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Preface

Exposure to non-optimal ambient temperatures has been categorized as a global
burden and risk to human health [1]. In 2021, non-optimal temperatures were
reported to cause more than 5 million deaths per year [2]. Projections indicate
that this estimate will rise as heatwaves and higher temperatures are expected to
become more common [3]. Thus, quantification of the current and future impacts
of extreme heat and cold is important to identify vulnerable areas and exposed
populations. While extensive research has quantified temperature-related mortality
in countries of the Global North, studies focusing on the Global South, have been
limited, sometimes, due to the absence of data. Africa, Southeast Asia and Latin
America are the regions where the least research has been conducted. Nonetheless,
in Latin American countries, temperatures have already increased by approximately
0.2°C per decade [4]. By mid-century, the Latin America and Caribbean region is
expected to reach a population of 736.9 million inhabitants [5]. Thus, assessing the
association between temperature and mortality in the region is key. By quantifying
both current and projected temperature-related mortality, it is possible to identify
areas where the risk is higher, which is essential for developing effective public health
strategies to reduce the vulnerability of exposed populations.

To our knowledge, in Latin America, there are no nationwide analyses quantifying
temperature-related mortality fractions at a state level. To address this research
gap, in this Master’s thesis we analysed 1,156,601 deaths that occurred between
2009 and 2019 across Peru. Here, we obtained the temperature-mortality associa-
tion at a department level, including all Peruvian provinces. Then, we computed
the relative mortality risk associated to non-optimal temperatures at a national
level, as well as for various subgroups, including sex, age and the six main causes
of death using a multilevel multivariate meta-regression model. Furthermore, we
derived the temperature-mortality associations as the Best Linear Unbiased Predic-
tions (BLUPs) at a department level. We used BLUPs to derive the location-specific

ii



Minimum Mortality Temperature (MMT), which we then used to calculate the mor-
tality fraction attributed to non-optimal ambient temperatures in each Peruvian
department.

Moreover, we also projected the temperature-mortality association for three Pe-
ruvian departments using log-linear extrapolation. This allowed us to estimate
temperature-related mortality in the future under a mitigation (Representative Con-
centration Pathway-RCP 2.6) and a high emissions scenario (RCP 8.5). Our results
indicated that out of the 1,156,601 recorded deaths between 2009 and 2019, 8.77%
were linked to non-optimal temperatures. We found that the majority of excess mor-
tality was cold-related. However, for future conditions, under both mitigation (RCP
2.6) and high emissions (RCP 8.5) scenarios, we found that heat-related mortality
is projected to surpass cold-related mortality.

This master’s thesis project consisted of two main parts. The first one focused on
quantifying the effects of non-optimal ambient temperatures at a department level
from 2009 to 2019. The findings of this analysis are presented in Chapter 2 of
this document, in the form of a research article, which will be submitted to the
Environmental Epidemiology journal. The second part of the project focuses on
the projected temperature-related mortality for the years 2071 to 2099 across three
Peruvian departments. These results are illustrated and described in Chapter 3. The
remaining chapters of this document are as follows: Chapter 1 explains the context,
goals, data, and methodology of this thesis. Chapter 4 presents the conclusions and
key findings of the analysis. Chapter 5 contains the references for all sources cited
in this document.
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Chapter 1

Introduction

1.1 Overview

Robust and thriving environments influence the well-being and health outcomes of
the populations that inhabit them. However, human activities have driven changes
in the climate and environmental dynamics, negatively impacting ecosystems’ func-
tions and leading to the emergence of new hazards for human health [3]. In 2019, it
was estimated that climate-sensitive diseases accounted for 69.9% of the total annual
deaths [6, 7], and, by 2050, the projections indicate that 250,000 additional deaths
per year will be attributable to climate-related hazards [6].

The Intergovernmental Panel on Climate Change (IPCC) [3] has reported that the
frequency and severity of heatwaves and higher temperatures have increased since
the 1950s, while the occurrence of lower temperatures and cold waves has decreased.
Even though this trend suggests that exposure to cold extremes will be less prevalent
in the future, at present, most of the global temperature-related mortality is linked
to non-optimal cold temperatures [2]. This has been confirmed by numerous authors
and research groups who have quantified the excess of heat and cold-related mortality
in different regions of the world. [8–15].

Heat-related mortality has contributed the least to temperature-related mortality
through the years. Nevertheless, during the boreal summer, 37% of global heat-
related deaths can be attributed to anthropogenic climate change [16]. Moreover,
it is projected that in the future heat-related deaths will surpass and outweigh the
mortality burden related to colder temperatures [17–22]. Although temperature-
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2 1.2. Regulation of the body temperature

related mortality occurs due to several factors and can be highly influenced by
socioeconomic factors, elderly and young individuals are the most affected. Espe-
cially among elderly individuals, exposure to extreme heat and cold can enhance
underlying health conditions, increasing their risk of mortality [6]. Nonetheless,
consistent exposure to non-optimal temperatures can disrupt the body’s ability to
maintain thermal homeostasis in individuals across all age groups and populations,
potentially leading to hypothermia or hyperthermia [23, 24].

1.2 Regulation of the body temperature

In theory, individuals exposed to dry ambient temperatures ranging from 12.7 °C to
54.4 °C can maintain an optimal core body temperature [25]. However, tolerance to
high and low temperatures varies depending on the frequency, duration of exposure,
ambient conditions and activities performed. As homeotherms, humans can control
and keep the internal core body temperature through physiological thermoregulation
[23], independently of ambient conditions [26–28]. Nonetheless, air temperature
directly influences the temperature of the skin potentially impacting the core body
temperature regulation. The core body section is formed by the most vulnerable
and vital organs located in the head, thorax and abdomen [26, 27], while the skin,
subcutaneous tissues and limbs shape the outer body shell [27, 29]. Although the
core body section is crucial for maintaining homeostasis, the body shell exchanges
information with the environment, which later is sent to the hypothalamus [26].

The hypothalamus controls the main temperature receptors [27], ensuring the sta-
bility of the core body temperature by balancing heat loss and heat production
[26, 30]. In healthy individuals, the physiological thermoregulation keeps the core
body temperature at 37 °C with a range of ±0.6 °C [25, 30, 31]. When the physio-
logical regulation fails, the body can experience core body temperatures below 35 °C
resulting in hypothermia [32], or hyperthermia, if the core body temperature rises
above 38 °C [33]. In more severe cases, when the core body temperature increases
from 40.5 °C to 42.2 °C, heat stroke occurs [25]. However, in individuals who carry
out hard labour, the tolerance to heat is reduced, increasing the risk of heatstroke
if temperatures exceed the range of 29.4 °C to 32.2 °C [25]. Moreover, ambient
factors like humidity also influence the risk of heatstroke. When air temperatures
rise above 34.4 °C and there is a 100% of humidity, or the skin is wet, the core body
temperature increases faster [25]. This occurs due to hidromeiosis, a reduced ability
of eccrine glands to secrete sweat in humid conditions [34–36].
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When the human body is exposed to extreme heat, heat dissipation occurs through
radiation, convection, evaporation, and conduction [30, 37]. If the skin temperature
surpasses the ambient temperature, the body temperature is balanced by losing
heat through evaporation (sweating). In most cases, sweating occurs when the air
temperatures are higher than 36 °C [26], however, other studies have reported that
individuals start sweating when air temperatures are above 30 °C [38]. In addition
to sweating, the body releases heat by increasing blood flow to the skin and active
muscles [39]. However, the blood flow diversion can elevate the heart rate and reduce
the blood circulation for vital organs, raising the risk for individuals with preexisting
cardiovascular diseases [24, 39].

In comparison, when the air temperature is lower than the skin temperature, the
body responds by increasing heat production and minimizing heat loss through ra-
diation and conduction [25, 26]. When the hypothalamus receives signals of extreme
cold, it triggers the vasoconstriction and shivering responses [40]. Additionally, if
necessary, the body increases heat production throughout non-shivering thermogen-
esis and higher catecholamine secretion [30, 37]. Nevertheless, the balance between
heat production and heat loss varies among individuals because the metabolism
changes as we age. Elderly individuals and young infants have a lower capacity to
maintain and generate heat in cold temperatures [26]. Children and infants, whose
metabolism is still developing, are more susceptible to extreme heat [24, 41, 42].
Meanwhile, older adults have a lower tolerance to heat [43] due to fewer eccrine
glands, which limit their sweat production [28].

The tolerance to heat and cold can change over time. Constant exposure to heat
or cold ambient temperatures leads to acclimatization, which is crucial in how the
body can adapt to both heat and cold environments [25, 26, 44]. Acclimatization to
warm environments enhances the ability of the body to dissipate heat by increasing
sweat production, which can start at a lower core body temperature than usual [26].
Conversely, cold acclimatization reduces the transfer of heat from the core parts of
the body to the skin [26]. However, acclimatization alone is not enough to cope with
extreme and non-optimal ambient temperatures. In addition to all the physiologi-
cal mechanisms that our body has to regulate the body temperature, behavioural
thermoregulation allows humans to live and adapt to different climates. By modi-
fying our living environment, we can effectively control our body temperature. The
type of clothing we wear also allows us to regulate heat production and loss, main-
taining comfort. The sensory information that our skin registers is crucial, as any
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signal of discomfort due to overheating or chillness is sent to the hypothalamus
[26, 27]. This initiates responses that not only lead to physiological thermoregu-
lation but also drive behavioural adjustments. Nevertheless, access to amenities
like air conditioning, proper housing insulation, affordable accommodation, and ad-
equate clothing is limited for some populations. This lack of resources can lead to
inadequate responses to non-optimal temperatures, increasing the vulnerability of
exposed populations and raising the risk of temperature-related mortality.

1.3 Vulnerability of Latin America and Peru

By the end of 2023, Latin America had an approximate population of 652.3 million
[5]. Within the total population, approximately 33 million people faced poverty
[45], having limited access to housing, sanitation, drinking water and other basic
services. The Latin American region is the second-highest disaster-risk area in the
world [46], many countries of the region are highly prone to natural disasters because
of their geographical location. However, highly populated urban areas, limited eco-
nomic growth, violence, political instability, mass migration, inequality and poverty
exacerbate the vulnerability of the region [46].

Between 2000 and 2022, natural hazards affected 190 million Latin Americans, in-
cluding 5.6 million who were negatively impacted by extreme temperatures [46].
In addition, Latin American countries are responsible for less than 5% of the CO2

emissions [47]. Nevertheless, according to the World Meteorological Organization
[4], temperatures in Latin America and the Caribbean have increased at an aver-
age rate of approximately 0.2 °C per decade from 1991 to 2021. Without adapta-
tion measures in the region, climate change is projected to cause 5,613 heat-related
deaths by 2030, a number that is expected to rise to 18,135 by 2050, affecting mainly
individuals over 65 years old [48].

In 2023, Peru had a total population of more than 33 million inhabitants [49].
Around one-third of the Peruvian population lives in areas exposed to frequent
environmental hazards [50]. Based on the available data, in 2021, approximately 10
million individuals were categorized as vulnerable and at risk of experiencing poverty,
mainly in the urban areas [51, 52]. Although there are no recent estimates, in
2014 more than 7 million Peruvians were exposed to non-optimal cold temperatures
[50, 53]. Between 2008 and 2015, 6.8% of temperature-related deaths in Peru were
cold-related [13, Supplementary Material], while only 0.9% were reported to be heat-
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related. In 2020, it was reported that 360,000 children in Peru were exposed to high
heatwave frequency, a number projected to increase to 5.4 million by 2050 under an
Shared Socioeconomic Pathway - SSP1 scenario [54]. Around 10 million Peruvians
are projected to experience extreme heat if global temperatures rise by 2 °C or more
[50, 55]. Under the SSP5-8.5 climate-population scenario, a global temperature
increase of 2°C is projected to result in a 1.2% [95% CI: 3.5% to 4.9%] increase in
heat-related mortality in Peru [56, Supplementary Material]. If temperatures rise
by 3°C, heat-related mortality is expected to rise by 2.2% [95% CI: -14.7% to 16.2%]
[56, Supplementary Material].

1.4 Motivation and study aim

Projections indicate that Peru will be more exposed and experience heatwaves more
frequently by the end of the century [50]. Nonetheless, only a few studies have
quantified the future impacts of non-optimal temperatures in the country. Studies
conducted by Chen et al. [56] and Vicedo et al. [16] have quantified the potential
temperature-mortality burden under future conditions in Latin America using data
from the Multi-Country MultiCity (MCC) Collaborative Research Network. Zhao
et al. [2] also used the MCC database to quantify cold- and heat-related mortal-
ity, focusing on the period from 2000 to 2019. Additionally, Kephart et al. [13],
and Bakhtsiyarava et al. [57] have also studied the effect of extreme temperatures
on mortality in Latin America, focusing on city-level impacts using data from the
Salud Urbana en América Latina (SALURBAL) project. These authors and research
groups have conducted significant and valuable research quantifying temperature-
related mortality in Latin America, with each study including an analysis of some
Peruvian locations. However, to the best of our knowledge, none of the research has
estimated temperature-related mortality at a department level including all Peru-
vian provinces.

To address this research gap, here we examined the location-specific temperature-
mortality associations at a departmental level and quantified cold and heat-related
mortality fractions for the years 2009 to 2019. Additionally, we estimated the pro-
jected excess temperature-related mortality under a high and low emissions scenario
for the departments of Ica, Madre de Dios and Ucayali for the period 2071 to 2099.

Our study framework was guided by the following research questions and study
goals:
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1.4.1 Research questions

• Are non-optimal temperatures an environmental stressor that influences mor-
tality in Peru?

• Will heat- and cold-related mortality increase or decrease in Peru in the future
under a low and high emissions scenario (RCP 2.6 and 8.5)?

1.4.2 Study goals

• Examine the relationship between temperature and mortality to identify the
potential impact of non-optimal ambient temperatures.

• Quantify the health burdens associated with non-optimal temperatures for all
Peruvian departments.

• Assess and quantify future health burdens associated with projected non-
optimal temperatures.

1.5 Research approach

This master’s thesis was structured into two main parts, and it followed the method-
ology described by Vicedo et al. [58] and the small-area approach of Gasparrini [59].
Figure 1 illustrates all the processes and analyses conducted in this study. To en-
sure uniform color representation, all figures were generated in R using the scico

package [60].

• The first part of the project focused on obtaining the association between daily
mean temperatures and daily mortality for each department of Peru. These as-
sociations were obtained by analysing all-cause mortality across the entire Pe-
ruvian population. Also, the exposure-response estimates were calculated for
different subgroups. The subgroups were formed by grouping mortality counts
based on the same age group, sex, and cause of death. The age groups were
divided into individuals under 65 years old and those aged 65 and older. This
is further explained in the methodology section. The temperature-mortality
associations were used to obtain the Minimum Mortality Temperature (MMT)
and to quantify the attributable mortality fraction due to non-optimal heat
and cold. The results are presented in Chapter 2 in the form of a research
article, which will be submitted to the journal Environmental Epidemiology.
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The first part of the thesis involved the following tasks:

1. Conceptualization of the project.

2. Request of mortality data to the Ministry of Health of Peru [Ministerio
de Salud del Peru] (MINSA).

3. Aggregation of mortality data for all 196 Peruvian provinces from 2009
to 2019.

4. Linkage of daily mortality counts with daily mean temperature that was
obtained from the PISCOt v1.2 dataset provided by Huerta et al. [61].

5. Implementation of the first-stage analysis using the small-area analysis
approach described by Gasparrini [59].

6. Quantification of the attributable mortality fraction due to heat or cold
for all departments of Peru.

Figure 1: Modelling framework flowchart. The flowchart illustrates the process
that was followed for the master’s thesis. The parallelograms indicate the inputs
and output data. The hexagons show the processes. The black rectangles indicate
the main statistical analyses that were performed. The main outcomes are illustrated
with rounded rectangle shapes. The four different shades in the background of the
figure show the different phases of the study.
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• The second part of this thesis aimed to estimate the future attributable mor-
tality fraction due to projected changes in temperature under a mitigation
(RCP 2.6) and high emission (RCP 8.5) scenario for the period 2071 to 2099.
The results are described and illustrated in Chapter 3. The outcomes of the
second-stage analysis obtained in the first part of this thesis were used to
log-linearly extrapolate the temperature-mortality associations. The extrapo-
lation was done for three departments, Ica, Ucayali and Madre de Dios, and
the results were used to quantify the future cold- and heat-related mortality.

The tasks for this part of the thesis were the following:

1. Curation of three climate datasets that included daily mean temperature
simulations for the historical (1981-2010) and future period (2071-2099)
under RCP 2.6 and RCP 8.5 climate scenarios.

2. Extraction of temperature values and generation of two daily-mean tem-
perature time series.

3. Bias-correction of the temperature time series with the approach de-
scribed by Hempel et al. [62] and used in the methodology published
by Vicedo et al. [58].

4. Log-linear extrapolation of temperature-mortality associations.

5. Estimation of projected attributable mortality fractions due to non-optimal
temperatures.

1.5.1 Research setting

For the observed period, from 2009 to 2019, temperature-related mortality was ob-
tained for all Peruvian departments. However, due to the limited spatial coverage
of the future regional climate simulations at high resolution, the projections for the
period 2071 to 2099 were calculated only for the departments of Ica, Madre de Dios
and Ucayali. Peru is divided into three administrative levels: departments [departa-
mentos], provinces [provincias] and districts [distritos]. The smallest administrative
units in Peru are the districts, which are grouped into provinces, the second-level
administrative divisions. The departments are the biggest administrative division in
the country. In 2020, the National Institute of Statistics and Informatics of Peru [63]
reported that the country had 1,874 districts, 196 provinces and 25 departments,
which, to our knowledge, has not changed. Although districts are the smallest ad-
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ministrative divisions, for this thesis, we used provinces as the smallest unit for our
analysis.

For the first part of the analysis, we used the time series small-area approach de-
scribed by Gasparrini [59]. Therefore, daily mortality counts reported at the dis-
trict level were aggregated by province. A detailed explanation is described in the
methodology section. Figure 2a shows the division of all 25 Peruvian departments,
where each department is highlighted with a different colour. The provinces within
each department are indicated by grey lines. Figure 2b on the right highlights the
departments of Ica, Madre de Dios and Ucayali, which we analysed for the future
period from 2071 to 2099.

(a) Study area for the period 2009-2019 (b) Study area for the period 2071-2099

Figure 2: Study areas for the observed and future periods

1.5.2 Data

For this project, we used three main datasets. Two of them were climate datasets
and one was a curated mortality dataset. For the analysis of the observed period
(2009-2019), we used the PISCOt v1.2 dataset by Huerta et al. [61] and the mortality
counts provided by MINSA. To quantify the future excess mortality for the period
from 2071 to 2099, we used temperature simulations generated by González-Rojí et
al. [64].



10 1.5. Research approach

High-resolution daily-scaled air temperature dataset, PISCOt v1.2

The high-resolution daily temperature dataset by Huerta et al. [61] includes NetCDF
files with average, maximum, and minimum daily temperatures at various spatial
resolutions from 1991 to 2020. The files are available in the following repository:
https://doi.org/10.6084/m9.figshare.c.5959863.v3. For this project, we
used files containing daily values of maximum and minimum temperatures at a 0.05°
spatial resolution (approximately 5 km) for the years 2009 to 2019. We extracted
and calculated the daily mean temperature for each province and department using
official geospatial data from the National Geographic Institute of Peru. The shape-
files are accessible at the following link: https://www.idep.gob.pe/geovisor/des
carga/visor.html. We used the most recent version available as of April 5, 2023.
The extraction and calculation of the daily mean temperature were performed using
the exact_extract function from the exactextractr [65] package in R.

Daily mortality counts, data collected by MINSA

The Ministry of Health of Peru provided the daily mortality counts for all of Peru
from 2009 to 2019. The information was delivered in electronic form and contained
the following:

• Date of death

• Sex

• Age

• Administrative division where the death occurred

• ICD code referring to the cause of death

Before the analysis, the data was curated and a quality control was performed
to ensure completeness and consistency of the information. The curated dataset
consisted of 1,155,753 recorded deaths. Due to the aim of our analysis, we aggregated
the mortality counts into 196 provinces and grouped the information into 25 lists.

Daily mean temperature data, simulations for the period of 2071-2099

For the second part of the master’s thesis, the future temperature-mortality esti-
mates were obtained using bias-corrected daily mean temperature simulations. The
future daily temperature values were generated employing the Weather Research
and Forecasting Model (WRF) [66], a dynamical downscaling model. Outputs from

https://doi.org/10.6084/m9.figshare.c.5959863.v3
https://www.idep.gob.pe/geovisor/descarga/visor.html
https://www.idep.gob.pe/geovisor/descarga/visor.html
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the Community Earth System Model (CESM) were used as inputs for WRF to
simulate both a mitigation and a high-emission scenarios (RCP 2.6 and 8.5, respec-
tively). The horizontal domains for the simulations incorporated spatial resolutions
of 25 km, 5 km and 1 km. To reduce the biases of the climate simulations, the out-
puts were bias-corrected using the quantile mapping (QM) approach, which we used
for this project. This information was provided in three files as NetCDF. One file
contained historical temperature values from 1981 to 2010, another included data
from 2071 to 2099 under RCP 2.6, and the last dataset contained data from 2071
to 2099 under RCP 8.5. Figure 3 shows the areas covered by the 5 km and 1 km
domains. Due to the focus of our study, we used the data with 5 km resolution,
which fully covered most of the southern Peruvian departments and, allowed us to
analyse the areas of Ica, Madre de Dios and Ucayali.

Figure 3: Domains at 5 km and 1 km that were used for the climate simulations
with WRF. The departments of Peru are marked in red, and the ones for Bolivia in
blue. González-Rojí et al. [64]

Before extracting the temperature values to generate the daily time series of pro-
jected temperatures, we curated the datasets of the simulated daily mean temper-
ature. First, we adjusted the projected geographical coordinates of the climate
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datasets using Python. Later, we extracted the temperature values for each de-
partment using the exact_extract function in R from the exactextractr package
[65]. Afterwards, the daily mean temperatures were used to generate two time se-
ries. Each series included historical values for the period 1981 to 2010, as well as the
future temperatures from 2071 to 2099, under either RCP 2.6 or RCP 8.5 conditions.

Data linkage, case time series for small-area analysis

The linkage procedure for the observed period was done following the methodology
of Gasparrini [59]. The extraction of the mortality and observed climate data was
done following the geographical boundaries of each province. As described before,
the daily mean temperatures and daily mortality counts were organized as time
series. Each series had common column names and values indicating the province
and department names that allowed us to link both, daily mortality and mean
temperature. The linkage was done using the merge( ) function from the base
package [67] in R. Figure 4 shows an example of the temperature and mortality
time series for the observed period (2009-2019).

Figure 4: Data linkage between the daily mean temperature (left) and daily mor-
tality (right).

Data preparation, quantification of the future impacts

For the analysis of the future impacts, we first calibrated the future temperature
time series using the function fhempel( ) in R. The function conducts a correction
of the series by re-aligning the simulated temperature values with observed data.
The function is based on the methodology of Hempel et al. [62]. The calibration
procedure keeps the variability of the simulated temperature and corrects biases
due to deviations in the modelling procedure. To calibrate the series with projected
temperatures, we used temperature values obtained from the PISCOt v1.2 dataset.
We used five years to calibrate the series, from 2005 to 2010, and conducted a sen-
sitivity analysis using information from five years prior as well. After, we generated
future baseline mortality series for each of the departments that we analysed. To
generate the baseline mortality series, we computed the average of deaths for each
day of the year, using the observed daily mortality data.
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1.5.3 Statistical analysis

Because we had access to daily mortality counts at a district level and high-resolution
daily mean temperature values, we were able to conduct an extended two-stage case
time series analysis for small geographical areas. The approach is described in detail
by Gasparrini [59]. We used this methodology to study the observed period from
2009 to 2019. However, to quantify the future mortality burden, we followed the
"Modelling Framework for Projections of Climate Change Impacts on Health" by
Vicedo et al. [58]. Figure 1 illustrates the main processes and statistical analysis
we performed for this study. Our statistical analysis involved four main steps, these
steps are highlighted with different colours in the background of Figure 1 and de-
scribed in the following paragraphs. In summary, we first used a regression model
to obtain location-specific exposure-response association estimates, which were then
pooled in a second stage using a meta-regression model. We pooled the estimates for
ten subgroups which we generated by categorizing the mortality counts into two age
groups (>65 and ≤ 65), stratifying by sex and the six main causes of death in Peru.
Later, we re-predicted the location-specific estimates as the best linear unbiased pre-
dictions (BLUPs). Then, we used the BLUPs to quantify the temperature-related
mortality for each Peruvian department.

First stage, location-specific temperature-mortality associations.

The temperature-mortality associations were derived from the first stage of the case
time series small-area analysis approach. This methodology allowed us to model
multiple provinces’ information within each department by using the following re-
gression model:

g [E(γit)] = αi(k) + f(xit, ℓ) + I(dowit) (1.1)

In equation 1.1, function g is applied to the expected value of γit, which indicates
the daily mortality for each of the cases i (provinces). The intercepts of the model αi

vary across each stratum k. Each stratum was generated with information on year,
month, and province. The function that defines the non-linear association between
temperature and mortality is represented by f(xit, ℓ). For the function f(xit, ℓ), our
exposure variable x was modelled using distributed lag non-linear models (DLNMs).
Additionally, we controlled for the day of the week, this is indicated in the equation
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by I(dowit). Thus, the regression model 1.1 included three regression terms that
allowed us to evaluate risks at each Peruvian department using the information
of different cases, control for confounders and include the delayed effects of our
exposure variable (daily mean temperature).

To model the temperature-lag-mortality association, we used the crossbasis( )

function, which is part of the dlnm package [68] in R. For the cross-basis, we applied
a natural spline function and set three knots at the 10th, 75th and 90th percentiles
of the temperature distribution for each location. To account for the effects of
heat and cold, we set a 21-day lag window (ℓ) as suggested by Gasparrini et al.
[69]. The outcomes of the cross-basis and the regression model were reduced from
the bi-dimensional exposure-lagged-mortality association to one-dimensional. To
reduce the outcomes, we used the crossreduce( ) function in R from the dlnm
package [68]. From this, we obtained a set of diverse location-specific covariates and
coefficient estimates that we used in the second stage. This part of the analysis was
performed for each of the subgroups that we worked with.

Second stage, multivariate multilevel meta-analysis.

In the second stage, we pooled and later re-predicted the estimates previously ob-
tained. We pooled the estimates of all departments to generate an overall exposure-
response function at a national level. We also pooled the estimates for each of the
previously described subgroups. To pool and re-predict the estimates, we used a
multilevel multivariate meta-regression model as described by Sera et al. [70]. The
formulation of the regression model used in this project is shown in equation 1.2.

yj = Xjβ + Zjbj + ϵj (1.2)

In the meta-regression model, the fixed effects are represented by Xjβ, while the
random effects are indicated by Zjbj. For this model, we used the mean and temper-
ature range of each department j as meta-predictors. To include the geographical
variability of the country, we grouped the Peruvian departments into 8 different ar-
eas and incorporated them into the model as random intercepts. The residual errors
are denoted by ϵj. The analysis was performed using the mixmeta( ) function in
R, which is part of the mixmeta package [71]. To fit the model, we used the maxi-
mum likelihood estimation. After obtaining the pooled estimates with mixmeta( ),
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we re-predicted them as the Best Linear Unbiased Predictors (BLUPs) using the
blup( ) function, which is also part of the mixmeta package [71]. The BLUPs are
improved location-specific estimates that are generated by taking/borrowing infor-
mation from different study locations [70, 72]. With the re-predicted estimates as
BLUPs, we generated location-specific exposure-response curves. From the curves,
we obtained the association between temperature and mortality expressed as the
Relative Risk (RR) and we derived the Minimum Mortality Temperature (MMT)
value for each department.

Quantification of the impact of non-optimal temperatures from 2009 to
2019.

To quantify the mortality burden due to non-optimal heat and cold, we first calcu-
lated the attributable number of deaths (AN) and then the attributable mortality
fraction (AF) following the methodology of Gasparrini and Leone [73]. We derived
the location-specific attributable number of deaths (AN) following the structure of
equation 1.3.

AN =
n∑

d=1

((1− exp(−(C ∗ β)d)) ·Od) (1.3)

Here, β represents the coefficients estimated as BLUPs for each location and Od

refers to the cumulative number of daily deaths. For the calculation, C was obtained
by re-computing and deriving a centred basis for each department using as reference
MMT. The value of MMT indicates the temperature at which the risk of death is the
lowest and, it is also the reference point to define heat- and cold-related mortality.
Days with a daily mean temperature lower than MMT are considered non-optimal
cold temperatures. Conversely, non-optimal heat refers to days when the daily mean
temperature is above MMT, potentially causing heat-related mortality.

To account for the imprecision of the temperature-mortality function, we quanti-
fied the uncertainty using Monte Carlo simulations. For this, we assumed a normal
distribution of the point estimates and the covariates estimated as BLUPs. We per-
formed 1000 Monte Carlo iterations to sample the estimates using the mvrnorm( )

function in R, from the MASS package [74]. After, we summarized the results by
computing the empirical confidence intervals at the 2.5th and 97th percentiles. Sub-
sequently, we computed the proportion of attributable deaths in each department.
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For this, we divided the location-specific attributable deaths by the total number
of deaths that occurred in each department and multiplied the result by 100. We
reported the attributable mortality fraction as a total, as well as separately for the
heat and cold components.

Projection and quantification of the future impacts, from 2071 to 2099.

To quantify the future impacts, we followed the approach described by Vicedo et
al. [58]. First, we extended the boundaries of the temperature-mortality curves
for the departments of Ica, Madre de Dios and Ucayali. For this, we log-linearly
extrapolated the exposure-response curves. Then, we used the dlnm package [68],
specifically the onebasis( ) function in R to represent the exposure-response as
uni-dimensional. Afterwards, we predicted the overall Relative Risk (RR) with the
extended range of simulated temperature values using the crosspred( ) function
in R, which is also part of the dlnm package [68]. Finally, we also quantified the
future health impacts as attributable mortality fractions. The process was similar to
the one described in the previous section. However, here we generated the estimates
using the projected temperature values. And, we also used MMT to re-centre and
transformed it to uni-dimensional with the onebasis( ) function from the dlnm
package [68]. Equation 1.4 illustrates the calculation of AN, which was later used
to obtain the attributable mortality fraction (AF).

ANf =
n∑

f=1

((1− exp(−(D ∗ β)f )) · df ) (1.4)

In equation 1.4, βf represents the coefficients that were obtained as BLUPs in the
second stage, and df indicates the future baseline mortality. After obtaining the
projected attributable number of deaths, we computed the empirical confidence
intervals, as described in the previous section. Here, to obtain the attributable
fraction (AF), we divided the attributable number of deaths (AN) by the baseline
mortality. We then summed the result and multiplied it by 29, the number of years
projected for the temperature series (2071 to 2099). Finally, we multiplied by 100
the outcome of the previous division.
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Manuscript

As it was mentioned in Chapter 1, this thesis aimed to study the impacts of non-
optimal temperatures on mortality in Peru under observed and future conditions. Al-
though this master thesis also aimed to quantify the projected cold- and heat-related
mortality fractions for 2071 to 2099, we only analysed three Peruvian departments
due to the limitations in the spatial coverage of the future data. Therefore, we
will submit for publication only the results from analysing the period from 2009 to
2019. This chapter presents our manuscript titled "Heat and cold-related mortality
burden in Peru: a small-area analysis approach", which is to be submitted to the
Environmental Epidemiology journal.

Heat and cold-related mortality burden in Peru: a
small-area analysis approach.

Background: In recent years, the impact of non-optimal temperatures on excess
mortality has been studied in different regions across the globe. However, Latin
America is among the least researched regions, where few studies have quantified
temperature-attributable mortality fractions. Although some studies have quanti-
fied temperature-related mortality in the biggest Peruvian cities, to date, a nation-
wide analysis has not been conducted yet. Here, we analysed the location-specific
temperature-mortality associations at the department level and quantified cold and
heat-related mortality fractions for the period 2009 to 2019.

Methods: We used an extended two-stage time series small-area analysis approach
to analyse 1,156,601 deaths that occurred between 2009 and 2019 across all provinces

17



18

of Peru. In the first stage, we used a regression distributed lag non-linear model
to obtain the association between temperature and mortality. Afterwards, the esti-
mates from the first stage were pooled with a multilevel multivariate meta-regression
model. Then, we re-predicted the estimates as the best linear unbiased predictors
(BLUPs) and derived department-specific minimum mortality temperature (MMT)
values. Lastly, we quantified the attributable mortality fraction due to non-optimal
temperatures using MMT as our reference value.

Results: Our study illustrated that between 2009 and 2019, 8.77% [9% CI: 4.94%
to 11.75%] of the total all-cause mortality in Peru was attributed to non-optimal
temperatures. Cold-related mortality contributed the most to the excess mortality,
with 8.16% [95% CI: 4.31% to 11.28%], while heat-related mortality accounted for
0.61% [95% CI: 0.38% to 0.85%]. We found that the mortality fraction linked to
temperature was significantly higher for individuals aged 65 and older (11.38%)
compared to the 4.64% observed in the population under 65 years old. The majority
of the temperature-related mortality fractions were found in the departments of
Puno, Junín and Huancavelica. Conversely, Loreto, Ucayali and Madre de Dios were
the departments with the least excess mortality. The location-specific MMT varied
from 15.1°C to 28.1°C, while the minimum mortality temperature percentile (MMP)
varied from 84 to 99. However, these results were different when analysing all-
cause mortality for individuals under 65 years old and for those aged 65 and above.
Moreover, our study showed that nationwide exposure to extreme cold increased the
relative mortality risk by 21.9% [95% CI: 11.7% to 33.1%] and by 8.6% [95% CI:
1.9% to 15.8%] for extreme heat.

Conclusions: Our results showed that most of the temperature-attributable mor-
tality fraction was associated with non-optimal cold temperatures. Nevertheless, ex-
posure to both extreme heat and cold increased the overall mortality risk. Although
we did not find differences in temperature-mortality associations when analysing the
male and female subgroups, our results indicate that the elderly population remains
the most at risk. The majority of excess mortality was geographically distributed
in departments located in higher altitudes and the southern part of the country,
contrary to the areas with lower altitudes.

Keywords: temperature-related mortality, meta-analysis, cold-related, Peru
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2.1 Background

Diverse authors have studied the association between mortality and non-optimal
ambient temperatures [2, 9–12, 18]. This epidemiological research has become more
relevant as extreme weather events, particularly heatwaves, have been increasingly
linked to rising heat-related mortality [75–77]. By the end of the century, projections
indicate that climate change will magnify heat-related mortality and morbidity [6].
However, current studies indicate that cold-related mortality accounts for most of
the temperature-related excess mortality [2, 9, 11], which has been categorised as a
significant global risk to human health [1].

Although the fraction of heat-related mortality is currently lower compared to deaths
linked to cold temperatures, the impact of extreme heat on health does not have
to be underestimated. In elderly individuals, high temperatures can worsen pre-
existing health conditions [6]. In young infants, it can lead to a higher risk of
mortality because their metabolism is still developing and their bodies cannot regu-
late temperature as easily [24, 41, 42]. Moreover, studies suggest that in the future,
heat-related mortality could surpass and potentially outweigh cold-related mortality
[6, 78]. Worldwide, extreme cold and heat-related mortality accounts for more than
five million deaths per year [2]. Over fifty per cent of the excess temperature-related
mortality occurs in Asia and Africa [2]. However, the impact of non-optimal high
and low ambient temperatures has been quantified in only a few regions, with most
studies focused on Europe and North America.

2.1.1 What this study adds

Latin American cities have grown faster since 1950 [79], making the region one of
the most urbanized in the world [80]. It is estimated that by 2030, around 85 per
cent of the Latin American population will live in urban areas, [81] and by 2050,
Latin America and the Caribbean are projected to have 736.9 million inhabitants [5].
However, despite the large population at risk and the projected population increase,
there are limited studies analysing temperature-related mortality in the region, as
noted by Kephart et al. [13]. This research gap can be attributed to different factors,
being the limited availability of mortality data one of the most significant. Access
to datasets containing daily mortality counts for Latin America is difficult. To
our knowledge, only the Multi-Country MultiCity (MCC) Collaborative Research
Network and the Salud Urbana en América Latina (SALURBAL) projects have
successfully compiled enough health data of the region to research the association
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between temperature and mortality.

In 2021, Zhao et al. [2] studied 13 Latin American countries using the MMC dataset.
Later, in 2022, Kephart et al. [13] analysed 326 cities of the region, employing
information from the SALURBAL project. Zhao et al. [2] reported that in the
region, over 160,000 deaths per year are cold-related, while approximately 36,000
are linked to extreme heat. These findings highlight the considerable extent of cold-
related mortality, which was corroborated by the findings of Kephart et al. [13] that
analysed 15,431,532 deaths.

Although Kephart et al. [13] analysed more cities where cold is predominant, their
findings showed that between 2002 and 2015 5.09% [95% CI: 4.64% to 5.47%] of the
total deaths were cold-related, while 0.67% [95% CI: 0.58% to 0.74%] were heat-
related. Temperature-related mortality is significantly influenced by socioeconomic
factors. However, only Bakhtsiyarava et al. [57] have investigated the impact of
socioeconomic and demographic factors on temperature-related mortality in Latin
America. These regional- and city-level studies have contributed significantly to
quantifying the effect of non-optimal temperatures on mortality in Latin American
countries. Nevertheless, to our knowledge, no comprehensive assessments have been
conducted on temperature-mortality risks at the state level, covering all municipal-
ities within each country.

To fill this research gap, we obtained daily mortality counts from the Ministry of
Health of Peru (MINSA) for the years 2009 to 2019. We analysed them to quantify
temperature-related mortality fractions at a department level using the small-area
analysis approach developed by Gasparrini [59]. The small-area analysis approach
aims to provide a localized and more accurate risk assessment by using small-scale
data, which helps to reduce biases [59]. For our analysis, we aggregated the daily
mortality counts at a province level, which we linked with daily mean temperatures
obtained from the PISCOt v1.2 dataset provided by Huerta et al. [61].

2.2 Data & Methods

2.2.1 Study setting

Our project consisted of analysing 1,156,601 deaths recorded across all provinces
of the country. Peru is organized into three levels of administrative divisions: de-
partments, provinces, and districts. In this project, we focus on provinces and de-
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partments, which are the second- and first-level administrative divisions. Provinces
are subdivisions of the first-level administrative areas known as departments. Al-
though in this project we refer to provinces as small areas, districts are the smallest
administrative-level units in the country. We gathered all the geographic informa-
tion and regional characteristics of the country from the Ministry of Environment
of Peru (MINAM).

2.2.2 Data

We calculated the daily mean temperature for each province using high-resolution
gridded data. We obtained the information from the PISCOt v1.2 dataset by Huerta
et al. [61]. The dataset contains information on daily maximum and minimum
temperatures for all of Peru from 1981 to 2020. PISCOt v1.2 provides data at
spatial resolutions of 0.05° and 0.10°. For this project, we worked with the data
available at 0.05° (approximately 5km) resolution.

We requested daily mortality counts from the Health Ministry of Peru (MINSA). The
data provided included details on age, sex, International Classification of Diseases
code for the cause of death [ICD-10], date of death, and the administrative division
of each death. For estimating the pooled association between temperature and
mortality, we categorized the data into distinct subgroups. These included all-cause
mortality, all-cause fatalities among individuals aged 65 and older, those under 65,
and both female and male groups. Additionally, we aggregated the information
based on the six main causes of death across all population groups. We identified
the main causes of death by the most frequent ICD codes, classifying each death
into the relevant categories within the 22 chapters of the classification system. The
most frequent categories included diseases of the circulatory system (I00 to I99),
digestive system problems (K00 to K93), infectious and parasitic diseases (A00 to
B99), neoplasms (C00 to D48), respiratory system diseases (J00 to J99) and external
causes of morbidity and mortality (V01 to Y98).

2.2.3 Statistical analysis

We conducted all analyses with R (version 4.3.2) [82]. We followed an extended
case two-stage time series small-area analysis as described by Gasparini [59]. In
summary (Figure 1), we first linked daily mean temperature with daily mortality.
Then, using a regression model (2.1), we obtained a set of estimates which later
were pooled to obtain temperature-mortality associations for all-cause mortality,
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as well as by age, sex and each main cause of death. Afterwards, we re-predicted
the location-specific estimates as the best linear unbiased predictors (BLUPs) and
derived the Minimum Mortality Temperature (MMT) for each department. Lastly,
we quantified the location-specific temperature-related mortality.

Estimation of the exposure-response associations

To obtain the non-linear association between temperature and mortality in the first
stage, we used the following regression model:

g [E(γit)] = αi(k) + f(xit, ℓ) + I(dowit) (2.1)

In the model, function g is applied to the expected value of E(γit) that refers to the
daily deaths for each of the cases i (provinces). Each of the intercepts of the model
αi(k) vary per stratum k across locations. Each stratum k was formed using infor-
mation on the year, month and province where the death occurred. The function
f(xit, ℓ) defines the non-linear association between temperature and mortality. Our
exposure variable x was modelled using Distributed Lag Non-linear Models (DL-
NMs). Here, we set a 21-day lag window (ℓ) to account for the delayed effects of
cold and consider the shorter effects of heat as suggested by Gasparrini et al. [69].
Although some authors control for other confounder variables, we just controlled
for the day of the week I(dowit). We modelled the temperature-lag-mortality as-
sociation by using the crossbasis( ) function of the dlnm package [68] in R. For
this, we used a natural spline function to account for the non-linearity and set 3
knots at the 10th, 75th, and 90th percentiles of the temperature distribution. The
results obtained from the cross-basis were reduced to one-dimensional using the
crossreduce( ) function in R, which is also part of the dlnm package [68] in R.

After, in the second stage, we pooled the previously reduced estimates using a mul-
tilevel multivariate meta-regression model. This approach is further explained by
Sera et al. [70]. By pooling the estimates, we combined the results from all loca-
tions to estimate an overall exposure-response function. We pooled the estimates for
diverse subgroups which we obtained by classifying the mortality counts according
to sex, age and cause of death. Because of the complex topography of Peru, we
used three meta-predictors to improve our meta-regression. To account for the geo-
graphical differences between the departments, we aggregated them based on their
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geographical similitude. This was incorporated into the model as random intercepts.
Additionally, we included mean and range temperature as meta-predictors. For this
analysis, we used the mixmeta( ) function in R, which is part of the mixmeta pack-
age [71]. To re-predict the pooled estimates as the best linear unbiased predictors
(BLUPs) we used the blup( ) function that is also part of the mixmeta package
[71]. Subsequently, we derived a new centred basis for the exposure-response func-
tion using the minimal mortality temperature (MMT) that was obtained from the
BLUPs. MMT was obtained for each of the Peruvian departments, and it indicates
the temperature at which mortality risk is the lowest and it is the reference value
to define cold- and heat-related mortality. After re-centring, we computed the daily
mortality contributions using the daily location-specific Relative Risk (RR).

Quantification of temperature-related mortality

We quantified temperature-related mortality, by calculating the attributable number
of deaths (AN) and attributable fraction (AF%). To calculate the total attributable
number of deaths (AN), we summed the total daily contributions calculated in the
second-stage. Then, we aggregated them into two categories based on whether the
temperature on the day of the death was below or above MMT. Cold-related mor-
tality was determined by aggregating the deaths recorded on days when the mean
temperature was lower than the MMT, while heat-related mortality was derived by
estimating the number of deaths that occurred on days when the mean tempera-
ture was above the MMT value. Afterwards, we computed the total attributable
fraction (AF%) for each department. For this, we divided the attributable number
of deaths by the location-specific total mortality and then multiplied the result by
100. Finally, to account for the statistical uncertainty from the imprecision of the
exposure-response function, we used Monte Carlo simulations to compute the empir-
ical confidence intervals (eCIs) at the 2.5th and 97th percentiles. This methodology
for deriving attributable risk from distributed lag models is further explained by
Gasparini and Leone [73].

2.2.4 Sensitivity analysis

We tested the robustness of our analysis by conducting a sensitivity analysis. For
this, we excluded the last three years of our study period and recalculated both
the attributable number of deaths and the corresponding fractions, which we then
compared with our main findings. Specifically, we omitted the years 2017, 2018 and
2019 to assess the impact of the introduction of the National Death Information
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System (SINADEF) that was implemented in 2017 [83]. Additionally, to compare
the 95% confidence intervals (CIs) of the exposure-response curves, we re-predicted
the pooled estimates as BLUPs using the same modelling framework, but with
the temperatures from the enhanced resolution reanalysis dataset ERA5-Land [84]
instead of PISCOt v1.2 [61].

Figure 1: Modeling framework methodology. The flowchart describes the main
three steps of the study approach used for this project.

2.3 Results

2.3.1 Descriptive statistics

Between 2009 and 2019, a total of 1,156,601 deaths were recorded across Peru.
Supplementary Table S.1 provides a summary of the mortality data aggregated by
department, including the range and mean temperatures calculated for each location.
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The temperature range varied from 1.3°C to 12.7°C. Loreto, a department located
in the rainforest region, had the highest mean temperature at 26.8°C, while Puno
had the lowest at 8.6°C. Out of all the departments of the country, the Department
of Lima recorded the highest number of deaths, while Madre de Dios registered the
least. Of the total mortality counts, 53.49% were male, and 60.23% of the deaths
occurred among individuals over 64 years old (See Table S.2 in the Supplementary
Material). We categorized the total mortality counts into 22 groups corresponding to
each chapter of the International Classification of Diseases (ICD-10), 2019 edition
[85] (See Supplementary Table S.3). Out of the 22 categories, six accounted for
82.38% of the total deaths (Supplementary Table S.4).

2.3.2 Pooled temperature-mortality associations

Figure 2 illustrates the overall association between temperature and all-cause mor-
tality over the study period (2009-2019).

Figure 2: Overall exposure-response association for Peru. The temperature-
mortality association for Peru was obtained by pooling the estimates from the first
stage using a multi-parameter meta-analysis approach. Cold-related relative risks
are indicated in blue, while heat-related risks are shown in red. The dotted vertical
line in blue indicates the 1st percentile (extreme cold) and the red one shows the
99th percentile (extreme heat). The 95% CI is indicated in shaded grey.
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The pooled curve shows a typical reverse J-shape, an MMT of 21.98 °C and an
increasing mortality risk for both cold and hot temperatures. The left side of the
curve, below the MMT, indicates the cold-related relative risks, while the right side
illustrates the risks associated with hot temperatures. We defined extreme cold as
the temperatures lower than the 1st percentile of the temperature distribution and
extreme heat as temperatures higher than the 99th percentile. These are indicated
by blue and red dotted lines in Figure 2. The overall population shows higher
vulnerability to extreme cold, with an increased mortality risk of 21.9% [95% CI:
1.117 - 1.331], while extreme heat raises the risk by 8.6% [95% CI:1.019 - 1.158].

Figure 3a displays the pooled association between temperature and all-cause mortal-
ity for individuals younger than 65 years and those 65 years and older. Temperature-
related risks for individuals under 65 years are shown in light green, while mortality
risks for those aged 65 and older are represented by a darker green line. For individ-
uals under 65 years old, the Minimum Mortality Temperature (MMT) is 20.29°C,
while for those aged 65 and older, it is 21.98°C.

(a) Exposure-response association by age. (b) Exposure-response association by sex.

Figure 3: Pooled estimates of the overall temperature-mortality association by age
and sex group. The exposure-response associations are shown for all-cause mortality.
In both figures, the 1st percentile (extreme cold) is indicated by vertical blue dotted
lines and in red for the 99th percentile (extreme heat).

For individuals aged 65 and older, the temperature-mortality association curve dis-
plays a reverse J-shape, indicating a higher mortality risk associated with colder
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temperatures. Exposure to extreme cold increases the vulnerability of individuals
aged 65 and older by 31.9% [95% CI:1.175 - 1.481], while exposure to extreme heat
raises their risk by 13.1% [95% CI:1.035 - 1.234]. In comparison, for individuals
below 65 years old, vulnerability to extreme cold increases by 3.9% [95% CI:0.899
- 1.201], and exposure to extreme heat raises their risk by 3.3% [95% CI:0.917 -
1.162].

Figure 3b illustrates the exposure-response association between temperature and
mortality for the female and male subgroups. The mortality risk by sex shows
minimal variation between the two groups. Both groups exhibit a higher relative
risk associated with cold temperatures, with their Minimum Mortality Temperature
(MMT) values being quite similar: 21.98°C for males and 21.81°C for females. Mor-
tality risk to extreme cold increases similarly for both sexes. For females, the risk
rises by 20.4% [95% CI:1.061 - 1.367], while for males, it increases by 22.2% [95%
CI:1.086 - 1.374]. At the 99th percentile, which indicates extreme heat, vulnerability
to mortality increases by 5.8% [95% CI:0.961 - 1.164] for females and by 10.8% [95%
CI:1.018 - 1.207] for males.

Figure 4: Pooled association estimates at the 1st and 99th percentiles for all-cause
mortality, sex, age group and the main 6 causes of death in Peru (RR with 95%
CI). The relative risks for extreme heat (99th percentile) are illustrated in red and
in blue are indicated the ones for extreme cold (1st percentile).
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Figure 4 presents a comparison of relative risks and 95% CIs for cause-specific mor-
tality across extreme temperatures. Extreme cold-related risks are highest for di-
gestive system diseases (RR = 1.463 [1.061 - 2.018]), circulatory problems (RR =
1.558 [1.265 - 1.92]), and respiratory issues (RR = 1.292 [0.967 - 1.725]). In contrast,
heat-related relative risks are lower, particularly for digestive system diseases (RR
= 0.969 [0.767 - 1.224]) and infectious and parasitic diseases (RR = 0.985 [0.651 -
1.489]). Supplementary Table S.5 provides a detailed breakdown of the results for
each cause of death, including the estimated MMT. The overall exposure-response
curves by each cause of death are illustrated in Supplementary Figure S.1. In sum-
mary, the curves for circulatory system diseases, neoplasms, and digestive system
diseases show a reverse J-shaped relationship. This pattern indicates a higher mor-
tality risk at colder temperatures.

2.3.3 Location-specific associations between temperature and

all-cause mortality

Temperature-mortality associations were obtained for each of Peru’s 25 departments.
The exposure-response associations, estimated as best linear unbiased predictions
(BLUPs), are illustrated in the Supplementary Figures S.2, S.3 and S.4. Most
curves show either a J-shaped curve, which indicates increased mortality risk at
both cold and hot extremes compared to moderate temperatures, or a reverse J-
shape relationship, indicating higher mortality risk at colder temperatures with a
relative decrease at warmer temperatures. However, the curves for Ancash, Apurí-
mac, Ayacucho, Cusco, Huancavelica, Junín, and Puno display an L-shape pattern,
illustrating a relatively constant risk across temperatures, with a notable increase
only at extreme cold.

From the second stage, we obtained the Minimum Mortality Percentile (MMP)
and Minimum Mortality Temperature (MMT). Using the location-specific exposure-
response curves, we derived the MMT for each department. Figure 5 illustrates the
geographical distribution of MMP and MMT across Peru. Figure 5a indicates that
MMP values were higher in the southern departments of the country, while those in
the northern region display lower percentile values. Specifically, the highest MMP
values were found for the departments of Puno, Junín, Huancavelica, Ayacucho
and Apurímac, which reached up to the 99th percentile threshold. In contrast,
Lambayeque, Amazonas, Pasco and Piura showed the lowest MMP values.
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(a) Minimum Mortality Percentile (%) (b) Minimum Mortality Temperature (°C)

Figure 5: Nationwide geographical distribution of the Minimum Mortality Tem-
perature (MMT) and Minimum Mortality Percentile (MMP). The maps show the
distribution of MMT and MMP across all of Peru’s departments.

Figure 5b displays the spatial distribution of MMT. Contrary to the MMP geograph-
ical distribution, the highest MMT values are distributed in the northern region of
the country, while the lowest MMT values are observed in the southern departments,
specifically in Huancavelica, Apurímac and Ayacucho. The MMT values range from
15.13 °C to 28.11 °C, these location-specific MMT values are presented in Supple-
mentary Table S.6. The values of MMT, along with their respective MMPs, are
displayed for each department, including both the population groups under 65 years
old and individuals aged 65 and older.

Figure 6 shows the mortality risks to extreme heat and cold. Most of the heat-related
Relative Risks (RRs) were greater in departments situated along the coast and in ar-
eas with lower elevations. Our findings showed that exposure to extreme heat did not
present an increased risk for the following departments: Ayacucho, Ancash, Junín,
Puno, Apurímac, Huancavelica, and Cusco (See Supplementary Table S.7 and Sup-
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plementary Figure S.5). However, exposure to extreme heat significantly increased
the vulnerability for Lambayeque (19.2%), Pasco (18.9%) and Callao (18.3%).

In comparison, exposure to extreme cold temperatures was found to increase mor-
tality risk (RR) the most for the departments of Apurímac (35.2%), Huancavel-
ica (35.8%), Junín (35.9%) and Puno (52.7%). Conversely, Loreto (7.9%), Ucayali
(8.9%) and Madre de Dios (10.6%) showed less vulnerability to extreme cold tem-
peratures. For further details, see Supplementary Table S.7 and Supplementary
Figure S.5. Figure S.5 illustrates the Relative Risks (RRs) for extreme heat and
cold across all Peruvian departments. In Table S.7 we present the Relative Risks
(RRs) with their 95% CIs for exposure to moderate and extreme temperatures across
all departments.

(a) Extreme heat-related RR (b) Extreme cold-related RR

Figure 6: Geographical distribution of the relative risks linked to extreme heat and
extreme cold. The maps illustrate the relative risks (RR with 95%CI) to extreme
heat (99th percentile) and extreme cold (1st percentile) across Peru.
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2.3.4 Mortality fraction attributed to non-optimal tempera-

tures

We computed the mortality fraction attributed to non-optimal temperatures for
each department using the location-specific MMT values as the reference for optimal
temperature. First, we obtained the heat- and cold-related number of deaths, which
we used to calculate the location-specific attributable fractions. These results are
reported in the Supplementary material for each department. Table S.8 displays the
all-cause mortality estimates, Table S.9 presents the attributable number of deaths
(AN) for the population under 65 years old, and Table S.10 shows the AN for the
individuals aged 65 and older. In the tables, we report the AN as a total and for
both, the heat and cold component, this allowed us to compute the heat- and cold-
related attributable fractions. The cold-related fraction refers to the proportion of
mortality that occurred when the mean temperature was lower than the MMT value,
while the heat-related fraction describes the proportion of mortality occurring when
the mean temperature exceeded the MMT. The calculation of these fractions for
each Peruvian department are presented in Table 1. Additionally, the attributable
fractions for the population groups under 65 years old and those aged 65 and older
are presented in Tables S.11 and S.12, respectively.

Table 1: Estimated mortality fraction attributable to non-optimal temperatures
between 2009 to 2019 by department. The 95% CIs are displayed in square brackets.
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Table 1 shows that the highest overall mortality fractions occured in the depart-
ments of Puno, Junín, Huancavelica, Cusco, Apurímac and Pasco, with a significant
proportion attributed to cold temperatures. Specifically, the largest cold-related
mortality fractions are reported for Puno, Junín and Huancavelica, while the de-
partments of Madre de Dios, Loreto and Ucayali show the lowest proportions. These
high overall and cold-related mortality fractions are found in departments located
at higher elevations and the southern part of Peru, this pattern is illustrated in
Figure 7.

Figure 7 shows the nationwide spatial distribution of the estimated mortality at-
tributable fractions. Figure 7a illustrates the overall fraction, while Figure 7b and
Figure 7c display the fractions related to cold and heat, respectively. Contrary to the
pattern observed in Figure 7b, Figure 7c indicates that the highest mortality frac-
tions attributable to heat are distributed in departments located in the northern and
coastal areas of Peru. The highest heat-related mortality fractions are observed in
the departments of Lima, Lambayeque and San Martín . However, no heat-related
mortality fractions are reported for the departments of Huancavelica, Apurímac,
Ayacucho, Puno, Junín and Ancash.

At the national level, we estimated an overall attributable mortality fraction of 8.77%
[95% CI:4.94% to 11.75%] for our study period. Most of this fraction was attributed
to cold temperatures, which accounted for 8.16% [95% CI: 4.31% to 11.28%]. In
contrast, non-optimal heat accounted for 0.61% [95% CI: 0.38% to 0.85%] of the
total fraction. For individuals under 65 years old, non-optimal temperatures were
estimated to contribute for 4.64% [95% CI: 1.69% to 6.64%] of the total mortality.
Specifically, non-optimal cold temperatures contributed 4.34% [95% CI:0.82% to
7.02%], while non-optimal heat accounted for 0.30% [95% CI:-0.61% to 1.12%]. In
comparison, for individuals aged 65 and older, we estimated that cold accounted for
10.42% [95% CI: 4.75% to 15.22%] of the total mortality fraction, while 0.95% [95%
CI: 0.55% to 1.34%] was related to non-optimal heat.
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(a) Overall mortality (b) Cold-related mortality

(c) Heat-related mortality

Figure 7: Geographical distribution of the attributable all-cause mortality fraction
(AF%) to non-optimal temperatures. The maps illustrate the computed mortality
fraction attributed to non-optimal temperatures in Peru between 2009 and 2019 for
all age groups. The results are displayed in three separate figures that correspond
to the overall mortality and individually for heat and cold.
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2.4 Discussion

In this project, we analyzed 1,156,601 all-cause mortality deaths which were recorded
from 2009 to 2019 across all departments in Peru. Our findings showed that non-
optimal temperatures accounted for 8.77% of the total all-cause mortality. Most
of the nationwide temperature-related mortality was linked to cold temperatures.
We observed that for individuals aged 65 years and older, the overall proportion of
mortality associated with non-optimal temperatures was 11.38%, which was higher
compared to the 4.64% observed in the population below 65 years. Nevertheless, in
both population groups, cold-related mortality accounted for most of the burden.

Studies using a similar approach to ours have also found a higher burden of cold
in temperature-related mortality [2], [13], [14], [9]. For instance, Zhao et al. [2]
estimated that for Latin America and the Caribbean, 200,055 (95% CI: 181,608 to
227,270) deaths per year can be linked to non-optimal temperatures. Specifically,
163,360 (95% CI: 134,007 to 194,240) deaths every year are associated with cold
temperatures, while 36,695 fatalities (95% CI: 20,064 to 59,526) are heat-related [2].
In comparison, Kephart et al. [13], who analysed city-specific temperature-mortality
associations for 326 Latin American cities, also reported higher mortality fractions
due to non-optimal cold temperatures. For Peru, Kephart et al. [13] analysed
the cities of Arequipa, Ayacucho, Cajamarca, Chiclayo, Chimbote, Chincha Alta,
Cusco, Huancayo, Huaraz, Huánuco, Ica, Iquitos, Juliaca, Lima, Pisco, Piura, Pu-
callpa, Puno, Sullana, Tacna, Tarapoto, Trujillo and Tumbes. Their findings showed
that from 2008 to 2015, cold-related mortality was the highest among the cities of
Huaraz, Cajamarca and Puno with rates of 77.6%, 64.1% and 30.7% respectively
[13, Supplementary Material]. Conversely, the study indicates that mortality in the
cities of Tacna, Cusco, Tarapoto, Tumbes, Huancayo, Trujillo and Huánuco was not
linked to non-optimal cold temperatures [13, Supplementary Material].

Even though the outcomes from Kephart et al. [13] are not fully comparable with
our results due to differences in spatial scales, there are some similarities between
the findings. Our findings indicated that the highest mortality fraction due to cold
was observed in the department of Puno at 28.18%, similar to the 30.7% reported
by Kephart et al. [13, Supplementary Material]. Additionally, Kephart et al. [13]
estimated an MMT of 21.1 °C for the city of Lima, while our estimate for the
department of Lima was 21.5 °C, which is very alike. Moreover, we obtained an
MMT value of 19.0 °C for the department of Tacna, whereas Kephart et al. [13]
estimated an MMT of 19.3 °C for the capital city of the same name, which is also
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similar.

We found that heat-related mortality accounted for 0.6% of total deaths during our
study period. Our estimates showed that the highest mortality fractions related to
heat occurred in the departments of Lima, Lambayeque, Piura and Ica (See Table
1). In comparison, Kephart et al. [13, Supplementary Material] reported higher
heat-related mortality fractions in the cities of Iquitos, Pucallpa and Chincha Alta,
which are located in the departments of Loreto, Ucayali and Ica. Both our results
and those of Kephart et al. [13] showed that heat-related mortality fractions are
higher in geographic areas with lower altitudes. Furthermore, neither study found
any heat-related mortality in the departments of Puno, Junín, and Ancash during
their respective study periods.

Although Kephart et al. [13] and our study found that heat contributed the least to
temperature-related mortality, extreme heat-related outcomes should not be under-
estimated. Vicedo et al. [16], who assessed the impact of heat and climate change on
mortality in diverse regions of the world, reported that 73.5% of the heat-related Pe-
ruvian deaths can be attributed to anthropogenic climate change. This estimation
was obtained using mortality data provided by the MCC Collaborative Research
Network, which included 208,060 deaths across 18 Peruvian departments during
the four warmest consecutive months at each location. The findings of Vicedo et
al. [16, Supplementary Material] showed that Puno, Lima, Arequipa and Loreto
were the departments with the highest fraction of heat-related mortality attributed
to anthropogenic climate change, with 86.8%, 81.4%, 80.2% and 80%, respectively.
In contrast, Huancavelica, Ayacucho and Apurímac were reported to experienced
the least heat-related mortality per year due to human-induced climate change [16,
Supplementary Material].

Vicedo et al. [16] found that the highest heat-related mortality fractions attributable
to anthropogenic climate change occurred in the departments of Loreto, La Libertad
and Lambayeque. This differs from our results, which indicated higher heat-related
mortality in the departments of Lima, Lambayeque and Ica. Additionally, Vicedo
et al. [16] reported the lowest heat-related mortality fractions due to anthropogenic
climate change for the departments of Huancavelica, Ayacucho and Junín, which
is similar to our findings that indicated the absence of heat-related mortality in
the departments of Huancavelica, Ayacucho, Apurímac, Junín, Puno, and Ancash.
However, regardless of the similarities and differences between our findings and
those reported by Vicedo et al. [16], direct comparison is not possible because of the
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different approaches used in each study. For our project, we used a 21-day lag for the
regression model and included data from all months of the year to account for the
effects of cold and heat, as recommended by Gasparini et al. [69]. In contrast, Vicedo
et al. [16] analysed the deaths that occurred during the four warmest months at
each location and applied a 10-day lag window to study the effects of extreme heat.
Moreover, their analysis included two scenarios: the assessment of both natural and
anthropogenic climate change.

In our pooled results, stratified by subgroups based on age, sex and cause of death,
we found similar mortality risk (RR) and MMT for both male and female groups,
with only minimal variations. However, we found that exposure to extreme cold
temperatures increased the vulnerability by 31.9% for individuals aged 65 and older,
whereas for those under 65 years, the increase was 3.9%. Additionally, extreme heat
was associated with a 3.3% increase in mortality risk for individuals under 65 years
old, while for the population aged 65 and older, extreme heat exposure showed an
increase of 13.1%. These findings align with diverse studies that have reported the
high vulnerability of elderly populations to non-optimal temperatures. For instance,
Kephart et al. [13] found that the Latin American individuals aged 65 years old and
older are more vulnerable to non-optimal temperatures, as well as Vicedo et al.
[86] reported that elderly women are affected the most by non-optimal heat. How-
ever, in this study we did not investigate the combined effects of age and sex on
vulnerability. Lastly, we found that mortality risk (RR) increases significantly for
circulatory system and digestive diseases with exposure to extreme cold tempera-
tures. These findings are consistent with the results reported by Kephart et al. [13],
who found higher mortality fractions associated to extreme cold for cardiovascular
diseases across Latin American cities.

2.4.1 Strengths and limitations of the study

Our study has diverse strengths. To date and to our knowledge this study is the first
to provide a nationwide perspective on the effects of non-optimal ambient temper-
atures across all Peruvian departments. Here, we use high-resolution temperature
data (0.05°) and daily mortality aggregated by provinces. Our study illustrates the
robust association between temperature and mortality for the six leading causes of
death in Peru. Additionally, we demonstrate the increased vulnerability of elderly
individuals to extreme temperatures. Finally, we provide robust location-specific
estimates of temperature-related mortality fractions for both heat and cold compo-
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nents. These results are provided as an overall accounting for all ages, as well as for
two subgroups: individuals aged 65 years and older and those below 65 years.

Nonetheless, we acknowledge the limitations of our study that should be addressed
in future research. Our statistical model did not control for other exposure variables
such as air pollution and humidity. Some studies have reported that high concentra-
tions of air pollution modify the impact of higher temperatures on mortality [87–89].
Specifically, higher concentrations of air pollutants like PM10, PM2.5, O3 and NO2

can modify cardiovascular and respiratory mortality [90]. For instance, in the city
of Lima, rising air temperatures have been reported to amplify the effects of PM2.5

on mortality risk [91], and non-optimal PM2.5 levels have been found to exacerbate
the impact of temperature on birth weight [92].

While the effect of humidity on temperature-related mortality has not yet been stud-
ied in Latin America, it has been analysed in different regions [93–95]. A recent study
focused on central China has found that higher humidity could potentially enhance
cold-related mortality [93] while another study reported an increased morbidity risk
due to humid heat in Shanghai [94]. Therefore, further analyses including humidity
and air pollution could potentially influence our results. However, to date, there is
no scientific consensus on the extent to which humidity and air pollution can impact
temperature-related mortality. Moreover, we did not account for possible biases due
to demographic and socioeconomic factors, which are significant drivers given that
Latin America is one of the regions with the highest levels of inequality [96].

2.5 Conclusion

Altogether, our project provides robust information about excess mortality due to
non-optimal ambient temperatures in Peru, highlighting both cold- and heat-related
mortality fractions. Specifically, it presents estimates for each Peruvian department,
considering the total population as well as two distinct age groups: individuals
under 65 years and those aged 65 years and above. Our study indicates that, at the
national level, exposure of the Peruvian population to extreme cold from 2009 to
2019 increased their risk of mortality by 21.9%, while extreme heat raised it by 8.6%.
Additionally, we found that most of the mortality fraction attributed to non-optimal
temperatures was geographically distributed among the southern departments of
Peru. Finally, our project illustrates the potential number of Peruvian deaths that
could have been avoided if proper adaptation measures and public health policies
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were implemented in different departments.
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Figure S.1: Pooled estimates of the overall temperature-mortality association by
the main 6 causes of death in Peru. The exposure-response associations are shown
for the ICD codes J00-J99, C00-D48, I00-I99, V01-Y98, A00-B99 and K00-K93. In
all figures, the 1st percentile (extreme cold) is indicated by blue dotted lines and in
red for the 99th percentile (extreme heat).
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Figure S.2: Temperature-mortality associations estimated as the best linear unbi-
ased predictions (BLUPs) over 21d lags for the departments of Amazonas, Ancash,
Apurímac, Arequipa, Ayacucho, Cajamarca, Callao, Cusco, and Huancavelica. The
relative risks of mortality (RR with 95% CI) were obtained for each department.
We indicate the 99th percentile (extreme heat) with red dotted lines, and with blue
ones, we illustrate the 2.5th percentile (moderate cold).
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Figure S.3: Temperature-mortality associations estimated as the best linear unbi-
ased predictions (BLUPs) over 21d lags for the departments of Huánuco, Ica, Junín,
La Libertad, Lambayeque, Lima, Loreto, Madre de Dios, and Moquegua. The rel-
ative risks of mortality (RR with 95% CI) were obtained for each department. We
indicate the 99th percentile (extreme heat) with red dotted lines, and with blue
ones, we illustrate the 2.5th percentile (moderate cold).
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Figure S.4: Temperature-mortality associations estimated as the best linear unbi-
ased predictions (BLUPs) over 21d lags for the departments of Pasco, Piura, Puno,
San Martín, Tacna, Tumbes, and Ucayali. The relative risks of mortality (RR
with 95% CI) were obtained for each department. We indicate the 99th percentile
(extreme heat) with red dotted lines, and with blue ones, we illustrate the 2.5th
percentile (moderate cold).
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Figure S.5: Extreme heat and cold-related mortality relative risks (RR with 95%
CI) for all Peru’s departments between 2009 and 2019. The associations were esti-
mated as the best linear unbiased predictions (BLUPs). Extreme cold was defined
at the 1st percentile and extreme heat at the 99th percentile of the temperature
distribution.
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2.11 Supplementary Tables

Table S.1: Temperature and mortality data summarized by department.

Table S.2: Summary of the mortality data categorized by sex and age.
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Table S.3: Mortality counts classified in 22 groups based on the ICD-10.

Table S.4: Aggregated mortality counts of the main six causes of death in Peru.
The aggregation of the total counts was done based on the International Classifica-
tion of Diseases, version 2019 (ICD-10).

Table S.5: Pooled estimates of MMT, extreme heat and cold-related Relative Risks
(with 95% CI).
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Table S.6: Minimum Mortality Temperature (MMT) and Minimum Mortality
Temperature Percentile (MMP) values calculated for all-cause mortality, 65 years
old and older individuals and population below 65 years old. MMT and MMP were
calculated across all the departments of Peru.

Table S.7: Moderate and extreme heat and cold-related Relative Risks (RR).
Extreme temperatures correspond to the 1st and 99th percentiles. Moderate tem-
peratures are defined by the 2.5th and 97.5th percentiles.
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Table S.8: Estimated number of deaths attributable to non-optimal temperatures
(AN) used to calculate the attributable mortality fraction (AF) for the period 2009
to 2019 by department. The attributable number was obtained as an overall and
for the heat and cold components. The 95% CIs are displayed in square brackets.

Table S.9: Estimated number of deaths attributable to non-optimal temperatures
(AN) for the population below 65 years old. AN was used to calculate the at-
tributable mortality fraction (AF) for the period 2009 to 2019 by department. The
95% CIs are displayed in square brackets.
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Table S.10: Estimated number of deaths attributable to non-optimal temperatures
(AN) for individuals 65 years and older. AN was used to calculate the attributable
mortality fraction (AF) for the period 2009 to 2019 by department. The 95% CIs
are displayed in square brackets.

Table S.11: Estimated attributable mortality fraction (AF) due to non-optimal
temperatures from 2009 to 2019 by department for the population group below 65
years old. (All-cause mortality, population below 65 years old). The 95% CIs are
displayed in square brackets.
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Table S.12: Estimated attributable mortality fraction (AF) due to non-optimal
temperatures between 2009 to 2019 by department for individuals aged 65 and older.
(All-cause mortality, individuals aged 65 and older). The 95% CIs are displayed in
square brackets.



Chapter 3

Projected health impacts in the
long-term future

This chapter describes and presents the estimated temperature-related mortality
fractions that we obtained for the period 2071 to 2099. First, in subsection 3.1 we
present the log-linear extrapolation of the exposure-response curves for the depart-
ments of Ica, Madre de Dios and Ucayali. The curves were generated using the
information obtained in the second stage of the time series analysis. These informa-
tion is described in Chapter 2, while the methodology can be consulted in Chapter 1.
In summary, we used the BLUPs estimates and the values of MMT to extend the
boundaries of the curves, specifically, the range of temperatures. Then, we used the
crosspred( ) function in R to illustrate the overall temperature-mortality associ-
ation. In subsection 3.2, we present the projected excess mortality fractions due to
non-optimal temperatures. The quantification of the projected mortality fractions is
reported for both components, heat and cold under two climate scenarios, RCP 2.6
(mitigation scenario) and RCP 8.5 (high emissions scenario). The projected frac-
tions were obtained under two main assumptions: a continuous population and the
absence of adaptation measures.

3.1 Extrapolated temperature-mortality curves

Figure 1 illustrates the log-linear extrapolation of the temperature-mortality asso-
ciation for the department of Ica with 95% CI. The curve displays a typical J shape
and shows the relative risk for two study periods: the observed period from 2009

51
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to 2019 and the projected future, from 2071 to 2099. As we performed a log-linear
extrapolation, the shape and estimates of the curve for the observed period did not
change. This figure can be compared with the exposure-response curves that were
obtained in the second stage (Figure S.3). However, what we can observe is that
the range of temperatures shown on the X-axis increased, therefore, the RR raised
as well.

Figure 1: Extrapolation of the temperature-mortality association for the depart-
ment of Ica with 95% CI. The CIs are shown in light green and transparent grey
polygons, while different colour lines represent the RR estimates. In red colour, we
highlight the RR estimates under a mitigation scenario (RCP 2.6), and the yellow
dashed line indicates the RR under a high emissions scenario (RCP 8.5). The dashed
red line indicates the maximum value of mean temperature under the scenario RCP
2.6, while the yellow one represents the minimum value of mean temperature under
a high emissions scenario (RCP 8.5).
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Figure 2: Extrapolation of the temperature-mortality association for the depart-
ment of Madre de Dios with 95% CI. The CIs of the estimates are shown in light
green and transparent grey polygons. The RR estimates are represented by different
colour lines. The dashed red line indicates the maximum value of mean temperature
under RCP 2.6 scenario, while the yellow one represents the minimum value of mean
temperature under a high emissions scenario (RCP 8.5).

Figure 2 shows the extrapolation of the curve for the department of Madre de Dios.
The relative risk (RR) obtained for this department increases the most under a
high emissions scenario (RCP 8.5), with a projected temperature range increasing
by approximately 3°C. However, the CIs of our estimates are not very robust. We
hypothesise that the high variability in the CIs could be caused by the biases of the
model that was used to simulate the future temperature values that we included
in our analysis. Also, Madre de Dios is an area with few meteorological stations,
therefore, the lack of observed temperature values that are available for this region
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might increase the uncertainties and biases of our results. Nonetheless, the estimated
RR under RCP 2.6 is more robust. Although the information of our extrapolation
is not completely robust, it provides an overview of the future outcomes. In the
Appendix, Figure A.1 illustrates the log-linear extrapolation of the curve for the
department of Ucayali. The range of temperatures and shape of the curve are
similar to those observed for Madre de Dios, even though both departments are
not near each other. These similarities might be attributed to similar topographic
conditions, however, to obtain the best estimation, further research and more robust
datasets are needed.

3.2 Estimated temperature-mortality fractions for

the period 2071 to 2099

We estimated the projected temperature-related mortality following the methodo-
logy of Vicedo et al. [58]. As explained in Chapter 1, we calibrated the temperature
series generated with information from WRF simulations before doing the analysis.
For this, we used the calibration function by Hempel et al. [62]. The calibration
aimed to realign and correct biases of the simulated temperature values, therefore,
for this correction, we used observed values to realign the series. We chose five over-
lapping years (2005 to 2010) from the PISCOt v1.2 dataset to do the bias correction
to the historical and projected temperature series. For the calibration process, we
first compared the distributions of the observed and historical temperature series
from 2005 to 2010 for each analysed department. In the Appendix, Figure A.2 il-
lustrates the distributions of the observed (PISCOt v1.2) and historical (WRF-QM)
temperature series for each department over the overlapping period of 5 years (2005
to 2010).

Afterwards, to initiate the calibration, we implemented the function of Hempel et
al. [62] in R to realign the series. To corroborate the calibration, we compared
the cumulative distribution of the observed, simulated and calibrated temperature
series. This is illustrated in the Appendix in Figure A.3 and Figure A.4. The
first figure compares the calibrated temperature series under RCP 2.6, while the
second one shows the comparison of the calibrated series under RCP 8.5. Finally,
before starting the analysis to quantify the future health impacts, we compared
the distribution of the historical and projected temperature series that were previ-
ously calibrated (See Figures A.5 and A.6 of the Appendix). With the calibrated
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temperature series, we estimated the projected mortality fractions attributable to
non-optimal temperatures, the results are reported in Table 1 and the comparison
of the projected changes is illustrated in Figure 3. This analysis was not conducted
by different age groups. Therefore, the results presented include all deaths across
the entire population of the studied departments. To obtain the overall, heat and
cold-related mortality fractions, we first calculated the attributable numbers, which
are presented in Table A.1.

Table 1: Estimated attributable fraction to non-optimal temperatures for the pe-
riod 2071 to 2099. The estimation was done for the historical (1981-2010) and for
the future period (2071-2099) under two scenarios. The excess mortality was calcu-
lated for the cold and heat component, as well as the total.

Table 1 displays the results of our analysis by department. The estimates were
calculated for both historical and future periods, considering mitigation and high
emission scenarios. Contrary to the observed period, the projected estimates indicate
a higher increase in mortality fraction caused by warmer temperatures, and a decline
in cold-related mortality fractions. Our results show that the heat-related mortality
fraction could potentially triple under a high emissions scenario (RCP 8.5) compared
to the estimates obtained under a mitigation scenario (RCP 2.6). For Ucayali, the
projections indicate that the heat-related mortality fraction would increase from
0.22% (95% CI: -0.02% to 0.47%) to 1.81% (95% CI: 0.11% to 3.5%) under mitigation
conditions, and for a high emissions scenario, the proportion is estimated to increase
by 23.69% (95% CI:3.33% to 37.71%). In Madre de Dios the fraction is projected
to rise from 0.26% (95% CI: -0.02% to 0.53%) to 1.89% (95% CI: 0.16% to 3.51%)
under a mitigation scenario (RCP. 2.6) and to 23.73% (95% CI: 4.63% to 36.92%)
under a high emissions scenario (RCP 8.5). Moreover, for the department of Ica, the
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estimated heat-related mortality fraction is projected to increase from 0.19% (95%
CI: 0.08% to 0.31%) to 3.60% (95% CI: 1.96% to 5.17%) under RCP 2.6 and 10.28%
(95% CI: 6.06% to 13.99%) for RCP 8.5.

Figure 3 illustrates the projected changes in the future attributable mortality frac-
tions obtained under RCP 2.6 and RCP 8.5 conditions. In all departments, future
cold-related mortality is projected to decrease compared to the historical baseline
estimates. Although this reduction is most noticeable for the estimates obtained un-
der a high emissions scenario (RCP 8.5), the cold excess mortality fraction decrease
does not compensate for the projected increase in excess mortality fraction related
to heat. Nevertheless, it is important to emphasize that our results were obtained
under 2 key assumptions: no changes in the population and no adaptation measures
implemented in the future.

Figure 3: Projected attributable mortality fraction due to non-optimal warm and
cold temperatures for the period 2071 to 2099. The estimation was done for the
historical (1981-2010) and for the future period (2071-2099) under two scenarios.
The estimated mortality fractions are shown for the cold and heat components.



Chapter 4

Conclusion and key findings

In this master’s thesis project, we aimed to quantify the health impacts of non-
optimal temperatures in Peru for present and future conditions. Our results showed
that for the observed period, 8.77% of the total all-cause mortality was attributed
to non-optimal heat and cold temperatures. We found that most of the attributable
mortality fraction was linked to non-optimal cold temperatures, and our calcula-
tions showed that the majority of the cold-related mortality fraction occurred in the
departments located in southern Peru. Due to the limitations on the spatial cov-
erage of the future climate projections, we were not able to quantify the projected
impacts of non-optimal temperatures for all departments of Peru. Thus, we only
analysed the departments of Ica, Madre de Dios and Ucayali. Our findings indicate
that for the projected period from 2071 to 2099, cold-related mortality is anticipated
to decrease compared to the historical estimates. Nonetheless, heat-related mortal-
ity is expected to increase across all studied departments, surpassing the projected
reduction in the mortality fraction attributable to non-optimal cold temperatures.

Although we did not find differences in the relative risk obtained for the stratified
analysis between male and female populations for the observed period, we identified
that individuals aged 65 years and older were the most vulnerable when exposed to
non-optimal temperatures, mainly to cold ones. By pooling the estimates for differ-
ent causes of death, we found that exposure to extreme cold significantly increased
mortality risk among individuals with underlying circulatory system conditions. We
also calculated the mortality risks for exposure to extreme heat and cold for all-age
all-cause mortality. Our results showed that for the departments located in coastal
areas in the north of Peru, the mortality risk was higher when populations were
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exposed to extreme heat. However, exposure to extreme cold impacted the most
in the south of the country, specifically in the department of Puno. In Peru, the
departments of Puno, Junín, Huancavelica, Ayacucho, and Arequipa experience the
most extreme cold [53]. Our stratified analysis showed that the department of Puno
experienced the highest attributable mortality fraction due to non-optimal cold tem-
peratures. We estimated that in Puno non-optimal cold was linked to 38.77% (95%
CI: 11.80% to 57.51%) among the elderly population (aged 65 and older) and 8.58%
(95% CI: -3.38% to 18.03%) among younger individuals.

By conducting an extended two-stage time series small-area analysis, we were able to
obtain the temperature-mortality associations for all departments considering mor-
tality counts from all Peruvian provinces. In addition, we quantified the attributable
mortality fraction linked to non-optimal temperatures. However, temperature-related
mortality is not just influenced by temperature and climatic conditions, but it is
also determined by demographic and socioeconomic factors [97]. Thus, our find-
ings provide nationwide information that should be considered by policymakers and
stakeholders when designing and implementing mitigation and adaptation programs
to reduce the vulnerability of populations exposed to non-optimal heat and cold
temperatures. Special emphasis should be given to the department of Puno, which
in 2021 was identified as one of the departments most vulnerable to poverty [52], and
where our analysis revealed the highest attributable fraction linked to non-optimal
temperatures.

We were not able to estimate the projected temperature-related mortality for all the
departments of Peru. Nonetheless, our results illustrate that in some areas heat-
related mortality could increase by 20% under a high emissions scenario. Hence,
considerable preventative and adaptation measures must be implemented to protect
the most vulnerable populations. In 2020, Aracena et al. [98] analyzed the poli-
cies and adaptation plans that aimed at addressing the impacts of climate change
on Peru’s health systems. The results of the analysis indicated that most of the
Peruvian departments presented adaptation strategies to cope with the projected
impacts of climate on health. However, vulnerable populations and marginalized
groups were not addressed properly in their strategies, and the reduced research at
a local level presented a challenge to develop strategic plans. Therefore, additional
research including socioeconomic factors should be conducted to provide a concise
local overview of the projected climate change impacts. Thus, the results presented
in this master’s thesis can serve as a foundation for further research in Peru.
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Appendix A

Figure A.1: Extrapolation of the temperature-mortality association for the de-
partment of Ucayali with 95% CI. The CIs are shown in light green and transparent
grey polygons, while the RR estimates are represented by different colour lines.
The dashed red line indicates the maximum value of mean temperature under the
scenario RCP 2.6, while the yellow one represents the minimum value of mean tem-
perature under a high emissions scenario (RCP 8.5).
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Figure A.2: Comparison of the distribution of the simulated (historical) and ob-
served temperature values for the period 2005 to 2010. The distribution of the
observed temperatures is highlighted in yellow while the historical values are indi-
cated with brown color.

Figure A.3: Cumulative distribution of the simulated (RCP 2.6), observed and
calibrated temperature values. The cumulative distribution of the calibrated series
is represented by a dotted line.

Figure A.4: Cumulative distribution of the simulated (RCP 8.5), observed and
calibrated temperature values. The cumulative distribution of the calibrated series
is represented by a dotted line.
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Figure A.5: Comparison of the distribution of the historical temperature series
(1981-2010) with the projected temperature series simulated under RCP 2.6 (1971-
2099). Both series are calibrated. The distribution of the historical temperature
is highlighted in light pink. Additionally, the projected temperature values are
indicated in green colour.

Figure A.6: Comparison of the distribution of the historical temperature series
(1981-2010) with the projected temperature series simulated under RCP 8.5 (1971-
2099). Both series are calibrated. The distribution of the historical temperature is
highlighted in pink. Additionally, the projected temperature values are indicated in
purple.

Table A.1: Estimated number of deaths (AN) used to calculate the attributable
mortality fraction (AF) for the period 2071 to 2099. The estimation of AN was
done for the historical (1981-2010) and for the future period (2071-2099) under two
scenarios. The estimated number of deaths was calculated for the cold and heat
component, as well as the total.
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