used in this study

(COSMO-LEPS) only includes 16 members, the unbiased estimator of the standard deviation

is used:

spread =

√√√√ 1
M − 1

M∑
m=1

(fm − f)2 (5.1)

where M is the ensemble size, fm is the forecast value of the mth member and f represents

COSMO-EM:

f =
1
M

M∑
m=1

fm (5.2)

Figure 5.1 shows the mean evolution in 2008 of the spread and the skill for two stations.

Although Zurich (station situated on a south-west exposed slope above the lake of Zurich,
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556 m) and Kloten (station situated roughly 11km northward from Zurich at a similar al-

titude) are geographically very close, there are obvious differences in the daily cycle (shape

and amplitude) of the RMSE of COSMO-7-KAL. The RMSE of the COSMO-EM is more

comparable. This is due to the fact that the spatial resolution of COSMO-LEPS is lower

than that of COSMO-7 and that the COSMO-7 data are Kalman filtered, i.e. adapted to the

local conditions. Also the spread is geographically less variable. In the following section, the

SSR of COSMO-LEPS is investigated. In a second step, the relationship between the skill of

COSMO-7-KAL and the spread of COSMO-LEPS will be characterised. Finally, both SSRs

are compared quantitatively.
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Figure 5.1: Mean spread (black) and skill (COSMO-EM [blue] and COSMO-7-KAL [green]) in 2008 for two

close stations: (a) Zurich [SMA] and (b) Kloten [KLO]. The spread is too small for both stations and all lead

times (underdispersion). The underdispersion decreases with the lead time.
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5.2 The spread-skill relationship of COSMO-LEPS

To investigate the nature of the SSR for COSMO-LEPS, scatter plots are analysed. The mean

spread is compared with the skill of COSMO-EM. The data of Figure5.1 for Zurich is shown

as scatter plot in Figure 5.2. The plotted diagonal is the ’perfect’ SSR line (spread = RMSE).

All points are above this line (spread < RMSE), i.e. the spread is underdispersive for all lead

times. Depending on the time of the day (12, 15, 18, 21, 00, 03, 06, 09 UTC), the points

are coloured differently. The eight categories show similar slopes, but different intercepts

(’stratification of the SSR’ ): i.e., the underdispersion varies during the day. When considering

other representative stations, the ensemble COSMO-LEPS is mostly underdispersive (Figure

5.3). The spread is often strongly too small in the early afternoon (12 and 15 UTC), however

this can not be generalised (e.g., largest underdispersion at 12 UTC for Davos, 18 UTC for

Lugano). On average, the spread is too small compared to skill for all stations (Figure 5.4)

indicating that it does not explain the full local variability of errors in the COSMO-7-KAL

forecasts. The underdispersion tends to be larger for mountain stations (Alps, Jura). The

structure of the SSR varies seasonally (example in Figure 5.5). For instance the times of

the day with largest or smallest underdispersion vary depending on the season. Overall, the

SSR can be assumed linear for all seasons and all stations, whereas single stations show more

complex relationships for one or the other season. On average, the spread is underdispersive

for all stations, i.e., it does not explain the full local variability of errors of the COSMO-7-KAL

forecasts. The underdispersion tends to be larger for mountain stations (Alps, Jura).

5.3 Relationship between spread and skill of COSMO-7-KAL

The last section has shown the SSR of the COSMO-LEPS system. In this section, the novelty

of this study is introduced: The SSR between the spread of the ensemble COSMO-LEPS

and the skill of deterministic bias free COSMO-7 forecasts (COSMO-7-KAL) is investigated.

Only 25 lead times are available (instead of 45 lead times with COSMO-LEPS) because the

COSMO-7-KAL forecasts reach only up to day+3.

The similarities and differences to the SSR of COSMO-LEPS are briefly discussed, whereas

similarities prevail: as for COSMO-LEPS, the SSR can be assumed linear for most stations

(Figures 5.6 and 5.7) and seasons (Figure 5.9). The SSR of COSMO-7-KAL also varies
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Figure 5.2: Annual COSMO-LEPS SSR for the station Zurich in 2008.

geographically (Figure 5.7) and seasonally (Figure 5.9). On average, the spread is also too

small compared to the RMSE, however the mean underdispersion is reduced by 17% (Figure

5.8). The stratification of the SSR is less pronounced. Note that single stations and seasons

show more complex relationships. In the next section, the SSRs using the COSMO-EM

forecasts and the COSMO-7-KAL forecasts are compared quantitatively for all stations.

5.4 Seasonal comparison and discussion

In this section, the SSRs using COSMO-EM and the COSMO-7-KAL forecasts are quantita-

tively compared with each other. The underdispersion and the correlation of the daily cycle

are investigated using two scores: one considering the overall correspondence between the

spread and the RMSE, the second the correlation without considering underdispersion.

Strength of the spread-skill relationships

The differences between the RMSE (COSMO-EM and COSMO-7-KAL) and the spread values

for all 3-hourly lead times until day+3 12 UTC are used to compute the root mean square

difference (RMSD, Equation 5.3). This score measures the correspondence between spread
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Figure 5.3: Annual COSMO-LEPS RMSE vs. spread scatterplots for four different stations situated in

various topographical and meteorological environments (Kloten [KLO]: eastern Swiss Plateau; Davos [DAV]:

located in a flat valley in the eastern Alps; Geneva [GEV]: western Swiss Plateau, near lake Geneva; Lugano

[LUG]: Ticino (Southern part of the Alps), near lake Lugano). The diagonal is the ’perfect’ SSR line. The

colours represent the 8 different forecast times (12, 15, 18, 21, 00, 03, 06 and 09 UTC). Daytime lead times

are plotted in reddish colours and the night-time ones in bluish colours.

and skill and is negatively-oriented: The smaller the value, the better the SSR. The RMSD

can vary between infinity and 0.

RMSD =

√√√√ 1
M

M∑
m=1

(spread(m)− RMSE(m))2 (5.3)

The summation is applied over the M lead times. The RMSE values are for COSMO-EM or

COSMO-7-KAL depending on the SSR considered.

Both the phases of the spread and skill values (e.g., shift of the daily cycle) and the

underdispersion (mean distance between spread and skill values) impact the RMSD. The
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Figure 5.4: Mean underdispersion values [◦C] for the SSR of COSMO-LEPS in 2008. Plotted are the differ-

ences mean skill minus mean spread (whole year, all lead times up to day+3 12 UTC). Larger values indicate

larger underdispersion.

RMSDs for COSMO-LEPS in 2008 are plotted for all stations and the four seasons in Figure

5.10. The pattern is particularly pronounced in winter (2007/2008): There is a relationship

between RMSD and grid point height (R2=46%). Some middle to high altitude stations

exhibit particularly large RMSDs, e.g., Cimetta (1672 m), Saentis (2490 m), Pilatus (2106 m)

and Ulrichen (1345 m). The grid points attributed to these stations are too low (maximum

of 1324 m height difference for the station Saentis in COSMO-LEPS, see Table 3.2 in the

Appendix). This indicates that the differences between model world and reality are important

for explaining the strength of the spread-skill relationship.

The RMSD values are also estimated for the SSR of COSMO-7-KAL. Instead of the abso-

lute values, the relative differences in RMSD (RMSDD, Equation 5.4) when using COSMO-

7-KAL instead of the COSMO-EM are calculated.

RMSDD[%] =
RMSDCOSMO-7-KAL − RMSDCOSMO-EM

RMSDCOSMO-EM
· 100 (5.4)

The RMSDs are on average 10.4% smaller for COSMO-7-KAL, i.e. the SSR is better when us-

ing COSMO-7-KAL (Figure 5.11). Only in spring, the RMSDs for COSMO-7-KAL are larger

for most stations (especially mountain stations). Therefore, the correspondence between the

spread and the RMSE of COSMO-7-KAL was lower than the correspondence between the
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Figure 5.5: Similar to Figure 5.3 but showing seasonal scatter plots for one station (Zurich).

spread and the RMSE of the COSMO-EM. This indicates that the RMSEs of COSMO-7-KAL

were larger than the RMSEs of COSMO-EM: this specific season (spring) was particularly

difficult to forecast with a deterministic model. For instance, snow and fog dynamics were

not satisfactorily modelled with COSMO-7 and the Kalman filter was not able to account for

the resulting forecast errors (chapter 4).

Correlations between spread and skill

Important in the perspective of modelling the SSR is the correlation (or similarity) between

the daily cycles of the spread and of the skill. Therefore, Pearson’s correlation coefficient is

used. The R values for the SSR of COSMO-LEPS are plotted in Figure 5.12. Most of the

stations exhibit a positive correlation and are consistent with the expectation of increasing

spread with increasing RMSE (on average, R=43.7%). Only sparse stations show negative

correlations, representing a negative SSR (decreasing spread with increasing RMSE). The
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Figure 5.6: Annual COSMO-7-KAL SSR for Zurich in 2008, compare with Figure 5.2.

spread better explains the variance of the RMSE of COSMO-7-KAL than the variance of

the RMSE of COSMO-EM (+10.2% in R2 on average). The seasonal differences in R2 (see

Equation 5.5) are mapped in Figure 5.13.

R2
diff = (R2

COSMO-7-KAL −R2
COSMO-EM) (5.5)

Generally, the SSR of COSMO-7-KAL is better than the SSR of COSMO-LEPS for short-

term forecasts. The underdispersion is reduced and the daily cycle of the spread corresponds

better to the RMSE cycle of COSMO-7-KAL. It is not self-evident to expect from the spread

of the COSMO-LEPS system to correspond better to the local variability of errors in de-

terministic and Kalman filtered forecasts than to the uncertainty of its own ensemble mean.

The Kalman filter removes the systematic local errors and simultaneously reduces the lo-

cal uncertainties. On the whole, ’random’ errors depending on larger scales (’atmospheric’

uncertainties) remain. The good correspondence between the spread and the variability of

errors in COSMO-7-KAL indicates that the spread essentially comprises ’atmospheric uncer-

tainties’. The COSMO-EM is not bias corrected, local errors remain that the spread cannot

represent, explaining the weaker spread-skill relationship. This important conclusion justifies
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Figure 5.7: Annual COSMO-7-KAL RMSE versus spread scatter plots for four different stations situated in

various topographical and meteorological environments (Figure 5.3).

the combination of COSMO-LEPS and local bias corrected COSMO-7 forecasts. The results

of this chapter are encouraging in the perspective of modelling the uncertainties of the local

COSMO-7-KAL predictions (next chapter).

In summary, the SSRs of COSMO-7-KAL and COSMO-LEPS depend on:

• the geographical location of the station;

• the season;

• the time of the day, whereas the dependence is much weaker for COSMO-7-KAL.
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Figure 5.8: Relative change in underdispersion when using COSMO-7-KAL forecasts instead of the COSMO-

EM (compared to Figure 5.4) in 2008. Only four stations show larger mean underdispersion.
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Figure 5.9: Similar to Figure 5.7 but showing the seasonal variation of the SSR for Zurich in 2008. Compare

with Figure 5.5.
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Figure 5.10: Seasonal RMSDs in 2008.
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Figure 5.11: Seasonal RMSDDs in 2008. Positive values indicate smaller RMSD for the SSR of COSMO-7-

KAL.



5.4. SEASONAL COMPARISON AND DISCUSSION 57

Figure 5.12: Seasonal R values in 2008 for the SSR of COSMO-LEPS.
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Figure 5.13: Seasonal R2
diff values in 2008. Positive values correspond to the additional explained variance

for the SSR of COSMO-7-KAL compared to the SSR of COSMO-LEPS.



Chapter 6

Uncertainty prediction models for

COSMO-7-KAL

The investigation of the spread-skill relationships (SSR) based on the spread of COSMO-

LEPS and COSMO-7-KAL forecasts shows that the use of spread information has potential

to predict uncertainty in bias corrected local deterministic forecasts. The SSR can be assumed

as linear. It depends on the geographical location of the station and on the season. The SSR

of COSMO-7-KAL also depends on the time of the day but this dependence is less pronounced

than for the SSR of COSMO-LEPS. First, the dependency on the time of day of the SSR will

not be taken into account in the uncertainty model. Note that the small data basis (25 lead

times for 8 times of the day) does not allow the identification of uncertainty models for each

time of the day.

The geographical dependence of the SSR implies the use of station-based uncertainty mod-

els, whereas the seasonal variation of the SSR implies the use of adaptive uncertainty models.

This means that model parameters are regularly (e.g., daily) adapted, or re-estimated and

this for each station. Adaptive uncertainty models have the advantage of adapting rapidly

in the case of NWP model changes. They are quite often in COSMO (Table 3.1 in chapter

3). For instance, changes in the consideration of inherent uncertainties in the formulation

of COSMO-LEPS impact the spread (e.g., reduced underdispersion). Changes in COSMO-7

(e.g., new snow analysis, new 2 m temperature diagnostics) influence the strength and vari-

ability of errors (skill). Given that forecasts of two different NWP models are combined, both

changes in the probabilistic as well as in the deterministic model can affect the nature of the
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SSR. In this chapter, adaptive station-based uncertainty models with increasing complexity

are identified and compared.

6.1 The adaptive linear model (ALM)

Formulation of the statistical model

The first model is the adaptive linear model (ALM) (Equation 6.4, Figure 6.3). Daily, the

evolution of the RMSE of COSMO-7-KAL (RMSEw(t)) and of the mean spread (spread(t))

in function of the lead times (t) are calculated using model outputs and observations of the

last 30 days (ALM30).

To begin with, a training period of 30 days is chosen as compromise between the wish

to account for the latest structure of the spread-skill relationship and the need of a minimal

data sample for robust statistics. Other training periods are tested later. The ALM has two

parameters: the intercept a and the slope b. They are daily estimated using the standard

least square regression method (Wilks, 1995; Draper and Smith, 1998).

Outliers filtering

The ’extreme outliers’ are removed to get a more robust regression. Error values below q−

(smallest negative errors) and above q+ (largest positive errors) are not considered for the

estimation of the parameters (Equations 6.1 and 6.3). This allows a more robust estimation of

the model parameters. Moreover, extreme errors which can occur independently of the NWP

model are filtered out. For instance, a wrong snow analysis used for assimilation and leading to

biased forecasts is not representative for the performance of the model itself. For each station,

an error distribution is built based on all forecast/observation pairs of the period 2006-2007

(example in Figure 6.1). The data of 2008 are not used given that the verification of the

uncertainty models will be done for 2008. This ensures the independence of the data used for

verification from the data used for the parametrisation of the uncertainty models. The error

distributions of all Swiss stations can be assumed as Gaussian. Especially mountain stations

show slightly right skewed distributions (not shown). Thus, the predicted uncertainties with

the ALM can be used to derive normal distributions around the COSMO-7-KAL forecasts

(chapter 3).
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Figure 6.2 shows the repartition of the outliers depending on the lead times for the year

2008. The outliers from all stations are joined into the histogram. On the whole, outliers tend

to be more frequent during the afternoon (12 and 15 UTC) and with increasing lead time.

This is not astonishing as the forecast uncertainties are generally larger in the afternoon

(chapter 5). There is no apparent link between station height and outlier frequency (not

shown). The total frequency of outliers in 2008 varies between 0 and 36 depending on the

station.

IQR = Q0.75 −Q0.25 (6.1)

Q0.25 and Q0.75 are the 25 and 75% quantiles. IQR is the interquantile range.

q− = Q0.25 − 3 · IQR (6.2)

q+ = Q0.75 + 3 · IQR (6.3)

̂RMSEw(t) = aw + bw · spreadw(t) (6.4)
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Figure 6.1: Error distribution for Zurich in 2006-2008.
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Figure 6.2: Outliers frequency in 2008 depending on the lead time. The outliers of all stations are considered.

where w is the length of the training period and t is the lead time. The parameters do not

depend on the lead time.

Using this uncertainty model, simulations are performed for all stations for the year 2008.

For each daily forecast of COSMO-7-KAL, the instantaneous spread(t) values of the COSMO-

LEPS forecast are used to predict the uncertainties of the COSMO-7-KAL forecasts (Equation

6.5, example in Figure 6.4).

σpred(t) = aw + bw · spread(t) (6.5)
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Figure 6.3: Schematic of the ALM approach. Based on the spread (COSMO-LEPS) and the RMSE (COSMO-

7-KAL) of the last 30 days, a linear relationship is deduced. The model parameters are then used to predict

COSMO-7-KAL uncertainty in the next three days using the spread of COSMO-LEPS as predictor.

Verification of the ALM

For each daily forecast in 2008, the RMSE of the COSMO-7-KAL forecast is calculated using

Equation 4.1, where M = 25 lead times. For the same forecast, the 25 spread values of

COSMO-LEPS are averaged. Figure 6.5 shows the DRMSE evolution without filtering of the

outliers. In the same plot, the mean spread values are given. The variability of the DRMSE

values is larger than the variability of the daily mean spread values. This indicates that

COSMO-LEPS is not able to predict the full variability of the daily uncertainty. The large

DRMSE peak on the 24.05.08, along with the increasing and decreasing in DRMSE prior and

after this peak is not reproduced through COSMO-LEPS. The differences between both NWP

models – COSMO-LEPS and COSMO-7 – are probably responsible for this. For instance,

different snow covers in COSMO-7 and the members of COSMO-LEPS are possible. Note

that the variability of DRMSE is larger for mountain stations.
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Figure 6.4: Example of an uncertainty prediction using the ALM (issuing time: 06.07.08 12 UTC) for the

station Neuchatel (NEU, southerly exposed slope near lake Neuchatel). The parameters of the uncertainty

model are estimated using the forecasts and observations of the last 30 days at station Neuchatel. The extreme

outliers are filtered based on the error distribution of the years 2006 and 2007. The uncertainty prediction

is computed using the spread of COSMO-LEPS as predictor. The spread (blue patch) is plotted around the

COSMO-EM forecast (line in dark blue). When there is an overlap with the predicted uncertainty of COSMO-

7-KAL (light red patch), the surface is plotted in dark red. The observations are given in black. Note that

the hourly forecasts of COSMO-7-KAL and the hourly instantaneous observations are plotted, whereas the

uncertainty predictions are 3-hourly (3-hourly COSMO-LEPS forecasts).

For the following investigations in this study, only outliers filtered error data are used.

Figure 6.6 shows the DRMSE time series with filtered data for the same station as in Fig-

ure 6.5). Instead of the mean spread values, the daily mean predicted uncertainty values

are given (DMU). For each forecast, the 25 predicted uncertainties are averaged. As the

variability of the predictor is too low, the ALM also predicts too less variable DMU values.

The predicted uncertainties better follow the DRMSE evolution, however there is a delay in

the DMU compared to the DRMSE. An approach is proposed in the outlook to reduce the

delay. Independent of the formulation of the uncertainty model, a delay is to expect as the

uncertainty model is trained using historical data.

The first score which will be used for the verification and comparison of the uncertainty
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Figure 6.5: DRMSE (without filtering) and daily mean DMO spread values for Davos in 2008.

models is the root mean square difference between both DMU and DRMSE time series (Equa-

tion 6.6). The RMSDsts for all stations are shown in Figure 6.7. The second score will

consider the daily cycle of the predicted uncertainty (next subsection).

RMSDts =

√√√√ 1
M

M∑
m=1

(DMU(m)−DRMSE(m))2 (6.6)

where the summation is applied over the M days (2008: 366 days).

Simulation of the daily cycle

The comparison between the mean of the daily simulated uncertainties (DMU) and the RMSE

of the forecasts (DRMSE) is one aspect that must be taken into account for the verification of

the uncertainty models. The second important aspect is the model ability to render correct

daily cycles of the RMSE. In Figure 6.8 the monthly RMSE, DMO spread and simulated

uncertainties (using the ALM30) for Davos are shown. The monthly RMSDdc (Equation
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Figure 6.6: DRMSE (with filtered data) and DMU for Davos in 2008 using ALM30.

Figure 6.7: RMSDts for the ALM30 in the year 2008.
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6.7) between simulated uncertainties (σpred) and RMSE are averaged to get a value scoring

the quality of the simulated daily cycle (RMSDdc). This score is plotted for all stations in

Figure 6.9. Both aspects (RMSDts and RMSDdc) will be used to determine the optimal

training period after having analysed the ALM30 in more details.

RMSDdc =

√√√√ 1
M

M∑
m=1

(σpred − RMSE(m))2 (6.7)

where the summation is applied over the M=25 lead times.

The differences between the daily cycle of the RMSE and of the simulated uncertainty

point out that the consideration of the time of the day in the uncertainty model would be

beneficial (example of Davos in Figure 6.8, the difference in amplitude of the months April and

May stand out). The amplitude of the daily cycle in RMSE cannot be satisfactorily simulated

with the present model. To compare quantitatively the mean daily cycles of the RMSE and

of the predicted uncertainties in 2008, the standard deviation of both detrended variables
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Figure 6.8: Monthly RMSE, predicted uncertainty with ALM30 and spread in function of the lead time in

2008 for Davos.
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Figure 6.9: RMSDdc for the ALM30 in the year 2008.

(σ̃pred) and ( ˜RMSE) are calculated. The time series are linearly detrended to eliminate the

variability that is due to the trend. In doing so, the ratio only compares the variabilities in the

daily cycle. The ratio between the variability of the predicted values and the variability of the

RMSE (Equation 6.8) is plotted in Figure 6.10. The predicted uncertainties with the ALM30

explain on average only 40% of the variability of the daily cycle of RMSE. This motivates the

consideration of the stratification of the SSR (dependency on the time of day, chapter 5) in

the uncertainty model. In the next section, a pragmatic approach to extend the ALM will be

proposed.

ratio =
std(σ̃pred)

std( ˜RMSE)
(6.8)

Analysis of the parameters

In Figure 6.11 the parameters of the ALM30 for Zurich are shown along with the confidence

intervals. The seasonal variability of the parameters at one station (standard deviation of

the parameters time series in 2008) is always larger than the geographical variability of the

averaged parameters (standard deviation of the mean parameter values of all stations). Es-

pecially mountain stations show large seasonal variations of the parameters compared to the

mean geographical variability. Two conclusions can be drawn from this investigation: first,
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Figure 6.10: Variability ratio of the daily cycle using the ALM30.

the seasonal variability of the parameters cannot be neglected in the uncertainty models,

confirming the need of adaptive models. Second, the difference in seasonal variability (e.g.,

Swiss Plateau vs. mountain stations) is so strong (Figure 6.12) that station-based uncertainty

models are needed to take into account the geographical differences.

Sensibility to the training period

For comparing the sensibility to the training period (until now, 30 days), the uncertainty

model was run with three other training periods: 15, 60 and 90 days. The two aspects, on

one hand the RMSDts between the DRMSE and the DMU time series and the average of the

RMSDdc between the monthly RMSE and modelled uncertainties (daily cycle) have been

investigated for the ALM in 2008. They are also calculated for the three other simulated

training periods. For the ALM30, it was shown that the values of both aspects have not the

same order of magnitude. While the mean RMSDts was 0.84◦C, the mean RMSDdc was

0.44◦C (Figures 6.7 and 6.9). The RMSDts and RMSDdc values for both important aspects

were calculated for each station and training period. To determine the optimal training

period, both aspects are weighted equally. As both values do not have the same order of

magnitude, they are scaled between 0 and 1. For example, the four values (four training

periods) of RMSDdc are taken for each station. Based on the minimum (min) and maximum
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Figure 6.11: Evolution of the ALM30 parameters in 2008 for Zurich: a (blue) and b (green).

(max) of these four values, they are linearly scaled between 0 and 1 using following equation:

RMSDscaled =
1

(max−min)
· (RMSD −min) (6.9)

where RMSD can be either RMSDts or RMSDdc depending on which values are scaled.

For each station, the four scaled RMSDts values and the four scaled RMSDdc values are

used to determine the optimal training period (example in Figure 6.13). The four absolute

differences RMSDts,scaled − RMSDdc,scaled are calculated. The training period with the

smallest difference is the optimal one. For most stations (40 stations or 60% of the 67

stations), 30 days is the optimal training period.

Residuals analysis

One assumption of linear regression is the normal distribution of the residuals (Equation 6.10),

i.e. the differences between the values that are to be estimated (RMSEw(t)) and the fitted

values with the linear model ( ̂RMSEw(t), Equation 6.4). If the residuals are not independent

and identically-distributed (unit variance), they are not random and some systematic effects

remain. In this case, the model can be improved. The distribution of all residuals for the
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Figure 6.12: Plotted are the ratios of the seasonal variability at the stations vs. the mean geographical

variability for the parameters of ALM30: (a) for a and (b) for b.
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Figure 6.13: Method used to determine the optimal training period for the ALM. Example of the station

Geneva. The four RMSDts,scaled values are plotted in blue, the four RMSDdc,scaled are given in red (note

that the x-axis is not linear). Theoretically, the exact x-position of the location where both lines cross could

be determined. However, in this study the absolute differences between both lines are calculated for each of

the four training periods, the training period with the smallest difference is assumed to be the optimal one.

station Zurich in 2008 (25 × 366 values) is shown in Figure 6.14. The distribution is quite

normal (mean of 0, Gaussian shape), however the values in the tails are not consistent with

the theoretical normal distribution: For that particular station, small negative outliers are

too rare, large positive outliers are too frequent (i.e., right skewed). The tails of the error

distributions are particularly sensitive to sampling (extreme values are much less frequent than

values around 0). The problem in the tails of the distributions is especially demonstrative

for mountain stations (example in Figure 6.15). The QQ-plots allow a more precise analyse

rather than just visually considering the empirical distributions.

residuals(t) = RMSEw(t)− ̂RMSEw(t) (6.10)



6.2. THE EXTENDED ALM 73

−1.5 −1 −0.5 0 0.5 1
0

100

200

300

400

500

600

700
Residuals distribution for SMA, period: 071201 − 081130, min.=−1.2, mean=0, max.=1, std.=0.3, bins=49, bin width=0.04

Residuals [°C]

F
re

qu
en

cy

Figure 6.14: Distribution of the residuals for Zurich in 2008.

6.2 The extended ALM

In the subsection about the quality of the simulation of the daily cycle, it was shown that

only a part of the variability in RMSE is explained through the ALM30. This is due to a large

part to the simplification made in the formulation of the uncertainty model: the dependency

of the SSR dependency on the time of the day has been neglected in the ALM30. As only 3-4

data points are available for each time of the day, it is not possible to estimate regression lines

for each time of the day. The daily residuals do not always show a daily cycle (not shown)

and thus, they cannot be modelled (e.g., using sine and cosine functions).

Therefore, a pragmatic approach, the extended ALM (Equation 6.11) is proposed which

consists in adding the residuals (Equation 6.10) to the ALM (Equation 6.4). In doing so, the

uncertainty contains a predictive part (using the spread as predictor) and a persistent part

(the residuals). It is assumed that the residuals part is valid for the next forecast. There

are virtually no residuals any more. The mean of the residuals is [jeweils] equal to zero.

Therefore, the daily mean uncertainties (DMU) remain the same and the RMSDts values do

not change. However, the RMSDdc are different. The change in RMSDdc is shown in Figure

6.16. On average, the simulation (Equation 6.12) of the daily cycle of RMSE is improved for
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Figure 6.15: QQ-plots for two stations for the residuals of ALM30. (a) Zurich, (b) Davos. The red line

represents the theoretical perfect normal distribution of the residuals. Both distributions are right skewed, but

especially Davos and mountain stations in general.
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all stations by 15%. Also with this extended ALM, the optimal training period remains 30

days for most stations (64%). In Table 6.1, the variability ratio (Equation 6.8) is given and

plotted in Figure 6.17. The extension of the ALM30 led to a better simulation of the daily

cycle of RMSE. In the last section of this chapter, the performance of the extended ALM30

is compared to other simplier models.

̂RMSE
ext

w (t) = ̂RMSEw(t) + residuals(t) (6.11)

And the uncertainty prediction using the instantaneous spread reads:

σext
pred(t) = aw + bw · spread(t) + residuals(t) (6.12)

6.3 Comparison with simple models

Similar to Figure 5.1 in chapter 5, Figure 6.18 shows the spread and the RMSE evolution

depending on the lead time in 2008. Additionally, the predicted uncertainty with the extended

ALM30 is given along with the persistence and the constant RMSE value derived in chapter

4. The ’new spread’ obtained with the extended ALM30 is clearly better than the spread

DMO. For each uncertainty model illustrated in Figure 6.18, the RMSDdc is calculated using

Figure 6.16: RMSDD when using the extended ALM30 instead of the simple ALM30 in 2008.
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Figure 6.17: Variability ratio of the daily cycle using the extended ALM30. Compare with Figure 6.10.

Equation 6.7 where σpred is replaced by the considered model. A skill score (e.g., Jolliffe

and Stephenson [2003]) is calculated (RMSDSS , Equation 6.13) to obtain the relative skill

when using the extended ALM30 instead of the spread DMO, the constant RMSE value or

the persistence as reference (RMSDref ).

RMSDDSS = 1− RMSDALM30ext

RMSDref
(6.13)

Negative values of RMSDDSS indicate reduced performance with respect to the reference

forecast. If RMSDDSS is equal to 1, the forecast is perfect. Table 6.1 shows the RMSDDSS

compared to the spread, the constant RMSE value and the persistence for all the stations used

in this study. It is not surprising that the extended ALM30 is clearly better than the spread

and the constant value. Concerning the persistence: on average, persistence is as skilful as

the extended ALM30. However, for a majority of stations (58%) the extended ALM is better

than persistence, especially for low-level stations (Figure 6.19). This shows that the day to

day variability of the uncertainty predictions for temperature based on ensemble information

is not very high.
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Figure 6.18: Uncertainty models comparison for (a) Zurich and (b) Davos in 2008.

Figure 6.19: RMSDDSS for the extended ALM30 with respect to persistence in 2008.
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Station Variability ratio SS wrt. spread SS wrt. const. SS wrt. pers.

GVE 0.95 0.97 0.89 -0.01
DOL 0.93 0.95 0.87 0.08
FRE 0.92 0.95 0.9 -0.02
NEU 0.89 0.97 0.89 0.05
CDF 0.67 0.87 0.44 -0.01
CHA 1.07 0.96 0.93 0.03
CGI 0.89 0.96 0.87 -0.2
PUY 0.96 0.97 0.9 0.11
PAY 0.92 0.96 0.87 -0.06
MLS 0.96 0.96 0.92 0.21
AIG 1.09 0.92 0.45 -0.1
PLF 0.94 0.93 0.67 -0.05
FAH 0.78 0.92 0.82 -0.13
BAS 0.97 0.98 0.94 0.35
RUE 0.96 0.96 0.89 0.12
SHA 0.81 0.93 0.72 0.05
BER 0.89 0.95 0.84 0.09
WYN 0.88 0.95 0.78 0.15
BUS 0.9 0.96 0.8 0.08
LAE 1.01 0.99 0.96 -0.19
REH 0.78 0.96 0.8 0.18
KLO 0.86 0.97 0.85 0.2
SMA 0.82 0.95 0.83 0.1
TAE 1.01 0.96 0.77 0.14
GUT 0.92 0.95 0.81 -0.35
HOE 1.04 0.97 0.93 0.01
ABO 0.89 0.95 0.8 -0.13
INT 0.97 0.95 0.71 0.1
NAP 0.91 0.97 0.94 -0.03
PIL 0.94 0.98 0.96 -0.02
LUZ 0.91 0.96 0.84 -0.02
ENG 0.91 0.95 0.66 0.07
ALT 1.18 0.97 0.54 0.18
WAE 0.8 0.95 0.81 -0.04
GLA 0.92 0.91 0.13 0.01
STG 0.86 0.91 0.3 -0.13
SAE 0.82 0.97 0.92 0.02
VAD 0.77 0.93 0.17 -0.03
SIO 0.99 0.98 0.92 0.24
VIS 1.08 0.97 0.78 0.15
MVE 0.81 0.94 0.88 -0.2
ULR 0.97 0.95 0.68 0.15
ZER 1.01 0.96 0.92 0.02
GSB 0.73 0.93 0.91 -0.16
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EVO 0.84 0.96 0.94 0.05
GRH 0.89 0.95 0.91 -0.63
JUN 0.79 0.96 0.96 -0.22
GUE 0.85 0.95 0.91 -0.18
DIS 0.93 0.97 0.9 0.41
CHU 0.87 0.96 0.85 0.07
WFJ 0.69 0.94 0.94 -0.23
DAV 0.69 0.94 0.82 0.2
SCU 0.68 0.92 0.78 -0.39
SAM 0.83 0.94 0.71 0.03
COV 0.88 0.95 0.95 -0.87
HIR 0.84 0.93 0.43 0.02
SBE 0.84 0.92 0.67 0.09
ROB 0.84 0.95 0.71 -0.25
COM 0.9 0.97 0.87 -0.09
ROE 0.98 0.96 0.86 0.28
OTL 1.01 0.97 0.82 0.22
MAG 0.99 0.98 0.83 0.44
CIM 0.79 0.92 0.65 0.08
PIO 0.75 0.95 0.79 0.01
LUG 0.79 0.94 0.51 -0.07
SBO 0.96 0.96 0.75 0.17
PSI 0.85 0.96 0.93 0.07
MEAN 0.9 0.96 0.79 0.01

Table 6.1: Final scores summary. The variability ratio and
the skill of the extended ALM30 with regard to the spread
DMO, the constant RMSE value and the persistence are
given.



Chapter 7

Conclusion and outlook

’Climate is what we expect, weather is what we get.’

probably from Mark Twain (1835-1910)

The probabilistic approach in NWP will continue to gain in importance in the next decade

for the short-time to medium-range weather forecasts. The further development of ensem-

ble prediction systems (EPS) will be central to respond to the demand for high-resolution

probabilistic forecasts. For instance, the introduction of an own data assimilation and the fur-

ther development of stochastic-dynamic parametrisations (Palmer et al., 2005; Berner et al.,

2005; Palmer and Hagedorn, 2006) will help to better account for uncertainties in the initial

conditions and the model formulation. Improvements in global EPS will indirectly improve

limited-area EPS (LEPS). Simultaneously, post-processing methods (e.g., bias correction,

spread calibration) will remain necessary to improve local weather predictions.

End-users are more and more interested in local uncertainty information. Also weather

forecasts for the public increasingly consider uncertainties, in particular in form of exceedance

probabilities for risk management, but also in form of probability distributions. For example,

the probability of precipitation or probability of hail. Automatic applications are increasingly

emerging on the weather market.

The present study has developed an approach that operationally predicts the expected un-

certainty associated with local deterministic 2m temperature forecasts. A strong spread-skill

relationship (SSR) has been found between the spread of the limited-area EPS COSMO-

LEPS and COSMO-7, the deterministic limited area NWP. This relationship is mostly linear.
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Therefore, given the skill could be interpreted as a measure of uncertainty of the forecast,

the COSMO-LEPS spread has been identified as a suitable predictor for the COSMO-7 tem-

perature uncertainty. The simple linear regression model only explains a part of the RMSE

variability (on average 40%). Quite a large part of the uncertainty is attributed to the off-

set of this linear relationship indicating a considerable local uncertainty component that is

independent of the uncertain atmospheric flow.

As only 3-4 data points are available for each time of the day, it is not possible to estimate

regression lines for each time of the day. The daily residuals do not always show a daily

cycle (not shown) and thus, they cannot be modelled (e.g., using sine and cosine functions).

Therefore, an extended linear was proposed with added residuals. The extended ALM corrects

the dispersion of the uncertainty model depending on the time of the day. The model already

simulates much better the daily cycle of the RMSE. However, the persistence forecast is

already very good (on average equal performance as the extended model) and delivers a good

estimate of uncertainty if no ensemble is available.

For operational purpose, I suggest to use 00 UTC COSMO-7 outputs instead of 12 UTC

as used in this study in order to use the newest COSMO-7 forecasts when COSMO-LEPS is

available with a training period of 30 days.

Following the same approach for other variables like humidity, it would be possible to

compute ’combined probabilities’. For example, through multiplication of temperature and

humidity probabilities, we could forecast probabilities for a ’comfort index’ (e.g., how high is

the probability that the temperature exceeds 25◦C and the humidity 60%?).

The method developed in this study combines two model systems, but is very flexible and

could be used to calibrate the spread of COSMO-LEPS specifically for the ensemble mean.

As a result, in sympathy with the approach presented here, COSMO-LEPS DMO members

would only be used to derive a probability distribution of the forecast that would be subject to

calibration. In combination with an appropriate bias correction, the spread would be dressed

according to past skill. Operational hourly COSMO-LEPS forecasts will be introduced in the

near future. This will considerably expand the data basis (from 25 to 73 data pairs) leading to

more robust daily estimations of the model parameters. Single linear regressions (5-6 values

per forecast time) for each forecast time could be possible.
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Glossary

ALM Adaptive linear (uncertainty) model
BMA Bayesian model averaging
COSMO Consortium for small-scale modeling
COSMO-7 Deterministic limited-area model with 6.6 km spatial resolution
COSMO-7-KAL Kalman filtered COSMO-7 outputs
COSMO-EM Ensemble mean of COSMO-LEPS
COSMO-LEPS Limited-area ensemble prediction system with 10 km spatial resolution
CSCS Swiss national supercomputing centre
DMO Direct model output
ECMWF European centre for medium-range weather forecasts
ECMWF-EPS Ensemble prediction system of the ECMWF
EM Ensemble mean
EPS Ensemble prediction system
NGR Non-homogeneous Gaussian regression
PDF Probability density function
PDE Partial differential equation
KAL Kalman filter
LAM Limited-area model
LEPS Limited-area ensemble prediction system
NWP Numerical weather prediction
MOS Model output statistics
R Pearson’s correlation coefficient
R2 Pearson’s coefficient of determination
RM Representative member
RMSD Root mean square difference
RMSE Root mean square error (skill measure)
spread Standard deviation of an ensemble around its mean
SSR Spread-skill relationship
WMO World Meteorological Organisation
3D three-dimensional
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