
Validation of the modi�ed SPARC snow

retrieval from historical NOAA AVHRR data

over the European Alps based on

Landsat TM images

Master's Thesis

Faculty of Science

University of Bern

presented by

Simon Albrecht

2011

Supervisor:

Dr. Stefan Wunderle

Advisor:

Dipl. Geogr. Fabia Hüsler

Remote Sensing Research Group

Institute of Geography and Oeschger Centre for Climate Change Research





Acknowledgment

I would like to thank all the people who supported me and contributed to the realization of

this project.

In particular I would like to express my gratitude to Dr. Stefan Wunderle, the supervisor and

head of the Remote Sensing Research Group, for enabling this thesis, his excellent assistance

and for giving me the time to re�ect upon my future plans. He guided me through this year

with helpful advice and his rich scienti�c experience.

In addition, I would like to thank my advisor, Fabia Hüsler. She introduced me to the �eld of

IDL programming with a lot of patience and was never too busy to answer all my questions.

I always enjoyed our teamwork.

Very special thanks also go to the rest of the RSGB, namely Céline, Dominic, Emanuele,

Jan, Je�, Rafael and Thomas who helped make this year not only interesting but also very

amusing. Christoph Neuhaus and his e�orts to keep my computer running at all times should

not be forgotten.

Thanks are also owing to Sophie and Lara for their language assistance.

Last but not least my thanks go to my family who supported me throughout all the years and

encouraged me in di�cult times of my education.

I





Abstract

The Alpine Region is a highly sensitive ecosystem and will su�er from above-average changes

in the course of climate change (IPCC 2007c). Snow cover plays a key role in this context as

it in�uences the radiation and energy budget, the water balance, surface properties and also

human activities. Mapping snow cover adequately and analyzing it over time is therefore of

major importance. Since 1978, the NOAA AVHRR sensor system has been operational and is

therefore best suitable for climate related long-term research. The Remote Sensing Research

Group at the University of Bern (RSGB) has collected and archived a unique set of such data

providing daily coverage of the European Alps. This data set serves as the basis for a 25-year

snow time series, which is currently being processed at the RSGB.

With this background, a validation study is presented, where selected scenes of the AVHRR

snow mask (1.1km spatial resolution) calculated with the Separation of Pixels using Aggre-

gated Rating over Canada (SPARC) algorithm by Khlopenkov and Trishchenko (2007) are

validated with high-resolution Landsat images (30m resolution). According to this, the objec-

tives of the thesis are:

• Quanti�cation of accuracy and bias of the AVHRR snow mask taking the di�erent land

cover types and elevation zones into account

• Modi�cation of the SPARC score thresholds for algorithm improvement

• Investigation of the factors a�ecting the SPARC classi�cation accuracy

For the calculation of the Landsat reference snow masks an adapted version of the

NDSI/NDVI1-algorithm by Hall et al. (1998) is implemented. These snow masks, �tted

to the AVHRR resolution, serve as the ground truth for the validation of the SPARC algo-

rithm. In a �rst step, the accuracy (=ACC) and the BIAS are calculated with the default

values of SPARC by comparing the class of each AVHRR pixel with the corresponding Land-

sat pixel (pixel-by-pixel approach). The results show a substantial underestimation of snow

cover (overall BIAS=0.77) with an overall ACC of 78%, whereby most of the disagreement is

found in the transition zone. While most of the scenes have ACC values between 75% and

1NDSI: algorithm for snow detection. NDVI: algorithm for detection of vegetation.
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83%, the early morning satellites N12, N15 and December scenes show poorer results and are

therefore excluded from the threshold decision process. In a second step, the B-score, respon-

sible for the di�erentiation between snow and snowfree areas, is shifted stepwise from b-3 to

b-11. Best ACC values are found with a value of b-6. With this modi�cation an ACC gain of

9.46% for non-forested areas and 1.94% for forested areas results in an overall improvement

of 5.21%. The underestimation could be corrected with a slight tendency to overestimation

(overall BIAS=1.03). In addition, ACC is generally lower if forest cover is present. A com-

parison with the snow product from MODIS data (MOD10A1) shows that with this threshold

adjustment the AVHRR snow mask almost, i.e. with -1 to -2%, reaches the quality of the

state-of-the-art sensor system for snow cover mapping.

Several factors are found which in�uence the ACC of the snow masks. Negative correlations

are found with the scene satellite zenith angle (r2=0.71) and the sun zenith angle (r2=0.21).

The ACC is also in�uenced by the date of scene acquisition. While scenes from December show

low ACC values, the performance increases throughout the winter (r2=0.65). Furthermore, for

forest pixels it seems that the lower the snow extent of the scene is, the higher the resulting

ACC tends to be (r2=0.20). The opposite is true for forest-free areas (positive correlation

with r2=0.64). Moreover, a dependency is found between the altitudinal distribution of the

forest pixels and ACC. The latter is lowest between 1000 and 2000m above sea level, while

most of the forest pixels are present in this zone.

Furthermore, a subpixel approach is presented where the resolution of the Landsat image is

kept at 30m. With this, a fractional snow cover area can be calculated for each AVHRR pixel,

which corresponds to 27 x 38 Landsat pixels. It can be shown that a similar behavior of ACC

and BIAS compared to the pixel-by-pixel approach occurs, although the optimal values of the

B-score di�er slightly.

For the future long-term development of the algorithm it should be pointed out that in the

course of climate change, uncertainties of the algorithm ACC could be shifted temporally.

Such examples are classi�cation weaknesses owing to shallow snow layers in the beginning of

the winter, whereby these weaknesses are likely to be shifted to later months due to a short-

ening of the snow season. Another example is the expected future rise of the snow line leading

to a dislocation of the transition zone, where correct classi�cation is di�cult.

The potential of the snow time series for climate research is enormous. It is therefore essential

that the continuation is guaranteed, also with future satellites.
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Chapter 1

Introduction

In its Fourth Assessment Report the Intergovernmental Panel on Climate Change (IPCC)

states that the Alpine Region as a highly sensitive ecosystem will su�er from above-average

impacts in the course of climate change (IPCC 2007c). This is mainly related to the high

fraction of snow and ice and the sensitive feedbacks related to these land cover types. Snow

is of crucial importance due to its in�uence on radiation and energy budget, water balance,

surface properties and also on human activities. It acts as a water storage and a�ects water

supply and runo� rate, which is essential for the energy industry. Furthermore, transporta-

tion, agriculture and winter sports rely on snow conditions (UNEP 2007). Mapping snow

cover adequately and analyzing it over time is therefore of major importance for the entire

Alpine Region and the science community. In order to study long-term developments of the

Earth's snow extent, reliable snow time series are required. For this speci�c purpose, satellite

remote sensing has received increasing attention as its history has reached a climate-relevant

length.

1.1 The Relevance of Alpine Snow Cover Mapping

To emphasize the relevance of alpine snow cover mapping, an introduction to the in�uence of

snow on the climate system and to climate change in the Alpine Region over the last decades

is given.

Since 1970 the mean temperature has increased by approximately 1.5◦C in Switzerland

(UNEP 2007). This corresponds to a 1.5 times higher warming intensity compared to the

whole of the Northern Hemisphere. The Alps in general are warming three times faster than

the global average. An increase in winter temperature of roughly 1◦C to 3◦C from 1990 by

2050 is projected. Several studies substantiate this trend (Appenzeller et al. 2008, Begert

et al. 2005, Scherrer et al. 2004). Since snow cover controls the Earth's albedo and is

1



2 CHAPTER 1. INTRODUCTION

responsible for the largest annual and interannual di�erences in surface re�ectivity among

all surface types (Armstrong and Brodzik 2001), these accelerated temperature changes in

combination with the snow-albedo feedback lead to a continual decrease in snow cover extent

and duration. Regions in the transition zone, where snow accumulates close to its melting

point, are sensitive already to small temperature �uctuations. This is particularly the case

in low elevation zones with shallow snow layers (IPCC 2007b). The mean altitude of this

transition zone will also change since the snow line in the European Alps is expected to rise

about 150m for every 1.0◦C increase in winter temperature (Beniston 2003).

Snow accumulation and melt are directly coupled with air and soil surface temperature,

precipitation, wind and surface relief. Whereas precipitation governs the overall amount

of snow, air temperature determines not only the phase of precipitation, i.e. snow or rain,

but also the rate of snow melt (UNEP 2007). Warmer winters with possible increases in

precipitation will raise the snow line, reduce the overall snow cover and decrease the summer

runo� (Marinucci et al. 1995). Related to this, in combination with the knowledge about the

snow water equivalent (SWE: amount of water stored as snow) and the melting rate, snow

cover is a crucial contributor for the assessment of water supply and �ooding potential. This

is also relevant for climate models as realistic snow cover data are essential for simulating

surface energy balance as well as predicting winter water storage and runo� (UNEP 2007).

Seasonal snow cover is of additional relevance as it acts as a radiative sink and in�uences

the transfer of heat and moisture between surface and atmosphere due to the low thermal

conductivity (=insulator) (Gustafsson et al. 2001). Not least, snow cover also a�ects the

large-scale atmospheric circulation and is a sensitive indicator of regional climate variability

and changes (UNEP 2007).

Nevertheless, the advisory body on climate research to the Swiss federal government, OcCC

(Organe consultatif sur les changements climatiques), emphasizes in its report that snow is

guided by short-term weather developments and is, therefore, a component that is hard to

assess. The uncertainties related to snow cover complicate the assessment of the development.

Here, remote sensing techniques in combination with digital elevation models, numeric

models and a systematic monitoring play an important role (OcCC 2008). The objective

of the present thesis is to further reduce these uncertainties and to contribute to a better

understanding of the snow cover developments over the last decades.

As already mentioned, snow cover and the ongoing climatic changes are also of socio-economic

relevance. Mountain tourism and particularly winter mountain tourism depend on the snow

conditions. In the period between 1975 and 1999 the mean snow extent was reduced by 50%

above 440m and by 15% above 2200m in Switzerland, whereby serious uncertainties in snow

reliability are expected (IPCC 2007a). An increase of the minimum winter temperature by

2◦C, for example, would reduce the snow cover duration on Säntis (2500m) by 50 days when

keeping the precipitation constant. Under assumption of a precipitation increase of 50% and

same warming, a duration reduction of 30 days is expected. In the critical zones in Austria
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(below 600m in winter and 1400m in spring), as a further example, every degree Celsius

warming results in a shortening of the ski sport season by 4 weeks during the main season

(IPCC 2007a). In the Swiss context OcCC (2008) mentions that until 2100, the classic winter

sports are not expected to be cost-e�ective anymore in elevation zones lower than 1500m and

advises that a diversi�cation of the mountain tourism has to happen.

The high relevance of snow cover on the di�erent levels described above and the ongoing

changes of the last decades emphasize the need to study the snow cover developments by

means of accurate time series. Remote sensing satellite systems are predestinated for snow

mapping since they are able to capture information of the Earth's surface simultaneously on

large scales and therefore have an advantage over in-situ observations. Several di�erent sensors

with distinct characteristics are available (Rees 2006). The choice of the sensor depends on the

parameters to be analyzed, cloud occurrence as well as on the complexity of the terrain and is

always a tradeo� between temporal, spatial and spectral resolution. A huge set of techniques

have been used to detect snow parameters such as snow albedo, snowpack temperature, grain

size and density, SWE and snow extent. At an intermediate spatial resolution of around 1km,

such as NOAA AVHRR used for this project, the wider swath of these systems allows for a

high temporal resolution, which is a prerequisite in snow cover analysis on a daily basis (Rees

2006).

Before the objectives of the thesis are introduced, the topic of remote sensing of snow is put

into the scienti�c context.

1.2 The Scienti�c Context of the Thesis

A large number of snow retrievals from di�erent polar orbiting as well as geostationary

satellites have been developed to contribute to the knowledge of seasonal snow cover (Siljamo

and Hyvarinen 2011, Parajka and Bloeschl 2006, Foppa et al. 2004). The immediate need for

continuous historical daily snow cover products on a moderate resolution (1km) is identi�ed

as well by the Global Climate Observing System (GCOS) which advances such products for

the purpose of climate change monitoring (GCOS 2006). Up today, the Advanced Very High

Resolution Radiometer (AVHRR) is the only sensor which allows to study surface processes

from space on a daily basis of more than 25 years. Although several other snow cover time

series from AVHRR at di�erent spatial scales have become available, an AVHRR snow time

series of the European Alps on full resolution is still missing (Huesler et al. 2012).

The present thesis should serve as a supporting input towards such a time series in the

framework of the study from Huesler et al. (2012) at the University of Bern.

A broad range of snow retrievals from AVHRR have been developed but none of these seems

to be in widespread use. A common approach is the Normalized Di�erence Snow Index, NDSI
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(Hall et al. 2002), which is based on the fact that snow is highly re�ective in the visible part

of the electromagnetic spectrum but absorbs most of the light in the near-infrared region

(NIR) at 1.6µm (see also theory section 2.4). Hence, the NDSI is only applicable to sensors

which detect information of these spectral regions. Since only the latest generation is able

to provide this information and to switch between channel 3A (centered at 1.6µm) and 3B

(centered at 3.9µm), the NDSI is not implementable for historical AVHRR data. In order

to address this issue Khlopenkov and Trishchenko (2007) developed the Separation of Pixels

using Aggregated Rating over Canada (SPARC) algorithm, speci�cally for historical AVHRR

data. The advantage of this snow retrieval is that it is applicable to all sensor generations

since it is able to deal with both channels 3A and 3B. In addition, its high robustness against

calibration uncertainties due to the scaling approach makes it preferable for long-term studies

(Huesler et al. 2012). This is the reason why the SPARC algorithm is used for the unique

25-year snow time series of alpine snow cover mapping. Khlopenkov and Trishchenko (2007)

demonstrated its applicability for Canada. However, for the European Alps the classi�cation

thresholds have to be modi�ed and the complexity of the terrain in challenging combination

with the high amount of forest has to be considered. This is the framework where the present

master's thesis is located. The default settings of SPARC are applied to an alpine study area

and the accuracy of the resulting snow mask is analyzed. In a further step, the improvement

potential is assessed and possible adaptations of the score thresholds are implemented. With

this validation procedure valuable information for the improvement of the snow time series

shall be delivered to achieve an accuracy as high as possible.

The accuracy has to be related to reference data, which is taken as the ground truth.

However, the choice of this reference is not straightforward. In a previous study, conducted

by the Remote Sensing Research Group, Foppa et al. (2004) developed a sub-pixel algorithm

by means of linear spectral unmixing to optimize the predictability of snow cover in the

heterogeneous terrain of the Alps. The algorithm, using channel 3A to calculate fractional

snow cover areas, was later validated based on high-resolution ASTER data (Foppa et al.

2007). This concept of validating a product from moderate resolution sensors with reference

images based on high-resolution data is applied to the thesis at hand. Here, 30m-Landsat data

are used. Since 500m-resolution MODIS data (launched in 1999) have become state-of-the-art

in snow cover mapping in recent years, this sensor is also a preferable validation source. This

is emphasized by Parajka and Bloeschl (2006), who found an average accuracy of the MODIS

snow product (MOD10A1) of 95% for the Alpine Region. For this reason, the AVHRR

snow mask is also compared with this MODIS snow product to show how well the SPARC

classi�cation works.

A remaining issue in remote sensing of snow are classi�cation di�culties emerging over forest

areas since shadow e�ects and the canopy modify the re�ectance. Based on MODIS data, Hall

et al. (1998) presented an improved algorithm to address this challenging task by coupling

the NDSI with the Normalized Di�erence Vegetation Index (NDVI). The Landsat image
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serving as the reference for the validation of this thesis (see section 4.1.2.2) is performed in

analogy to this approach.

Besides satellite based validation, the use of ground-based snow observations is another

common validation approach. A large number of literature is available related to such

methods (Parajka and Bloeschl 2006, Simic et al. 2004 Maurer et al. 2003, Romanov

et al. 2002). However, the lacking representativeness of these stations for a wider area in

the heterogeneous terrain of the Alpine Region is the main reason for not considering such

validation data in the framework of this thesis.

1.3 Objectives of the Thesis

The developments described above emphasize the need of ongoing research in the Alps and the

suitability of remote sensing techniques for these purposes. As a member of the consortium of

the HyperSwiss-Net Project1, the RSGB is responsible for the snow and climate modules. In

this framework, Huesler et al. (2011) are currently processing a NOAA AVHRR time series of

the European Alps for climate change studies. This data set serves as the basis for a 25-year

snow time series calculated with a modi�ed version of the SPARC algorithm. The series is

validated by using webcam images, a snow cover model and MODIS data. With an additional

validation based on high-resolution Landsat TM/ETM images, this master's thesis should

serve as a supporting input for the assessment of the performance and the improvement

potential of the SPARC snow retrieval. The time series could later be used for a variety

of climatological applications, such as for long-term climate change analyses or for regional

climate models as well as for hydrological runo� models. For any kind of application, a high

accuracy of snow mapping is crucial. Therefore, a substantial part of the thesis is focused on

quality studies related to land cover types (forest area in particular) and the transition zone

of snow cover.

In this context the main objectives of the thesis are:

• Quanti�cation of accuracy and bias of the NOAA AVHRR snow mask taking the di�erent

land cover types and elevation zones into account

• Modi�cation of the SPARC score thresholds for algorithm improvement

• Investigation of the factors a�ecting the SPARC classi�cation accuracy

The focus will be on scenes of the winter season, since it is most representative for snow cover

and since usually snow only lies above the tree line, which inhibits an analysis of the SPARC

classi�cation performance in forest areas.

1https://hyperswissnet.wiki.geo.uzh.ch/Project Accessed: August 13, 2011.

https://hyperswissnet.wiki.geo.uzh.ch/Project
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A basic idea for validation was to pick one winter and study the development of the accuracy

from the built-up of the snow layer via peak and ablation phase. Another was the investiga-

tion of intersensor consistency. With that, several di�erent years would have been considered

and analyzed. Due to a lack of systematic Landsat reference data for the whole period of the

25-year time series, these approaches were not realizable. Therefore as many winter Landsat

scenes as could be found, were collected with the aim to cover all available sensors (see the

result in Table 3.2).

The choices of the thresholds and the algorithm in general are focused on time series consis-

tency rather than on single scene accuracy. This means that an algorithm generating consistent

results over the whole investigation period (i.e. the time series) is given priority over a perfect

snow cover representation for a single scene. It is obvious that the results of this approach

cannot be compared directly with studies validating their product with one single reference

scene. The criteria which lead to the �nal Landsat and corresponding AVHRR scenes is de-

scribed in section 3.5.

The whole methodology of the thesis is implemented by means of the Interactive Data Lan-

guage (IDL). Appendix C gives an overview of all relevant routines written in the framework

of the realization of these objectives.

1.4 The NOAA AVHRR Sensor System

The Advanced Very High Resolution Radiometer (AVHRR) is carried on board the Polar

Orbiting Environmental Satellites (POES) of the National Oceanic and Atmospheric Admin-

istration (NOAA). The following information about this system is mainly based on the o�cial

NOAA webpage2. It is the longest-lived series of Earth observing satellites and is therefore

best suitable for climate related research. The unique length of operational AVHRR data

in combination with daily global coverage from two satellites, calibrated thermal data and

the low costs makes it interesting for a broad range of other applications such as oceanog-

raphy, terrestrial sciences (such as NDVI, snow cover mapping, monitoring of forest �res) or

meteorology. AVHRR, �rst launched with TIROS-N in 1978 as a four channel radiometer

for meteorological applications (AVHRR/1), is sensitive to the visible, near-infrared and the

thermal infrared of the electromagnetic spectrum. It was followed by AVHRR/2 carried on

NOAA-7 (launched in 1981) with an additional �fth channel. Since 1998 AVHRR/3, �rst

carried on NOAA-15, has been operating with six channels. Table 1.1 summarizes the channel

speci�cations of the three AVHRR sensor generations. At approximately 833km above the

Earth's surface the satellite orbits the globe 14 times each day with a swath width of 2400km.

The satellites with even numbers cover the morning passes with equatorial crossing at local

2www.ngdc.noaa.gov/ Accessed: June 10, 2011.

www.ngdc.noaa.gov/
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solar times of 07:30 and the odd-numbered cross the equator in the afternoon at 14:30 (NOAA

Web2).

Table 1.1: Channel speci�cations of the three AVHRR sensor versions (NOAAa).

Channel AVHRR/1 (µm) AVHRR/2 (µm) AVHRR/3 (µm)

1 0.58-0.68 0.58-0.68 0.50-0.68

2 0.725-1.10 0.725-1.10 0.725-1.0

3A - - 1.58-1.64

3B 3.55-3.93 3.55-3.93 3.55-3.93

4 10.50-11.50 10.30-11.30 10.30-11.30

5 Ch4 rep. 11.50-12.50 11.50-12.50

ahttp://www2.ncdc.noaa.gov/

Whereas channels 1 and 2 detect re�ected solar radiation (VIS, NIR), channels 4 and 5 are

sensitive to the infrared windows measuring the emitted terrestrial longwave radiation. For

AVHRR/1 and AVHRR/2 channel 3, centered at 3.7µm measures in both spectra. For the

latest AVHRR generation, channel 2 is narrowed to reduce water absorbtion and to enhance

the e�ect of the re�ectance of green vegetation. Furthermore, channel 3 is able to be switched

from channel 3A (1,6µm) during daylight and 3B (3.7µm) during night for cloud identi�cation

and improved snow detection. However, due to system problems channel 3A is available for

N17 only (Huesler et al. 2011).

Further details regarding the AVHRR instrument are covered by Cracknell (1997) and the

NOAA User's Guides Kidwell (1998), Goodrum et al. (2006) and Robel (2009).

1.5 Thesis Outline

After an introduction to the theory of remote sensing of snow in chapter 2, the study area, the

data and the methods used for the validation process are described in chapters 3 and 4. The

results of the thesis are presented and directly discussed in chapter 5 and put in context of

related studies. Finally, chapter 6 concludes the main �ndings and gives an outlook on future

work.

http://www2.ncdc.noaa.gov/




Chapter 2

Remote Sensing of Snow

Remote Sensing is de�ned as "the gathering of information about an objective without physical

contact" and is usually referred to as "airborne or spaceborne observations using electromag-

netic radiation" (Rees 2006).

2.1 A Brief History of Remote Sensing

The history of remote sensing is also the history of photography. After the �rst photographs

taken by Daguerre and Niepce in 1839, photography was used for topographic purposes in the

following year. In 1858, balloons served as a tool to take pictures of large areas. With the

beginning of aviation, acquisition of data over selected areas and under controlled conditions

became possible and in 1909 the �rst photographs from airplanes were taken. After World

War II and the mid-1960s, NASA sponsored a large number of studies for applications of color

infrared and multispectral photography. This led to the launch of the Landsat satellites in the

1970s (see section 3.3) although systematic Earth observations from space already began in

1960 with the launch of TIROS-1, the �rst meteorological satellite (Elachi and Van Zyl 2006).

2.2 Remote Sensing in General

One distinguishes between passive remote sensing, where natural radiation is detected (e.g.

the AVHRR system belongs to this type) or active remote sensing, where the radiation is

generated by the system itself. The natural radiation is composed of re�ected solar radiation

in the visible and near-infrared parts of the electromagnetic spectrum at roughly 0.35-2.5µm

and thermally emitted radiation (Figure 2.1 top). The range of the latter depends on the

temperature of the emitting body. The dominant wavelength for a body with a temperature

of 273K (0◦C) lies at around 11µm. This type of radiation can be detected in the thermal

infrared part, typically between 8µm and 14µm as well as in the microwave region at 1cm to

9



10 CHAPTER 2. REMOTE SENSING OF SNOW

1m. Due to the chemical composition of the atmosphere, the spectrum between 14µm and

1cm is mainly blocked for radiation (see Figure 2.1 bottom) and cannot be used for remote

sensing (Lillesand et al. 2004).

Figure 2.1: The electromagnetic spectrum of light. The energy of light depending on the wavelength (top)

and the atmospheric transmittance at the corresponding wavelengths (bottom). Grey shaded area represents

the wavelength regions at which radiation is blocked by the atmosphere (Lillesand et al. 2004).

Passive remote sensing systems measure the amount of radiation reaching the sensor in a par-

ticular waveband (Rees 2006), i.e. the radiance. In combination with the information about

the incident radiation, the so-called re�ectance of the surface can be calculated (see chapter

4.1). After correcting the atmospheric in�uence, the value of this re�ectance and its spatial

and temporal variations can be interpreted.

Remote sensing systems that detect thermal radiation measure the radiance as a brightness

temperature, which is the temperature of a perfect emitter (a so-called black body) that would

produce the same amount of radiation (Rees 2006). The brightness temperature is depen-

dent on the physical temperature of the Earth's surface and its emissivity (dependent on the

material). Knowing these two quantities allows for the calculation of the actual physical tem-

perature (Rees 2006).

There are also active remote sensing systems, whereby two main types are de�ned. Ranging

instruments are mainly used for topography information. The distance from the sensor to

the Earth's surface is detected by measuring the travel time of radiation down to the surface

and back again. It is used for example for laser pro�ler or radar altimeters. The second type

measures surface re�ectances, similar to passive systems. However, instead of using solar ir-

radiance it illuminates the surface and receives the modi�ed signal from the surface. The big

advantage of this system, mainly used for imaging radars in the microwave region of the elec-

tromagnetic spectrum, is that the characteristics of the incident radiation, like the wavelength

of polarization, can be controlled by the system itself (Rees 2006).
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2.3 Operational Remote Sensing of Snow

First remote sensing snow observations date back to the �rst image of the TIROS-1 satellite

in 1960. Since 1966 optical snow cover monitoring and since 1987 also passive microwave

imagery have been developed. The detection range of optical systems (visible and infrared)

allows for much higher spatial resolutions due to the higher energy of light in this spectrum

compared to the microwave region. However, systems in this range also have their limits since

they are not applicable during nighttime or cloud cover. Especially the latter is a limitation

in terms of snow cover mapping in the Alpine Region during the winter season (Rees 2006).

In addition, high repeating rates are required to cover the Earth with only small time gaps

since snow underlies a high degree of variability on a daily basis. The complex topography

and the high degree of forest cover are additional common problems in remote sensing of

snow (Hall et al. 1998).

A broad range of operational snow products from remote sensing is available and accessible

via the Web. The National Snow and Ice Data Center (NSIDC)1, for example, archives and

distributes operational snow and ice data products from di�erent satellite platforms. In 1997,

the Interactive Multisensor Snow and Ice Mapping System (IMS) became operational, which

provides 24km and 4km snow and ice maps of the Northern Hemisphere. In addition, the

Rutgers University Global Snow Lab (GSL)2 o�ers climate data, as well as daily, weekly

and monthly global snow products. Via PolarView3, supported by the European Space

Agency (ESA) and the European Commission with participation from the Canadian Space

Agency, daily snow maps of fractional snow cover for Scandinavia, the Baltic Sea Area, and

snow cover area maps of Central Europe and the Alps are available. Additional data can be

expected from the GlobSnow project4, which is aimed to implement an operational near-real

time (NRT) snow information service that will provide daily snow maps for hydrological,

meteorological, and climate research purposes in addition to the already existing snow extent

and snow water equivalent products. The satellite based information is thereby combined

with ground-based weather stations. Not least, based on daily NOAA AVHRR data, the

Remote Sensing Research Group of the University of Bern facilitates operational snow maps,

which are regularly delivered to the Swiss Federal Institute for Snow and Avalanches (SLF)

for avalanche prediction.

All these products have to deal in some way or other with the special characteristics of a snow-

covered surface. The theoretical background of this surface type is discussed in the following

section.

1http://nsidc.org/
2http://climate.rutgers.edu/snowcover/
3http://www.polarview.org/
4http://www.globsnow.info/

http://nsidc.org/
http://climate.rutgers.edu/snowcover/
http://www.polarview.org/
http://www.globsnow.info/
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2.4 Physical Properties of Snow

Fresh dry snow is highly re�ective over the whole visible part of the electromagnetic spectrum

(approximately 0.4-0.65µm) and therefore appears white to the human eye. The dielectric

properties of ice and the fact that snow contains up to 109 particles per cubic meter are

responsible for that behavior. The high absorbtion length5 of visible-wavelength radiation

in ice in the order of 10m prevents radiation from penetrating through thick snow packs.

However, since the sun light is able to pass the upper most centimeters (∼10cm) of the snow
layer, mixed re�ectance information is generated over shallow snow packs, which may lead to

misclassi�cation. Due to the large amount of air-ice interactions of a photon when traveling

through a thicker snow pack, it is almost certain that it is scattered back. This also implies

that the re�ection coe�cient changes with changing grain size. Whereas di�erences are small

in the visible part of the spectrum, with larger grain diameters the re�ectance decreases (and

the absorbtion increases) due to the reduced air-ice interactions and thus reduced scattering.

In the near-infrared region the re�ectance declines strongly, reaches a minimum at around

1.5µm and stays at a low level with longer wavelengths in the thermal infrared region (see

Figure 2.2). Multispectral remote sensing analysis takes advantage of this di�erent re�ectance

Figure 2.2: Re�ectance values for snow with di�erent grain radii in the visible and infrared region of the

electromagnetic spectrum of light (colored curves), re�ectance curve for clouds in black and corresponding

coverage of the AVHRR channels 1, 2 and 3A (at 1.6µm). Source: NSIDC.a

ahttp://nsidc.org/data/docs/daac/nsidc0066_avhrr_5km.gd.html Accessed July 16, 2011.

behavior in the di�erent regions of the electromagnetic spectrum. Whereas channels 1 and 2

of the AVHRR sensor are used to separate snow from other land cover types, channel 3A is

predestinated for the discrimination of clouds and snow. Channels 3B, 4 and 5 are mainly

5The absorption length is de�ned as "the distance through which the radiation must travel in order for its

intensity to be reduced by a factor of e as a result of absorption alone." (Rees 2006)

http://nsidc.org/data/docs/daac/nsidc0066_avhrr_5km.gd.html
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designed for (sea) surface temperature analysis.6 The re�ectance of a snow pack is subject to

changes as it ages. Dust or soot are deposited and decrease the re�ectance from fresh dry

snow with albedo values higher than 90% to 40% or even 20% for dirty snow. The melting

process causes the liquid water content to increase. Although the presence of liquid water

has little direct e�ect on the snow re�ectance, there is an indirect e�ect. Thus, it induces

clustering of the ice crystals, which leads to larger grain sizes and hence to a lower re�ectance

(Rees 2006).

An additional characteristic of a snow pack is that it is anisotropic forward scattering (Luo

et al. 2008) and therefore a larger sun zenith (or illumination) angle lead to larger re�ectance

values. The e�ect of this feature on the snow classi�cation accuracy is analyzed in section

5.2.2 (Rees 2006).

Based on this theoretical background, the remote sensing snow classi�cation approaches are

designed.

2.5 Snow Classi�cation Approaches

2.5.1 NDSI/NDVI approach

In the visible part of the spectrum the re�ectances of snow and clouds are nearly equally

high with a re�ectance value of roughly 0.9, at least for wavelengths between 0.4-1.0µm. In

the NIR, however, they diverge up to a maximum located at around 1.6µm. Whereas the

re�ectance of snow declines substantially, the cloud re�ectance remains on a high level (see

again Figure 2.2). This spectral behavior is widely used by snow classi�cation schemes such

as the normalized di�erence snow index (NDSI) (Hall et al. 1998). This snow index can

be applied to all sensor systems that capture the visible as well as the near-infrared part

of the electromagnetic spectrum separately in two channels. Using these two bands allows

additionally for topographic corrections considering that variations in the sun-ground surface-

sensor geometry are a�ected by the same error factor for all channels. By using a ratio of

two spectral bands this error is eliminated. Analogous to the normalized di�erence vegetation

index (NDVI, see below), the NDSI is calculated with resulting values between 0 and 1:

NDSI =
V IS −NIR
V IS +NIR

(2.1)

whereby an NDSI of 0.4 is generally taken to classify snow (Hall et al. 1998). The NIR

corresponds to SWIR for Landsat (see 3.1 in the data chapter 3).

Several snow classi�cation algorithms, such as the Landsat or MODIS snow algorithm (Hall

et al. 1998, 2002), also implement an NDVI to reduce the e�ect of vegetation, mainly forest,

6http://noaasis.noaa.gov/NOAASIS/ml/avhrr.html Accessed July 17, 2011.

http://noaasis.noaa.gov/NOAASIS/ml/avhrr.html
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since certain forest types generate NDSI values below 0.4 (see section 4.1.2.2). It makes use

of the characteristics that vegetation has its absorbtion maximum in the red portion of the

electromagnetic spectrum (0.6-0.7µm) and its re�ectance maximum in the near infrared region

of the electromagnetic spectrum (0.75-1.5µm):

NDV I =
NIR− red
NIR+ red

(2.2)

2.5.2 SPARC algorithm

In contrast to this NDSI/NDVI-threshold approach, the SPARC snow retrieval for AVHRR

data (Khlopenkov and Trishchenko 2007) consists of an aggregated rating of several tests.

The results of these tests are accumulated and the calculated �nal rating classi�es the pixel

as clear-sky, partly cloudy, cloud-shadowed, or as snow- or ice-covered. Thereby, three major

scores are calculated: the B-score derived from the re�ectance brightness test in channel 1,

the R-score derived from the re�ectance test in channel 3 (A or B) and the T-score derived

from the brightness temperature test in channel 4. This approach is a substantial advantage

compared to other methods which use, for example, yes/no-decisions. In that case, the risk

of misclassi�cation is increased since once a pixel passes a test with 'no' it is not considered

anymore.

The algorithm was basically introduced as a cloud detection scheme in the framework of

the new AVHRR data processing system at the Canada Centre for Remote Sensing (CCRS)

to study long-term landmass changes over Canada at high spatial and temporal resolution

regarding climate change issues. Since clouds and snow have similar re�ectance properties in

certain channels (especially channel 1 - VIS), every cloud algorithm also contains speci�c snow

classi�cation tests which can be used for snow mask calculations. In analogy to the NDSI,

it is also able to deal with both AVHRR channels 3A and 3B (Khlopenkov and Trishchenko

2007).

The detailed implementation of the SPARC algorithm is explained in the methods section 4.



Chapter 3

Data

3.1 Study Area

The selection of the study area was undertaken according to several criteria. Since research

and data archiving of the Remote Sensing Research Group Bern are focused on the Alpine

Region, a subset of this area was chosen. In addition, it should contain valley structures as well

as high plateaus ranging from the low lands up to the high mountains whereby the structures

are preferably clearly identi�able. Moreover, the prede�ned paths and rows of the Landsat

5/7 tracks limited the options since the study area has to be entirely part of one Landsat scene

as overlaps would complicate the validation process. Figure 3.1 illustrates that Switzerland,

for example, is covered only by three orbit paths (196 to 194, W to E) and rows (27 to 29,

N to S). Therefore, the Landsat center image of the Swiss Alps (195/28) is chosen not least

because it contains the Rhone Valley, which is clearly visible also on a coarse resolution.

Figure 3.1: Paths and rows of Landsat orbits covering the Alpine Region. 8 of 9 ordered Landsat images

cover Path 194/Row 28 shown in grey (EURIMAGE 2011).

The Landsat image spans an area of ∼35'000km2 (190 x 183km) between the southern part

15
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Figure 3.2: Overview of the study area represented by the dark-grey box. The light-grey box represents the

study area only for scene L7 2001/12/14.

Figure 3.3: Altitude distribution of the study area.

of Lake Neuchatel in the Swiss Canton Vaud in the upper left corner (47.02N, 5.78E), the

Valais Alps in its centre and the Italian Piemont (45.04 N, 9.08 E) in the lower right corner.

Figure 3.5 visualizes an example of such a scene. The further speci�cation of the subset was

determined by cloud contamination. The lowest common denominator, i.e. the area where all

Landsat scenes were cloud free, was chosen. Figure 3.2 shows the �nal selection of the study

area. It covers a rectangle of around 100km in x- and 40km in y-direction. It mainly lies on

Swiss terrain and consists of the surroundings of the Rhone Valley from Martigny to the river

source in the central Alps. Expressed in coordinates, this is referred to an area from 46.40N

/ 7.06E in the upper left corner to 46.00N / 8.50E in the lower right corner. The graph of

Figure 3.3 depicts the altitude distribution of the study subset emphasizing that, apart from

the lowest terrains below 300m above sea level (=asl), all elevation zones up to roughly 4000m

asl are covered. It ranges from 190m to 4428m asl with a mean elevation of 1883m asl.
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There is one exception which has to be considered. Scene L7 2001/12/14 covers Path 194 /

Row 28 instead of 195/28. Thus, it is shifted one path to the east. Since hardly any scenes

were available for the �rst months of winter in the Alps, namely November and December, it

was decided to analyze also this scene. The subset is somewhat bigger with 130km x 50km.

3.2 NOAA AVHRR Data Archive

The NOAA AVHRR sensor system providing daily global coverage with six available channels

(for the latest generation) and a horizontal resolution of 1.1km was already introduced in

section 1.4. In addition, the data is pre-processed according to the NOAA User's Guides

Kidwell (1998), Goodrum et al. (2006) and Robel (2009), including calibration, georeferencing

based on a feature-matching algorithm, orthorecti�cation and a cloud masking.

Since 1981 the Remote Sensing Research Group at the University of Bern receives and archives

daily AVHRR data. In cooperation with the Freie Universität Berlin, the Comprehensive Large

Array data Stewardship System and the German Aerospace Center, a time series of AVHRR

data providing full coverage of the Alpine Region has been collected since 1984. Figure 3.4

Figure 3.4: The AVHRR data archive. Planned missions are represented by grey horizontal bars (Huesler

et al. 2011).

gives an overview of the data collected at the University of Bern, which consists of 124'000

�les. Due to the poor data availability in the initial years, a spatially and temporally complete

coverage is only available after 1985. The number of �les per year increases and peaks in 2007

when six AVHRR platforms were in orbit. The overlapping operation time periods of the

di�erent platforms allow for intersatellite comparison in order to achieve a homogeneous time

series with high quality. In order to maintain the AVHRR system and to improve climate

change monitoring, new satellites have been launched and new missions are planned (Huesler
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et al. 2011).

On the basis of this data set, the AVHRR snow masks for the validation are calculated with

the SPARC algorithm (see section 4.2.1 for details).

3.3 Landsat

In the framework of the Apollo mission, photographs of the Earth's land surface were taken

from space for the �rst time and served as the initial point for Landsat. At that time, no

satellites were available that monitored the Earth's surface, although weather satellites had

been observing the atmosphere since 1960. Despite opposition regarding secrecy and geopolit-

ical concerns of "watching" Earth, Landsat 1 was �rst launched in 1972 by NASA (see more

about Landsat history at http://landsat.gsfc.nasa.gov/about/history.html). Hence,

Landsat is the longest-running commercial earth-observation satellite program. Since 1972

additional �ve satellites have been operational (EURIMAGE 2011). Due to the length of the

available data sets, the Landsat satellites are best applicable for climate related applications

and therefore also for the validation of the SPARC algorithm for the 25-year AVHRR time

series of snow cover. However, the repeat time of only 16 days is a limitation, especially

during winter when extensive cloud cover occurs. Here, scenes from Landsat 5 (launched in

March 1985) and Landsat 7 (April 1999) carrying the Thematic Mapper (TM) and Enhanced

Thematic Mapper (ETM+), respectively, are used. Both provide data of seven multi-spectral

bands with 30m horizontal resolution (see two examples in Figure 3.5). Landsat 7 has an

Figure 3.5: IR-images (i.e. channels 4/3/2 for R/G/B) of Landsat 5 1995/05/03 from NPOC/EURIMAGE

(left) and Landsat 7 2003/02/10 from USGS (right). The di�erent snow conditions and vegetation stages

between winter and spring are clearly visible.

additional panchromatic channel with 15m resolution (see Table 3.1). The sun-synchronous

and near-polar orbiting satellites cover the Earth from a �ight altitude of 705km with a swath

width of 183km and pass the equator between 9:30 and 10:00 local time (descending passes).

Sun elevation and azimuth are depending on the day of year and vary between 18◦ and 53◦

http://landsat.gsfc.nasa.gov/about/history.html
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and 138◦ and 160◦, respectively. These orbit parameters result in a repeat cycle of 16 days

(Chander et al. 2009). Consequently, this coarse temporal resolution limits the availability

of scenes, especially during winter when frequent cloud cover occurs and hence, reduces the

number of possible AVHRR scenes to be analyzed.

Table 3.1: Bands and its wavelengths for Landsat 5 TM and Landsat 7 ETM+. All bands with 30m resolution.

15m-panchromatic channel 8 is only available for Landsat 7 (EURIMAGE 2011).

Band Region Wavelength

Band 1 Blue 0.45-0.52

Band 2 Green 0.52-0.60

Band 3 Red 0.63-0.69

Band 4 Near Infrared 0.76-0.90

Band 5 Short-wave Infrared 1.55-1.75

Band 6 Thermal Infrared 10.42-12.50

Band 7 Short-wave Infrared 2.08-2.35

Band 8 Panchromatic (Landsat 7 only) .52-.90

The data mainly originates from the web portal of the U.S. Geological Survey (USGS1) (free

of charge). Additionally, two commercial scenes were ordered from the Swiss National Point

of Contact for Satellite Images (NPOC) and from EURIMAGE via the Federal O�ce of

Topography (swisstopo). All images are radiometrically calibrated, georeferenced and terrain

corrected (orthorecti�ed). As for AVHRR, atmospheric correction is not included in the

Landsat processing.

3.4 MODIS

The Moderate Resolution Imaging Spectroradiometer, MODIS, was �rst launched on board

the Terra satellite in December 1999 by NASA, followed by a second instrument carried on

Aqua in May 20022. Terra crosses the equator in the morning from North to South (10:30 am

local time) and Aqua in opposite direction in the afternoon (1:30 pm local time). Therewith,

MODIS is able to cover the entire Earth's surface every 1-2 days with a spatial resolution of

500m detecting re�ectances in 36 spectral channels. These features are a substantial improve-

ment over those of AVHRR, especially because of the higher spatial and radiometric resolution.

This enables a more e�ective cloud discrimination and the detection of snow under vegetation

canopies. The latter is mainly related to the implementation of a combined NDSI/NDVI snow

algorithm. Furthermore, the instrument is used in a broad �eld of observations in the atmo-

1http://landsat.usgs.gov/
2http://aqua.nasa.gov/ and http://terra.nasa.gov/ Accessed: May 11, 2011.

http://landsat.usgs.gov/
http://aqua.nasa.gov/
http://terra.nasa.gov/
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sphere, the ocean and on the land-surface. Included measures are for example cloud cover,

sea-surface temperature and chlorophyll, land cover changes, land-surface temperature and

vegetation properties. Therefore MODIS is expected to contribute to a better understanding

of the Earth's system and its spheres. A large set of studies, which used MODIS for valida-

tion purposes, is available. Moreover, MODIS is of major importance for the development of

validated Earth system models in terms of climate change.

The MODIS/Terra daily snow cover product used here, MOD10A1 (Hall et al. 2002), is avail-

able from February 2000 to present, freely accessed through the Distributed Active Archive

Center of the National Snow and Ice Data Center, NSIDC3. Therefore, validation with this

snow mask is only possible for scenes acquired after this date. The snow mask is reprojected

and resampled to the 1.1km-resolution of AVHRR to allow for a pixel-by-pixel comparison.

In analogy to the basic concept of Landsat snow classi�cation (see section 4.1) the underlying

algorithm employs an NDSI and an NDVI including certain additional tests. Thus, both the

MODIS and the Landsat snow mask are expected to be similar.

3.5 Available Scenes

As already mentioned above, several criteria reduced the number of usable scenes for the

study. Basically, these are:

• substantial lack of available Landsat winter scenes between 1990-1999 from USGS

• early morning overpasses cause heavy shadows in winter (e.g. N15)

• cloud cover over large parts of the images

• time gap between Landsat and AVHRR: In some cases perfect Landsat scenes were

useless due to partly/completely cloud covered AVHRR images taken a few hours later

• corrupt AVHRR scenes and

• the price for commercial scenes.

Finally, Table 3.2 lists the scenes for the analysis and the corresponding geometries, whereby

NOAA 11, 12, 14, 15, 16 and 17 are covered. In total, 9 Landsat images and 17 corresponding

AVHRR scenes were found. E�orts were made to �nd feasible scenes for NOAA09 as well.

Unfortunately, the only usable Landsat image corresponding to that time period could not

be used due to a completely noisy AVHRR image (1987/01/21). The table also contains

information about the snow extent of the Landsat image, referred to the previously de�ned

study area. It lies between 42% for L7 2001/12/21 and 78% for L7 2003/02/10. For details

3www.nsidc.org

www.nsidc.org
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about the calculation of this snow information see section 4.1.2.2.

In a �rst selection only satellite zenith angles of less than 40◦ were considered since it is

expected that the misclassi�cation will increase with increasing viewing angle. With too

�at angles, the information of one pixel might correspond to three or more pixels. The

accuracy comparison between angles greater or smaller than 40◦ in section 5.2.1 shows that

this assumption could be con�rmed.

Table 3.2: Overview of analyzed Landsat and corresponding AVHRR scenes. If not speci�ed by footnote,

Landsat scenes are ordered from USGS free of charge. Snow extent [%] is calculated based on the Landsat

snow mask and is referred to the study area only. Angle information [◦] corresponds to the AVHRR center

pixel of the study area. For L7 2001/12/14 and later, MODIS data is available for comparison.

Satellite Sun

Landsat Snow extent [%] NOAA AVHRR Zenith Azimuth Zenith Azimuth

L5 1993/03/10a 65.02 N11, 14:25 UTC 10.7 75 62 228

L5 1995/05/03a 52.38 N12, 08:06 UTC 53.1 -69 52 109

N14, 12:34 UTC 0.3 77 34 210

L7 2000/03/21 50.73 N14, 14:51 UTC 3.4 -103 62 237

N15, 07:38 UTC 4.7 -77 69 113

L7 2001/12/14 59.72 N16, 12:38 UTC 3.3 77 72 199

L7 2001/12/21 41.90 N16, 1304 UTC 22.7 -100 73 202

L7 2002/01/06 51.52 N16, 11:52 UTC 55.8 67 69 184

N16, 13:34 UTC 51.8 -95 74 208

L7 2003/01/25 71.37 N16, 11:57 UTC 56.1 67 65 183

N16, 13:38 UTC 51.4 -95 70 209

N17, 09:48 UTC 37.6 98 70 151

L7 2003/02/10 77.93 N16, 12:19 UTC 40.2 71 61 189

N17, 10:28 UTC 16.0 -75 63 159

L7 2003/02/26 69.72 N16, 12:42 UTC 15.9 75 57 197

N17, 09:28 UTC 54.7 94 63 142

N17, 11:08 UTC 54.3 -68 56 170

aSource: NPOC

3.6 The Forest Mask

Figure 3.6: Forest mask of the study area. Forest area in black.
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In order to study the algorithm accuracy in forested areas a mask was calculated from the

Global Land Cover 2000 classi�cation map (GLC2000, Hartley et al. 2006) containing all the

forest classes present in the study area. These were Nr. 2: Tree cover, broadleaved, deciduous,

closed; Nr. 4: Tree cover, needle-leaved, evergreen and Nr. 6: Tree cover, mixed leaf type.

Figure 3.6 illustrates the resulting mask and emphasizes the high fraction of 55% of forest

cover in the study area.



Chapter 4

Methods

4.1 Pre-processing steps for Landsat Data

4.1.1 Conversion from Digital Numbers (DN) to Top-Of-Atmosphere

(TOA) re�ectances

First, the Landsat images have to be prepared to generate the reference snow mask. The

ordered data was delivered in the form of calibrated digital numbers (DN) whereby the values

are scaled from the lowest re�ectance value in the image (DN=1) to the highest re�ectance

value (DN=255). To make these values comparable to other scenes and to obtain a physical

meaning, the data has to be converted to top-of-atmosphere (TOA) re�ectances. These re-

�ectance values are a prerequisite to apply the algorithms responsible for the calculation of

the snow mask. The whole process with the required constants for all Landsat sensors and an

overview of the radiometric calibration procedure are described in Chander et al. (2009). The

following data conversion is based on this reference. For data ordered from the USGS, the

required parameters for each individual scene are included in the metadata �le ( MTL.txt).

For scenes ordered from NPOC, the information is taken from the calibration parameter �les

(.CPF) provided by the USGS1.

The ETM+ sensor of Landsat 7 operates either in low- or high-gain state. This allows for a

maximization of the sensors' 8-bit radiometric resolution without producing oversaturation.

Therefore, bright surfaces, which have a higher dynamic range but low sensitivity, are detected

in low-gain mode, and dark surfaces, with lower dynamic range but high sensitivity, are de-

tected in high-gain mode. This fact has to be considered when converting the data to TOA

re�ectances. The conversion procedure includes a conversion to at-sensor spectral radiance

and, in a second step, to top-of-atmosphere (TOA) re�ectances.

1http://landsat.usgs.gov/science_L5_cpf.php Accessed: March 23, 2011
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4.1.1.1 Conversion to at-sensor spectral radiance

Calibration of the Landsat sensors results in calibrated digital numbers (DN's). A crucial step

to convert the data into a physical meaningful radiometric scale is the conversion to at-sensor

spectral radiance. This conversion requires knowledge about the lower and upper limit of the

original rescaling factors (either 0 or 1 and 254 or 255, respectively). The procedure can be

described with the following equation:

Lλ =

(
LMAXλ − LMINλ

Qcalmax −Qcalmin

)
(Qcal −Qcalmin) + LMINλ (4.1)

where

Lλ = Spectral radiance at the sensor's aperture [W/(m2 sr µm)]

Qcal = Quantized calibrated pixel value [DN]

Qcalmin/Qcalmax = Minimum/Maximum quantized calibrated pixel value corresponding to LMIXλ/LMAXλ [DN]

LMINλ/LMAXλ = Spectral at-sensor radiance scaled to Qcalmin/max [W/(m2 sr µm)].

4.1.1.2 Conversion to TOA re�ectances

There are three advantages when using TOA re�ectances. Firstly, it removes scene-to-scene

di�erences caused by di�erent solar zenith angles. Secondly, spectral band di�erences arising

from di�erent values of the exoatmospheric solar irradiance vanish. Thirdly, the variation of

the Earth-Sun distance, which takes place on a daily basis, is corrected. These corrections are

achieved by calculating:

ρλ =
π · Lλ · d2

ESUNλ · cos θs
(4.2)

where

ρλ = Planetary TOA re�ectance [unitless]

π = Mathematical constant equal to 3.14159 [unitless]

Lλ = Spectral radiance at the sensor's aperture [W/(m2 sr µm)] (see eq. 4.1)

d = Earth-Sun distance [astronomical units]

ESUNλ = Mean exoatmospheric solar irradiance [W/(m2µm)]

θS = Solar zenith angle [degrees] = sine of sun elevation angle.

After this conversion, the Landsat images are ready for the calculation of the snow mask.

4.1.2 Landsat snow classi�cation

4.1.2.1 Supervised classi�cation

Due to the high resolution of the Landsat images it is possible to carry out two approaches

to obtain a reference snow mask: a) the supervised classi�cation and b) the NDSI/NDVI-

threshold approach. As a �rst method, a supervised classi�cation is performed using the
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remote sensing software ENVI (ITT Industries). Manually, three so-called endmembers are

de�ned (visually via computer screen) with several selected areas corresponding to: snow,

snowfree and cloudy area. Depending on the properties of each of these areas, ENVI classi�es

every pixel as one of the groups. Despite the good results of this approach (see Figure 4.1),

it is not further considered. This is due to great disadvantage of the procedure as it has

to be repeated manually for every single Landsat scene and cannot be implemented into

an automatic mode. A much faster method is to use the NDSI/NDVI threshold approach

according to Hall et al. (1998). Here, however, without an additional cloud mask, cloud

discrimination is not possible and investigations are limited to clear-sky scenes.

To illustrate the di�erent outcomes of the two classi�cation approaches, the di�erences are

discussed in section 4.1.2.3 after introducing also the NDSI/NDVI-threshold approach.

Figure 4.1: RGB image (channels 3/2/1) of Landsat 5 1987/02/06 (left) and corresponding result of the

supervised snow classi�cation (right) above the Rhone Valley. Snow in red, snowfree area in green, clouds in

blue.

4.1.2.2 NDSI/NDVI threshold classi�cation approach

Due to disadvantages of the supervised snow classi�cation, the NDSI approach according

to Hall et al. (1998) is applied. Based on the Landsat channel �les converted to TOA

re�ectances, a binary snow mask is calculated by means of a multispectral imagery approach.

It takes advantage of the spectral properties of snow and clouds in the visible (VIS) and the

near infrared region (NIR) of the electromagnetic spectrum (see section 2.5.1). For Landsat

TM and ETM+ the NDSI is calculated as follows:

NDSI =
r2 − r5
r2 + r5

(4.3)

where r2 de�nes the re�ectance in band 2 (centered at 0.57µm) and r5 is band 5 re�ectance

(centered at 1.65µm).

In addition to an NDSI ≥0.4, the band 4 re�ectance has to be higher than 0.11 to distinguish

between water and snow. Band 2 is set to be higher than 0.1 to exclude very low re�ectances

caused by certain forest types. Moreover, the algorithm considers the fact that most forests
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generate NDSI values lower than 0.4. Therefore, the classi�cation is combined with an addi-

tional threshold for the NDVI (>0.1) represented by a simpli�ed triangle shown in Figure 4.2.

In analogy to the NDSI, the NDVI is calculated for Landsat with bands 3 and 4.

Before the implementation of this algorithm, it is tested whether a simple approach with

Figure 4.2: NDSI/NDVI snow classi�cation. The hatched area represents pixels classi�ed as snow when only

using an NDSI-threshold. The shaded area depicts the additional �eld from Klein et al. (1998) also classi�ed

as snow.

an NDSI>0.4 only would be su�cient and how the di�erent criteria change the result. For

each setting, the quality of the outputs is assessed visually by comparing the generated snow

mask with the original Landsat scene (i.e. RGB set to 4/3/2 or 3/2/1). Although the optimal

value of the NDSI-threshold varies seasonally, a value of 0.4 seems to be appropriate for the

winter season. However, the quality of the results is poor since a lot of totally snowfree pixels

are classi�ed as snow-covered. Especially forested areas cause extensive problems. Hence,

the band 2 criterion (>0.10) seems to be required (see below). Consequently, the NDSI is

then extended with this criterion, which yields better results for patchy snow-covered and for

snowfree pixels. In comparison with the entire approach of Hall et al. (1998) including an

NDVI, however, the quality of the snow mask in forested areas remains poor. Therefore it is

concluded that the original algorithm shall be implemented with all criteria and, if necessary,

these are modi�ed to improve the quality of the binary Landsat snow mask.

One of the main problems with snow classi�cation in mountainous areas, and especially in

the winter season, is that large shadowed areas are present. In these areas the re�ectance in

the VIS is extremely low. Hence, values of snow-covered shadow pixels lower than 0.2 are

often not classi�ed as snow anymore. The following adaptations are also used to address these

problems.
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Band 2: On the one hand, lowering the original threshold of 0.10 yields a better result in

dark shadowed areas (i.e. more snow pixels in shadows are classi�ed correctly). On the other

hand, however, this causes other dark surfaces such as the Rhone River or forested areas to be

spuriously classi�ed as snow, which Hall et al. (1998) intent to avoid by using a threshold for

band 2. Here, completely wrong classi�cations are weighted stronger than perfect performance

in the shadows. Therefore, the threshold is adapted to a value of 0.12.

Band 4: Using a band 4 threshold to exclude water bodies causes similar problems for shadows

as did band 2. There are several shadowed snow areas with values b4 < 0.11. Since most

water surfaces do not exceed the band 2 threshold, and therefore are already included there,

the band 4 criterion is omitted. Moreover, the only large water body present in the study

area is the Rhone River, where only few classi�cation errors occur. Hence, the few river pixels

wrongly classi�ed as snow are accepted in order to avoid an extensive non-detection of snow

in shadows. This compensates, at least to some extent, the poorer shadow result due to the

adjustment of the band 2 threshold.

Finally, Table 4.1 gives an overview of the adapted Landsat snow mask threshold approach.

Table 4.1: Comparison of NDVI/NDSI snow mask algorithm parameters according to Hall et al. (1998) and

modi�ed thresholds for this thesis.

Hall et al. (1998) Master's Thesis

NDSI > 0.40 > 0.40

Band 2 > 0.10 > 0.12

Band 4 > 0.11 -

NDSI/NDVI Modelled: Set to:

∼NDSI > 0.1, NDVI > 0.1 NDSI > 0.1, NDVI > 0.1

The explanations above emphasize the problems occurring with dark mountain shadows. Since

these areas could even not perfectly be represented by the reference Landsat snow mask, the

detailed analysis of the SPARC accuracy in shadow areas has to be dismissed.

4.1.2.3 Comparison of the two Landsat classi�cation approaches

In order to obtain an impression of the di�erences between the supervised classi�cation and

the NDSI/NDVI approach, the two resulting snow masks are compared in the following. The

comparison shows an overall agreement of 86.62% and a BIAS of 1.1, which indicates that the

supervised snow mask classi�es much more pixel as snow than the NDSI/NDVI approach does.

This coincides with Figure 4.3, where much more red pixels than green pixels are present. Red

pixels correspond to areas where only the supervised approach classi�es snow, green pixels are

related to snow pixels only detected by the NDSI/NDVI approach. Most of the disagreement

emerges from the transition zone where the two approaches deal di�erently with thin or patchy
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Figure 4.3: Di�erence between the snow mask generated with supervised classi�cation and the snow mask

calculated with the NDSI/NDVI approach (left) based on Landsat 7 from 2001/12/21 (right, RGB image).

White and grey: agreement for snow and snowfree pixels, respectively. Red: pixels classi�ed as snow only by

supervised classi�cation. Green: pixels classi�ed as snow only by NDSI/NDVI approach.

snow layers. This feature appears again in the whole validation process, since also the SPARC

algorithm is constructed in an other way than the approach for Landsat. On the one hand, the

supervised approach seems to perform better in shadows. It often appears in the image that

with the NDSI/NDVI approach the border of sun/shadow area is also taken as the boarder

of snow/snowfree area. On the other hand this approach is preferable with very thin snow

layers, which are nearly not represented in the supervised snow mask. Most of the green pixels

are attributed to this fact. However, it has to be considered that for the supervised approach,

all the di�erent areas of an image have to be de�ned manually to either snow, snowfree or

clouds. It is therefore essential to work precisely and it can not be excluded that for example

the thinnest snow layers were taken into account su�ciently.

To conclude which one of the two approaches works better is di�cult. With the supervised

classi�cation all di�erent kinds of surfaces can be payed special attention and it might be

preferable for a single scene. As already mentioned in section 4.1.2.1, the NDSI/NDVI ap-

proach is much faster (despite minor weaknesses in shadowed areas) and can be implemented

into an automatic mode. It is therefore highly recommended when using a larger number of

scenes.

4.1.2.4 Resampling

To analyze AVHRR with high-resolution Landsat images on a pixel-by-pixel basis, a reprojec-

tion of the Landsat snow mask to the geographical lat/long coordinate system and resampling

(Nearest Neighbor) to the 0.01◦ x 0.01◦ grid resolution of AVHRR are required.
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4.2 Pre-processing Steps for AVHRR Data

4.2.1 AVHRR snow classi�cation with SPARC

The SPARC algorithm was already introduced in previous chapters (1.2 and 2.5.2). Here, the

detailed procedure (see �owchart in Figure 4.4) and the thresholds for the snow classi�cation

according to Khlopenkov and Trishchenko (2007) and the modi�ed version for the European

Alps (Huesler et al. 2012) are explained.

Figure 4.4: Total �owchart of the SPARC algorithm (left) and detailed �owchart of the box "Snow Detection"

(right) (Khlopenkov and Trishchenko 2007).

The core of SPARC is composed of three major scores:

• B-score derived from re�ectance brightness test in channel 1 (VIS: centered at 0.63µm)

• R-score derived from re�ectance test in channel 3 (A or B) (NIR: channel 3A centered

at 1.6µm or channel 3B centered at 3.9µm)

• T-score derived from brightness temperature test in channel 4 (TIR: centered at 10.8µm,

combined with reanalysis skin temperature data).

Whereas the B- and the R-score are calculated directly from the radiometric data, the T-score

has to be combined with surface skin temperature information. For the European Alps this

data set is based on the daily gridded observation data set by Haylock et al. (2008) for the
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years 1984-2001 and the downscaled COSMO data set available since 2002 (Marsigli et al.

2005). The overall rating leading to the de�ned class of the pixels is found by summing these

scores:

F = T +B +R+ ΣiAi. (4.4)

Including an o�set for each score which generates negative values for clear-sky and positive

values for cloud-covered scenes, makes the summation of equation 4.4 possible. Thus, pixels

with higher cloud cover have higher ratings. For pixels with ratings close to zero, additional

tests are executed (see Ai in eq. 4.4) including a simple ratio test in channel 1 and 2, a

uniformity test for re�ectance as well as thermal uniformity and the thin cirrus test calculating

the di�erence in brightness temperature between channel 4 and 5. Figure 4.4 (right) shows the

procedure of the part in SPARC responsible for snow detection. If the R-score is higher than

the cloud threshold (set to 12) then the pixel is classi�ed as cloudy. For R-scores smaller than

this limit the other two basic snow tests are applied. First, to be considered snow-covered, a

pixel has to be su�ciently bright (Bscore >3.0 over land or > −2.0 for water pixels), its R-score

has to be smaller than 3.0 to remove cloud contamination and the brightness temperature has

to be in the range of the surface (Tscore <3.0) and lower than the freezing point Tfreeze to

eliminate ice/cold cloud. If the pixel is classi�ed as snow, it has to pass a second stage to

detect the presence of thin clouds or haze over snow. However, this second step was not

implemented in Huesler et al. (2012), since for the snow mask it is irrelevant whether there

are thin clouds or haze above the snow surface.

In addition to the original SPARC algorithm, Huesler et al. (2012) implemented several

extensions. A digital elevation model (DEM) with information about the sun zenith angle at

the time of acquisition was used for topographic modeling (with the imaging software ENVI,

ITT Industries). With this, potentially shadowed pixels were identi�ed and snow was classi�ed

for these pixels when lying above the mean snow altitude calculated independently for each

snow mask. In addition, a land cover correction was applied for evergreen forest vegetation

derived from GLC2000 (Hartley et al. 2006) (see section 3.6). It is based on the assumption

that forest pixels with underlying snow have slightly lower re�ectance values when compared

to pure snow pixels areas and higher values compared to snowfree. Therefore the B-score was

adjusted in forested areas to b-8. However, the land cover corrected snow mask is not analyzed

in the framework of this thesis.

These snow masks are then used as the basis for the SPARC validation. Before these methods

are presented, the following section addresses the problem of the geolocational shift, which is

assumed to occur in the AVHRR data set.
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4.2.2 "Correcting" geolocational shift

A di�culty when comparing di�erent satellites is that the terrain corrections are not based

on the same approaches. In the framework of the pixel-by-pixel validation, this may result in

comparing pixels which do not correspond to each other. Thus, a systematic error expressed

as misclassi�cation is generated which cannot be related to a failure of the algorithm. Due

to a poor orthorecti�cation during the pre-processing chain of AVHRR, a shift of up to two

pixels in North/South and in East/West direction is observed for 15 of total 17 scenes. Hence,

before analyzing the behavior of SPARC, this incongruity related to the Landsat reference has

to be corrected. For that purpose, the AVHRR snow mask is shifted ±2 pixels in x- and in

y-direction leading to 25 possibilities. The shifted positions are chosen where the snow mask

showed the highest agreement (=accuracy, see section 4.3) with the Landsat snow mask. With

the same approach MODIS is analyzed against Landsat to allow for a consistent comparison.

The scene from May 3th, 1995 is used as an example to show the e�ect of the geolocational shift

between AVHRR and Landsat. Figure 4.5 depicts di�erence maps illustrating the classi�cation

di�erence between the two snowmasks. The analysis of the detailed spatial validation by means

Figure 4.5: Di�erence map for scene N14, 95/05/03, 12:34 UTC with geolocational shift (top) and after

correction (bottom).

of the di�erence maps follows in section 5.1. At the southern slopes (e.g. in the Rhone Valley

or the Ossola Valley) SPARC underestimates snow cover (green color). On the other hand, on

the northern slopes red color is dominant, which indicates a too optimistic snow classi�cation.

Since this green/red pattern is observed systematically over the whole image, it is assumed

to indicate a shift by one pixel in the y-direction. To compensate this, the whole AVHRR
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image is shifted by one pixel. This geolocational "correction" results in an accuracy gain of

2-5% (depending on scene and B-score setting). Table 4.2 lists the implemented shifting for

all scenes. As can be seen, apart from two exceptions (N16, 03/01/25, 11:57 UTC and N17,

03/02/10, 10:28 UTC) all scenes have to be corrected. Despite the achieved improvement it

has to be emphasized that it certainly is a temporary solution. If the problem is located at

the AVHRR images, further research seems to be needed to correct this shift systematically.

Unfortunately, no systematic pattern or any correlation with the orbit parameters could be

found at a �rst view. The fact that also the MODIS images yielded better results when shifting

them by one pixel indicates that also the Landsat reference might not have experienced a

perfect orthorecti�cation.

Table 4.2: Summary of all applied shift corrections (i.e. position, where the highest ACC occurred). Values

>0 indicate eastward shift in x- and northward shift in y-direction. Values <0 indicate westward shift in x-

and southward shift in y-direction.

Scene Shift x/y Scene Shift x/y

N11, 93/03/10, 14:25 UTC 1/1 N16, 03/01/25, 11:57 UTC 0/0

N12, 95/05/03, 08:06 UTC 1/-1 N16, 03/01/25, 13:38 UTC 2/0

N14, 95/05/03, 12:34 UTC 0/1 N17, 03/01/25, 09:48 UTC 0/1

N14, 00/03/21, 14:51 UTC 0/1 MODIS 03/01/25 0/1

N15, 00/03/21, 07:38 UTC -1/0 N16, 03/02/10, 12:19 UTC 1/0

N16, 01/12/14, 12:38 UTC 1/0 N17, 03/02/10, 10:28 UTC 0/0

MODIS 01/12/12 0/1 MODIS 03/02/10 0/1

N16, 01/12/21, 13:04 UTC 0/1 N16, 03/02/26, 12:42 UTC 2/1

MODIS 01/12/21 0/1 N17, 03/02/26, 09:28 UTC -1/1

N16, 02/01/06, 11:52 UTC 1/-1 N17, 03/02/26, 11:08 UTC -1/1

N16, 02/01/06, 13:34 UTC 2/1 MODIS 03/02/26 0/1

MODIS 02/01/06 0/1

After these preparations of the AVHRR and Landsat data sets, the actual validation process

of the SPARC algorithm can be started.

4.3 SPARC Validation

The equal study subset for both the resampled Landsat reference and the AVHRR image was

already de�ned in section 3.1. Now, the both snow masks are compared on a pixel-by-pixel

basis. To quantify the accuracy of these binary products, two-dimensional contingency tables

and their skill measures are used (see Table 4.3) (Zappa 2008). The frequency of correctly

classi�ed snow pixels by SPARC can be related to those of Landsat (= true observations) and
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vice versa for misclassi�ed pixels. Two of the skill measures are applied and discussed in the

following section.

Table 4.3: The 2 x 2 contingency table (Zappa 2008). S1 = AVHRR snow, S0 = AVHRR snowfree, O1 =

Landsat snow, Oo = Landsat snowfree.

S1 S0
∑

O1 n11 n01 nx1

O0 n10 n00 nx0∑
n1x n0x nxx

Accuracy. The accuracy (=ACC, henceforward) is calculated by dividing the number of mis-

classi�ed pixels by the total number of valid pixels in the study area (snow/snowfree).

ACC =
(n11 + n00)

nxx
(4.5)

BIAS. The BIAS is a quantitative measure of the relative frequency of the observed (Landsat)

and predicted (AVHRR) events. Values above 1 indicate that SPARC classi�es too many

pixels as snow (=overestimation), values below 1 represent an underestimation. A value of

1 is referred to equal frequency of snow/snowfree pixels for the AVHRR and the Landsat

image. In fact, the BIAS is the numeric result of the green and red colored pixels plotted

in the di�erence maps (see chapter 5). These maps show for each AVHRR pixel, whether it

matches the classi�cation of the corresponding Landsat pixel or not. If not, it is colorized. If

the AVHRR pixel is classi�ed as snowfree but the Landsat pixel is de�ned as snow, then it is

marked with green color for underestimation. The opposite holds for overestimated AVHRR

snow pixels, which are �agged with red color. Consequently, more green than red pixels in the

di�erence map indicate underestimation of the scene, which results in a BIAS below 1 and

vice versa for BIAS values above 1.

BIAS =
n1x
nx1

(4.6)

4.3.1 Algorithm improvement with threshold adaptation

The validation in general and the improvement of the algorithm are mainly focused on the

variation of the B-score derived from the re�ectance brightness test in channel 1 since this

score is responsible for the di�erentiation between snow and snowfree areas. Snow masks

calculated with the default value of b+3 are compared with variable values from b-3 to

b-11. The aim of this approach is to identify the peak ACC. It is expected that the ACC

values change by changing the B-score and peak at a certain, i.e. optimal, threshold. For

this purpose, histograms are generated to illustrate the distribution of the pixels according

to their scores and the development of the ACC when shifting the B-score is plotted. With
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these, one is able to make conclusions about the improvement potential of the algorithm.

A minor in�uence is expected from the re�ectance test in channel 3 (R-score), which is used

for the discrimination of clouds and snow when limiting the R-score to small values. However,

this score is also analyzed, even though in less detail since an additional cloud masking

procedure is carried out, which also includes a snow-cloud discrimination part. Analogous

to the B-score, the behavior of the classi�cation ACC is investigated when varying the score

from r-1 to r+10.

The T-score, which is responsible for the elimination of ice/cold clouds, is not expected

to have an essential in�uence on the snow classi�cation. Therefore its behavior is not analyzed.

4.3.2 Factors in�uencing the accuracy

After the threshold adaptation, correlation analyses by applying linear regression are

performed to detect possible sources of the remaining errors, such as ACC dependencies on

satellite and sun zenith angles, snow extent, forest distribution and on resolution di�erences

of the original images of AVHRR and Landsat. An additional potential factor in�uencing

the ACC are changing illumination and viewing conditions. This issue is addressed in the

following section.

4.3.2.1 BRDF e�ect

The signal observed at the satellite sensor is a function of the amount of re�ected radiance

depending on the directions of sun irradiance and (satellite) viewing geometry. The so-called

BRDF e�ect is responsible for the fact that the same surface looks di�erently and generates

distinct re�ectance values when the sun or/and the satellite change their position (Lillesand

et al. 2004). This is expected to have an in�uence on the snow classi�cation ACC and is

therefore also a potential factor to be investigated. The position of the satellite relative to the

sun can be expressed by means of the sun-satellite relative azimuth angle ϕ. It is de�ned as:

ϕ = ϕsun − ϕsat (4.7)

where ϕsun is the sun azimuth and ϕsat the satellite azimuth.

In order to compensate the BRDF e�ect, Luo et al. (2008) suggest to separate the pixels into

two groups: a) a forward scattering hemisphere (FH) with sun-satellite relative azimuth angle

ϕ ∈ 90◦-270◦, where the position of the satellite is in opposite direction of the sun and b) a

backward scattering hemisphere (BH) with ϕ ∈ 0◦-90◦ and 270◦-360◦, where the satellite is

located in the same direction as the sun. As already introduced in section 2.4 snow is strongly

forward scattering.



4.4. SNOW FRACTION ANALYSIS 35

Unfortunately, the available scenes and the small dimensions of the study area were not suitable

for this purpose. The small sample sizes, namely, six scenes only with backward scattering,

eight scenes with forward scattering and two scenes with both (=nadir passed the image)

inhibited a reasonable analysis. Therefore the in�uence of the BRDF e�ect is not further

considered here. Just for completeness it is mentioned that at a �rst look the scenes with

backward scattering seem to be classi�ed slightly better (ACC=79.78% with b+3) than those

with forward scattering (ACC=76.92%). However, it certainly requires further research as it

is expected to in�uence the ACC. This is emphasized by the �ndings of Luo et al. (2008) who

concluded that the di�erentiation of the two categories BH and FH can substantially reduce

the re�ectance variability in clear-sky images.

4.4 Snow Fraction Analysis

The validation process described in the previous sections is based on Landsat data resampled

to the resolution of AVHRR to allow for a pixel-by-pixel comparison. In addition to this, an

approach based on subpixel ACC is implemented. By keeping the Landsat resolution at 30m it

is possible to calculate a fractional snow cover area (SCA) for every AVHRR pixel, whereby one

AVHRR pixel corresponds to 27 x 38 Landsat pixels. When assuming that SPARC classi�es a

pixel as snow if the SCA is greater or equal 50% (i.e. a binary snowmask), then one can study

how many pixels classi�ed as snow lie above this thresholds. Thus, these pixels correspond to

correct classi�cations. The same holds for pixels classi�ed as snowfree with SCA<50%. The

optimal B-score threshold de�ned as the B-score where the sum of snow pixels with SCA≥50%
and snowfree pixels with SCA<50% reaches its maximum, is then compared with the results

from the pixel-by-pixel validation. The optimum would be a sum of 200%. In an additional

approach, the B-score threshold is kept constant at a certain value (i.e. namely at the B-score

threshold, which is found to be the best in the course of the pixel-by-pixel validation) and the

SCA-threshold is changed so that the ACC of the snow mask is maximized. The comparison

of these results with the pixel-by-pixel approach is expected to give an idea of the resampling

error of the Landsat image on the one hand and to assess at which SCA SPARC classi�es a

pixel as snow-covered on the other hand.

This method can also be used to calculate customized snow cover maps. The WSL (Swiss

Federal Institute for Forest, Snow and Landscape Research) Institute for Snow and Avalanche

Research SLF, for instance, is interested in pixels which are certainly snowfree (e.g. pixels

with SCA<20%). Such a map is presented in section 5.3.2 of the Results Chapter.





Chapter 5

Results and Discussion

5.1 SPARC Validation

The validation of the AVHRR snow mask with the default values of SPARC and the applied

improvement steps are shown and discussed in the following sections. As an example, the

scene N17 2003/02/10, 10:28 is chosen to illustrate the applied steps and the results.

5.1.1 Accuracy of SPARC with default values

First, the resulting snow masks of the SPARC algorithm are analyzed for the default value of

the B-score threshold (b+3) to have a �rst impression of the classi�cation ACC. Table 5.1 lists

the ACC of all considered scenes. Apart from one exception (N14, 95/05/03, 12:34 UTC),

the total ACC for the AVHRR scenes ranges from 72% to 84% with a mean of 78.65%. The

good performance of the N14 scene, which classi�es over 90% correctly, might be a direct

consequence of the fact with the retreat of snow to higher altitudes, less and less snow pixels

lie in the forest zone, where snow is hard to detect. The BIAS of 0.77 (averaged over all

scenes) shows that SPARC underestimates snow cover. This discrepancy between AVHRR

and Landsat can also be illustrated in di�erence maps (see Figure 5.1 top), where much more

green pixels than red pixels are present. Green pixels are referred to underestimation (=

AVHRR classi�es snowfree, Landsat classi�es snow), red pixels correspond to overestimation

(= AVHRR classi�es snow, Landsat classi�es snowfree). The valley structures are evident,

which implies that most of the di�erences are located in the transition zones from snowfree

areas to snow when ascending to higher altitudes. One the one hand this is related to the

di�erent snow algorithms of AVHRR and Landsat, i.e. the di�erent treatment of mixed pixels,

and on the other hand to forest cover, where snow under trees is hard to detect (Huesler et al.

2012). Looking at the di�erence maps of all scenes does not lead to any conclusion about a

systematic behavior of misclassi�cation (see Appendix A). While some scenes show most of

their underestimation in the Rhone Valley (Switzerland) as well as in the Ossola Valley (Italy)

37
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Table 5.1: Results for ACC with B-score default value b+3. ]p corresponds to the number of valid pixels (i.e.

snow/snowfree, no clouds). Scene N16, 01/12/14 has an above-average pixel number since the ROI is larger,

scene N16, 01/12/21 has a below-average pixel number since it is highly cloud contaminated.

ACC [%]

Scene ]p Bias Total Non-Forest Forest

N11, 93/03/10, 14:25 UTC 5108 0.845 81.60 84.93 78.94

N12, 95/05/03, 08:06 UTC 4611 0.703 77.86 73.93 80.75

N14, 95/05/03, 12:34 UTC 5305 1.003 91.40 91.55 91.28

N14, 00/03/21, 14:51 UTC 5032 0.740 82.31 75.81 86.74

N15, 00/03/21, 07:38 UTC 5259 0.609 73.84 64.77 80.81

N16, 01/12/14, 12:38 UTC 8510 0.593 72.93 68.93 76.37

MODIS 01/12/14 7441 1.023 88.52 88.73 88.32

N16, 01/12/21, 1304 UTC 2817 0.516 73.80 57.51 84.23

MODIS 01/12/21 4138 0.974 83.57 79.18 86.48

N16, 02/01/06, 11:52 UTC 5829 0.660 73.49 66.82 78.62

N16, 02/01/06, 13:34 UTC 4753 0.818 73.51 72.78 74.26

MODIS 02/01/06 5076 1.105 82.62 81.96 83.17

N16, 03/01/25, 11:57 UTC 5815 0.705 72.61 75.08 70.78

N16, 03/01/25, 13:38 UTC 5792 0.875 81.79 88.98 76.41

N17, 03/01/25, 09:48 UTC 5945 0.863 82.46 85.48 80.18

MODIS 03/01/25 5271 1.086 86.23 92.66 80.69

N16, 03/02/10, 12:19 UTC 5876 0.793 77.03 83.01 72.48

N17, 03/02/10, 10:28 UTC 5888 0.795 79.14 84.20 75.34

MODIS 03/02/10 5575 1.086 87.78 95.07 81.89

N16, 03/02/26, 12:42 UTC 5605 0.819 80.59 86.88 75.46

N17, 03/02/26, 09:28 UTC 5513 0.974 84.84 93.57 77.49

N17, 03/02/26, 11:08 UTC 5623 0.768 73.02 76.26 70.43

MODIS 03/02/26 5416 1.117 87.41 95.29 81.05

Mean of all AVHRR scenes 0.77 78.36 78.26 78.27
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and most of their overestimation in higher altitudes of smaller north-south orientated valleys,

other scenes seem to have a slight east-west discrepancy, which could be a consequence of

di�erent sun and satellite viewing geometries. For certain scenes even no pattern is observed.

Further research is needed here to analyze for example the in�uence of di�erent aspects on

the classi�cation ACC. Huesler et al. (2012) mentioned in the course of their validation with

MODIS data that there is no exceptional weakness for one aspect. Only slightly lower values

were observed for north-facing slopes showing the lowest values for SPARC default settings.

These could be improved in the adapted version by giving special consideration to shadowed

areas.

Figure 5.1: Di�erence maps for b+3 (top) and b-6 (bottom) for AVHRR scene N17, 03/02/10, 10:28 UTC

referred to the resampled Landsat reference.

An additional source of di�erences could also be the time shift of the scene acquisition leading

to di�erent illumination conditions. Especially for afternoon satellites the time gap is evident

(Landsat scenes are always acquired between 09:30 and 10:00 UTC). Moreover, it has to be

considered that the transition zones, i.e. where snow accumulates close to its melting point,

are sensitive already to small temperature �uctuations (IPCC 2007b). This means that in

the course of climate change, this zone - or the uncertainty for this zone - also underlies a
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certain �uctuation.

The MODIS product in comparison to Landsat performs much better with values between

83% and 89% and a BIAS of around 1.0 for all scenes with a slight tendency to an overesti-

mation. This coincides with several studies analyzing MODIS snow products (see e.g. Hall

et al. 2001).

Furthermore, Huesler et al. (2012) found that SPARC causes problems with early morning

satellites (here N12 and N15), due to the �at sun angles causing large shadowed areas

and changing the re�ectance properties of snow. In order to minimize these BRDF e�ects

(Lillesand et al. 2004) (see section 4.3.2) and extensive shadows (Salminen et al. 2009), N12

and N15 are excluded. Moreover, scenes from December are also found to have below average

ACCs, probably due to extensive cloud cover and frequent fog occurrence. Indeed, as seen in

Table 5.1 scenes covering these criteria have a relatively poor performance. Especially N15

and the two N16-scenes from December 2001 have low ACCs, even though they are not much

lower than for example N16 from 02/01/06. The N12-scene is slightly below the average.

Nevertheless, with the background of the �ndings of Huesler et al. (2012), it is decided that

N12, N15 and December scenes are not considered any further here to avoid the risk of

adulterating the adaptation process and the results.

ACC in forest-covered areas is also analyzed separately. Surprisingly, for scenes before 2003,

the ACC is higher than the total. In section 5.2.4 this behavior is related to the dependency

on snow extent. However, wether it is just a coincidence or a systematic behavior cannot

be answered straightforwardly with such a limited number of scenes. The comparison with

MODIS data shows that AVHRR experiences the same di�culties as the state-of-the-art

satellite system. Nevertheless, the ACC values are on a much lower level than those of the

MODIS snow mask.

As an improvement step, the underestimation of SPARC will be corrected in the following

section. This is done by shifting the critical B-score to lower values, which leads to more

pixels being classi�ed as snow.

5.1.2 B-score threshold adaptation

The distribution of the snow and snowfree pixels over the spectrum of the B-score values from

around -15 to +47 is depicted as histogram plot in Figure 5.2. Since the critical threshold

is set to b+3 by the SPARC default settings, values to the right of the red threshold bar

correspond to AVHRR snow pixels, either correctly classi�ed (black curve) or misclassi�ed

(orange curve). Analogously, values below b+3 are represented by snowfree pixels (correct in

blue, misclassi�ed in green). A large number of very bright snow pixels, possibly oversaturated,

is present and explains the big bar at around score +46. In addition, there are some pixels

classi�ed as snowfree although they have score values higher than the threshold. This might
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be related to the fact that in the course of other tests (R-, T-scores) they were classi�ed as

snowfree. By means of these histogram plots, the potential of an improvement of the SPARC

algorithm by adjusting the B-score can be illustrated. Shifting the threshold to the intersect

of the curve of the misclassi�ed snowfree pixels and the correctly classi�ed snowfree pixels,

results in a gain of the �rst (i.e. increase of ACC) and a loss of the latter (i.e. decrease of

ACC). The overall gain, then, is the di�erence of these two (see grey area in Figure 5.2 top).

A di�culty in �nding the optimal threshold is that this intersect varies from scene to scene.

Hence, it is not possible to set one universally valid value. However, it can be limited to a

certain range.

Figure 5.2: B-score histograms showing the distribution of the B-score values for all AVHRR pixels of the

study area before improvement with b+3 (top) and after improvement with b-6 (bottom) for scene N17,

03/02/10, 10:28 UTC. The grey area represents the integral of the improvement potential when lowering the

B-score. The optimum for this scene is at b-7.

To �nd the peak value, i.e. the optimal B-score threshold where all scenes have their highest

ACC, the development of the ACC with di�erent B-scores is plotted in Figure 5.3. Due to

the �ndings of Huesler et al. (2012) and the results going to be presented in section 5.2.1 only

scenes with satellite zenith angels smaller than 40◦ are considered (including N16, 03/02/10,

12:19 UTC with a slightly larger angle of 40.2◦). The three lowest graphs correspond to the

problematic scenes discussed already above (N15 and the two scenes from December), which
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con�rms the procedure to remove these images. Note that N12 is missing in the �gure because

of its satellite zenith angle of 53.1◦. Figure 5.3 also underlines the variable scene-to-scene

behavior and the improvement potential related to the default value (b+3). As the threshold

is lowered, the ACC increases, peaks at a certain point and drops after that again. Values lower

than b-9 lead to poorer results for all scenes, namely to an overestimation of snow cover. When

Figure 5.3: Development of the SPARC algorithm ACC depending on di�erent B-score thresholds. Only

scenes with satellite zenith angles <40◦ are displayed.

shifting the score threshold in a range of b-4 to b-8 the di�erences generally do not change

the ACC substantially. Only the two N16 December scenes show higher variabilities. This

insensitivity of SPARC concerning the application of di�erent thresholds is a major advantage

of this algorithm as it makes it very robust. Consequently, the algorithm is best applicable

for climate related long-term applications. The curve of N14, 95/05/03, for example, which

already displays a high ACC, stays nearly constant. It also shows that an increasing snow

line in spring has a positive e�ect on the classi�cation ACC since less forest-covered area is

a�ected by snow cover. Finally, the optimal thresholds of each scene are averaged and yield

a mean optimal B-score threshold of b-6. The new di�erence map of the example scene (N17

2003/02/10, 10:28) shows a less colored image and many of the underestimated pixels vanish

(see Figure 5.1 bottom). The BIAS lies close to 1 (1.001), which means that the remaining

errors are nearly equally distributed.

The implementation of the new SPARC B-score threshold leads to the ACC values listed in

Table 5.2. Not all scenes experienced an equally good improvement. The last row shows the

reached improvement in numbers averaged over all scenes. The di�erence from the results



5.1. SPARC VALIDATION 43

Table 5.2: Final results for ACC after threshold adaptation for B-score b-6. ]p corresponds to the number of

valid pixels (i.e. snow/snowfree, no clouds). Scene 01/12/14 has above-average pixel number since the ROI is

larger, scene 01/12/21 has below-average pixel number since it is highly cloud contaminated.

ACC [%]

Scene ]p Bias Total Non-Forest Forest

N11, 93/03/10, 14:25 UTC 5108 1.074 85.59 92.02 80.45

N12, 95/05/03, 08:06 UTC 4611 1.105 83.17 86.91 80.41

N14, 95/05/03, 12:34 UTC 5305 1.084 91.78 92.50 91.18

N14, 00/03/21, 14:51 UTC 5032 0.983 88.08 86.70 89.01

N15, 00/03/21, 07:38 UTC 5259 0.824 77.51 70.50 82.90

N16, 01/12/14, 12:38 UTC 8510 0.821 81.05 81.22 80.89

MODIS 01/12/14 7441 1.023 88.52 88.73 88.32

N16, 01/12/21, 13:04 UTC 2817 0.931 81.26 74.61 85.51

MODIS 01/12/21 4138 0.974 83.57 79.18 86.48

N16, 02/01/06, 11:52 UTC 5829 1.085 81.35 82.82 80.22

N16, 02/01/06, 13:34 UTC 4753 1.103 77.36 82.28 72.34

MODIS 02/01/06 5076 1.105 82.62 81.96 83.17

N16, 03/01/25, 11:57 UTC 5815 0.994 82.80 90.46 77.17

N16, 03/01/25, 13:38 UTC 5792 1.095 82.84 92.94 75.29

N17, 03/01/25, 09:48 UTC 5945 1.056 85.10 91.94 79.94

MODIS 03/01/25 5271 1.086 86.23 92.66 80.69

N16, 03/02/10, 12:19 UTC 5876 1.018 85.62 93.42 79.69

N17, 03/02/10, 10:28 UTC 5888 1.001 86.91 93.75 81.77

MODIS 03/02/10 5575 1.086 87.78 95.07 81.89

N16, 03/02/26, 12:42 UTC 5605 1.077 86.24 93.80 80.09

N17, 03/02/26, 09:28 UTC 5513 1.150 83.44 94.60 74.05

N17, 03/02/26, 11:08 UTC 5623 1.101 80.69 90.81 72.57

MODIS 03/02/26 5416 1.117 87.41 95.29 81.05

Mean of all AVHRR scenes 1.03 83.57 87.72 80.21

Mean di�erence to b+3 +0.26 +5.21 +9.46 +1.94
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Figure 5.4: ACC improvement for the SPARC classi�cation from the default B-score threshold b+3 to b-6

split into values for all pixels (total), non-forest pixels and forest pixels.

with the default value b+3 to those with b-6 is much larger for forest-free areas than for

forested regions. Whereas the ACC on non-forest pixels is, averaged over all scenes, improved

by 9.46%, forest-covered pixels only show an improvement of 1.94%. Taking into account the

high amount of forest in the study area, this explains the moderate overall gain of the SPARC

classi�cation ACC of 5.21%. The improvement from the default value to b-6 is illustrated in

Figure 5.4 for all scenes. It also shows that not all scenes bene�t from the threshold adaptation

in the same amount, or bene�t at all. In some cases, ACC on forest-covered areas is reduced.

Nevertheless, negatively a�ected scenes have satellite zenith angles greater than 50◦ (apart

from N17, 03/01/25 with a very small ACC reduction) and only for scene N17, 2003/03/26,

09:28 UTC a negative e�ect on the total ACC can be observed. For all scenes that ful�ll the

criterion of the satellite zenith angle (≤40◦), the threshold adaptation lead to an improvement
of the ACC.

For some dates, where more than one scene per day is acquired, such as 1995/05/03 or

2003/02/26, there are substantial di�erences between the corresponding AVHRR scenes. They

amount to 8.6% and 5.5%, respectively. These di�erences are assumed to be related to the

in�uencing factors discussed in section 5.2.

The B-score shift brings SPARC close to the MODIS snow mask. In some cases, the latter

performs only 1-2% better. Such scenes are N16, 01/12/21, 13:04; N16, 02/01/06, 11:52;

N17, 03/01/25, 09:48, N16, 03/02/10, 12:19; N17, 03/02/10, 10:28 and N16, 03/02/26, 12:42.

These examples emphasize the quality of the result. Although MODIS does not generate a
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perfect snow mask as well, it is a very good indicator for the quality of an algorithm. The

highest deviations are observed with N16, 01/12/14, 12:38 (-7.84%) and N17, 03/02/26, 11:08

(-6.72%).

Up to now, all land cover types were treated equally, even though the re�ectance depends on

the surface properties. Especially, snow under a forest canopy a�ects the re�ectance and leads

to mixed pixel information. The following subsection presents a possible approach to address

this problem.

5.1.2.1 Land cover correction

Due to their di�erent re�ectance properties, forest-covered and forest-free areas usually have

di�erent optimal thresholds. A separate treatment, i.e. a correction of the score thresholds

for di�erent land cover types, is expected to yield better results. To implement an improved

land cover correction, the data plotted in Figure 5.3 is split into forest-covered and forest-free

pixels. Figure 5.5 illustrates how the ACC changes by shifting the B-score for this case. The

details of each scene are of minor importance here since the �gure should simply emphasize

the di�erence between forest and non-forest pixels. Again, only scenes with satellite viewing

Figure 5.5: Development of the SPARC algorithm ACC depending on di�erent B-score thresholds for forest-

covered pixels (left) and non-forest pixels (right). Only scenes with satellite zenith angles <40◦ are displayed.

angles ≤40◦ (without N15 and December scenes) are considered for the de�nition of the peak

score. Whereas non-forested pixels show best results at around b-9, forest pixels experience

the highest ACC at b-5. Contrary to the expectations discussed in section 4.2.1 with the

concept of a SPARC land cover correction, forest pixels do not have lower scores as assumed

due to the dark canopy and the resulting lower re�ectance. Therefore, SPARC is run again

with a B-score of b-9, and for forest pixels a land cover correction, e.g. a B-score of b-5 is

applied. Since this optimal threshold is a "mean value" it is obvious that it is not optimal for

all scenes. For certain scenes, these settings lead to a slight improvement of the snow mask

of around 1-2%. For others, no improvement can be observed and no systematic behavior is

identi�able. A �rst test during the work of Huesler et al. (2012) with the snow time series
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validated with MODIS showed that the results are much poorer with these settings. This

seems reasonable since the thresholds were expected to be inverted (i.e. higher scores for

forest-free pixels compared to forest pixels). It is therefore concluded that possibly not the

land cover type "forest" is the in�uencing factor for the behavior of the unexpected peak score

values but the geographical location of the forest pixels per se. The transition zone from snow

to snowfree areas is di�cult to be classi�ed correctly (see section 5.1.1 and Figure 5.1). If this

zone is located in the wooded belt, then the ACC of forest pixels is also limited due to these

conditions. This problem is addressed again in section 5.2.6.

It has become clear that applying a powerful land cover correction is di�cult and further

research is needed. With this simple B-score changes it seems not possible to improve the

result. A weakness of the chosen approach could be that snow and snowfree pixels were not

treated separately. Only forest pixels with underlying snow are expected to have slightly higher

re�ectance values compared to snowfree conditions. By simply analyzing the peak score of

forest and non-forest areas, mixed results are the consequence. However, it shows that there

is a potential to in�uence the ACC with a land cover correction.

5.1.3 R-Score threshold adaptation

The B-score in SPARC is responsible for the di�erentiation between snow and snowfree land.

In addition, the R-score derived from the re�ectance test in channel 3 separates clouds from

snow. Therefore, this score is not expected to have an in�uence on the discrimination between

snow and snowfree pixels and hence on the snow classi�cation ACC. Indeed, the analysis shows

that varying the initial R-score of r+3 from r-1 to r+10 does not a�ect the ACC positively.

From r+1 to r+10 the ACC changes only in a range of ±0.1-0.5%. This di�erence was found
too low to be considered for further validation. However, the results clearly show that the

R-scores of r+0 and especially r-1 yield substantially poorer result and that the default value

of r+3 is well chosen. For almost every scene this value generates the best snow mask.

5.2 Discussion of Factors in�uencing the Accuracy

Providing explanations for the results yielded with the threshold adaptations to b-6 in the

previous sections is not straightforward since the SPARC classi�cation ACC is in�uenced

by several factors and every scene has its special characteristics. Therefore, the following

discussion is focused on such factors and degrees of in�uences are estimated.

5.2.1 Satellite zenith angle

The snow time series of Huesler et al. (2011) does not contain satellite zenith angles larger

than 40◦ since they are expected to have a negative in�uence on the classi�cation ACC. In this
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context, the scenes' satellite zenith angles are correlated with its resulting ACC (based on a B-

score of b-6). Figure 5.6 clearly shows that the SPARC performance decreases with increasing

viewing angles with a correlation of -0.84, which results in an r2=0.71 with a root mean square

error (RMSE) of 1.88%. The highest ACC is reached with the nadir scene (viewing angle of

0.3◦) from May 3th, 1995 (N14). Whereas scenes with angles at around 10◦ to 15◦ have equal

ACC values to these between 30◦ and 40◦, zenith angles above 50◦ cause substantially poorer

results with a minimum ACC below 80% for the N16-scene in January 2002. Based on these

�ndings, keeping the angle threshold at 40◦ can be recommended since this does not decrease

the SPARC classi�cation performance. A further decrease of the critical allowed angle is not

necessary. Consequently, less scenes have to be excluded from the time series and hence the

robustness is enhanced.

Figure 5.6: Correlation of satellite zenith angles and SPARC classi�cation ACC.

5.2.2 Sun zenith angle

Similar to the satellite angles, the illumination conditions of the sun might in�uence the ACC

of the SPARC classi�cation. Figure 5.7 (left) shows that there is a dependency with r2=0.50

and a RMSE of 2.48%. According to that, the ACC decreases with an increasing sun zenith

angle (r=-0.71). This is comprehensible when considering that a �atter sun angle changes the

irradiance and causes, for example, more shadows, which often lead to classi�cation problems.

Salminen et al. (2009) emphasize that re�ectance of snow in shadow can be as low as 0.18.

For Landsat scenes similar values were found in section 4.1.2.2. Since sun angles >55◦ are

generally not representative for winter sun geometries over the Alps (Huesler et al. 2012),

the nearly perfectly classi�ed spring scene N14, 95/05/03, 12:34 UTC with an angle of 34◦ is
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Figure 5.7: Correlation of sun zenith angles and SPARC classi�cation ACC (left). Right: The 'outlier' from

May, 1995 with an angle of 34◦ and an ACC of 91.78% is removed.

excluded from the correlation. After the removal r2 is reduced to 0.21 (see Figure 5.7, right).

Only a weak correlation remains and whereas the sun zenith changes by nearly 25◦, the ACC

variability stays in a moderate range of around 10%-points. A much larger set of scenes is

required to draw any conclusions about the strength of the correlation for the whole time

series because it cannot be excluded that there are more scenes available with angles between

30◦ and 50◦ and an ACC between 85% and 90%. In that case, the N14-scene from May 1995

would not be an exception and r2 would be high again at a level of the left plot. If such a

strong dependency is present, a threshold will have to be introduced which removes scenes

with too large sun zenith angles. In any case, Khlopenkov and Trishchenko (2007) limit the

sun zenith angle for SPARC depending on the brightness temperature of AVHRR channel 5

T5 to:

Θmax
0 = 89.5◦ − 0.000025(T5 − 223)3. (5.1)

Nevertheless, these results imply that there seems to be a much smaller in�uence of the sun

zenith angle than of the satellite viewing angle. This conclusion is also important in the

context of satellite orbit drift. The drift causes a shift in overpass time over the lifetime of a

sensor and consequently changes the sun zenith angle. If it can be veri�ed with a much larger

sample that the sun zenith angle is of minor importance, then this could suggest that the

orbital drift has a minor in�uence on the classi�cation ACC and does therefore not lead to

an arti�cial trend in the time series (Huesler et al. 2012). However, this is a �rst assumption

and requires further research.

5.2.3 Date of acquisition

In a next step it is also analyzed if the classi�cation ACC depends on the date of acquisition

since the ACC is expected to alter with changing snow conditions during the winter season.
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Especially during the beginning of the winter and during snowmelt Simic et al. (2004) found

reduced ACC values with MODIS and NOAA data. By sorting the snow masks calculated with

a B-score of b-6 from December to May, a correlation of +0.8 (r2=0.65) is found. This implies

that the SPARC performance improves throughout the winter. As the snow layer evolves, the

structure becomes clearer and is therefore easier to detect. Simic et al. (2004) also showed

that the MODIS snow classi�cation ACC (validated with Landsat ETM+) improves with

increasing snow depth. This is of particular importance at the beginning of the accumulation

period and towards the end of snow melt. A similar behavior is conceivable for AVHRR even

though this cannot be con�rmed due to missing snow depth measurements. Nevertheless,

Figure 5.8: Correlation of date of scene acquisition and SPARC classi�cation ACC.

several points have to be considered when making conclusions about the ACC of the 25-year

time series based on these �ndings. The result is not based on a time series, which means that

the more or less randomly chosen scenes are not proven to be representative for the respective

time of year or put in other words, wether the snowpack of a scene conforms with the typical

properties expected for the season during which the image was acquired. As an example the

images from 1993/03/10 and 2000/03/21 show that, although both are acquired in March

with a di�erence of eleven days, the �rst has a snow extent of 65%, while the latter has 51%

snow cover. The two December scenes also have a large di�erence in snow extent of 18%.

Furthermore, it cannot be concluded that the linear trend continues after May. Also summer

and autumn scenes would have to be analyzed.

The ACC variability throughout the winter has to be considered for example when making

conclusions about a potential shift of the snow line in the course of climate change. Thus,
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uncertainties of the algorithm ACC which are related to climate depending factors and occur

in certain months (e.g. in November or December due to shallow snow layers), could be shifted

to other months in the future. This means that it cannot be concluded that the problem of

the low snow depth will be present today in the same months like in future decades.

5.2.4 Snow extent

An image where the area is almost completely covered with snow may be easier to classify than

a patchy scene where snow and snowfree areas frequently change with space. Nevertheless,

the analysis of the available scenes did not show a substantial correlation (r2=0.03) between

classi�cation ACC (snow mask at b-6) and snow extent. However, splitting the snow mask

into forest and non-forest area leads to an interesting result. It may explain the fact already

discussed in section 5.1.2 that scenes before 2003 have a higher ACC with b+3 for forest-

covered pixels (than for non-forest). This might be related to snow extent since the analysis

shows that for forest pixels it seems: the lower the snow extent is, the higher the resulting

ACC tends to be (r=-0.65). This result is reasonable since snow-covered trees generate mixed

information (if the trees are not completely snow-covered). The pixels are brighter than a

snowfree pixel but darker than a snow-covered pixel. This causes for SPARC a potential

for misclassi�cation that is increased with increasing snow extent. For non-forest pixels the

opposite is true. The higher the snow extent is, the higher the resulting ACC tends to

be (r=0.63). The scenes before 2003 have substantially lower snow extent than the rest of

the available scenes and consequently forested areas show even a higher ACC than forest-

free areas. In the course of the threshold adaptation to b-6, non-forest areas are corrected

more successfully (see Table 5.2) and gained higher ACC values than forest-free areas. The

correlation coe�cients shift to r=0.80 for uncovered pixels and r=-0.45 for forested areas.

However, these dependencies are only relevant when splitting forest and non-forest pixels. As

already described above, no correlation between snow extent and ACC is found when analyzing

all pixels together (r2=0.03).

An important remark has to be made for the analysis of forest-covered pixels. As already

mentioned, for example, in section 5.1.1 or 5.1.2.1, the low ACC of this land cover type could

eventually also be related to the fact that it is mostly located in the transition zone, where

di�erences could simply be based on the distinct treatment of mixed pixels by the two di�erent

algorithms. This problem appears again in the following section.

5.2.5 Elevation zone and forest cover

From the results related to forest cover discussed in the previous sections it is expected

that the ACC in the critical wooded belt between 1000m and 2000m asl is reduced and

correlated with the number of forest-covered pixels. The lower graph of Figure 5.9 shows the
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distribution of all forest-covered pixels of the study area by altitude and the upper illustrates

the classi�cation ACC for each altitude level for the example scene N17, 03/02/10, 10:28 UTC.

At a �rst glance, the relationship is evident, even though it has to be considered also here

Figure 5.9: SPARC classi�cation ACC per altitude level and corresponding number of pixels for scene N17,

03/02/10, 10:28 UTC (top). Distribution of the number of forest-covered pixels in the study area for same

altitude levels (bottom). Snow mask calculated with a B-score of b-6.

that the snow line, i.e. the transition zone, often lies in this zone between 1000m and 2000m

asl as well (see following section 5.2.6). A correlation between ACC and number of forest

pixels of -0.95 with b+3 is found. Thus, 90% of the ACC variability can be explained by the

distribution of the forest pixels with altitude. After the threshold adaptations the correlation

between forest cover and ACC per altitude level is reduced from r2=0.90 to r2=0.81, which

indicates that the negative e�ect of the forest could be reduced slightly. Nevertheless, the

correlation remains high. This is not surprising considering the results displayed in Table 5.2

(ACC results for b-6). It is related to the fact that the gained improvement was much larger

for non-forested areas than for forested areas. However, a look at Figure 5.10, which depicts

the r2-values for all scenes, shows that for scenes before 2003 the correlation is higher after

the threshold shift to b-6. This is a consequence of the fact that scenes before 2003 have

higher ACC values with b+3 for forest pixels than for non-forest pixels. This may again be

related to the ACC dependency on snow extent (see section 5.2.4). It is obvious that if the

forest pixels are better classi�ed than the forest-free pixels the dependency to the number of

snow pixels when rising to higher altitudes is smaller.
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Figure 5.10: Overview of the correlation between forest-covered pixels and ACC per altitude level for all

scenes.

5.2.6 ACC in forests related to the snow line/transition zone

The knowledge found in section 5.2.5 of the correlation between forest cover and ACC de-

pending on the elevation zone is crucial, since:

• The position of the snow line in�uences the ACC of the algorithm due to this dependency.

During the peak of winter, the snow line lies below the wooded belt. In spring, when

snow cover retreats to the height mountains and less and less pixels are a�ected by

'problematic' forest cover, the ACC is expected to increase. Related to this, Foppa

(2006) found that forest cover becomes a marginal factor in�uencing the ACC as the

snowmelt season advances since the number of snow-covered forest pixels is reduced.

However, possibly due to the small number of available scenes, this assumption cannot

be con�rmed systematically here with the analyzed data set.

• Since SPARC has been implemented by the RSGB mainly for long-term climate applica-

tions, the ACC of the snow mask might change with time. Hence, the ACC is in�uenced

not only on a seasonal but also on an interdecadal scale. The expected rise of the snow

line as a consequence of climate change (see for example OcCC 2008 or Beniston 2003)

will also a�ect the ACC in the same way as described at the �rst point. Of course, this

is a general problem of remote sensing of snow and is not only related to SPARC.

How these changes will exactly in�uence the ACC in the future is a challenging question. A

more sophisticated analysis of the snow line changes over the last 25 years from other sources

compared to the AVHRR snow time series could lead to an indication of the developments

occurring in the future. Such sources could be higher resolved satellite images such as MODIS
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or a reliable long-term in-situ snow data set, an other example. For MODIS, however, it has to

be considered that data is only available from February 2000 to present. Previous work about

the topic of snow line estimates from AVHRR data has been done for example by Wunderle

et al. (2002). However, it has to be considered that with the coarse spatial resolution of

1.1km only very strong changes in the snow line would become visible. As already discussed

in chapter 1, for every 1.0◦C increase in winter temperature the snow line rises by 150m

(Beniston 2003).

Figure 5.11: Snow-covered area on di�erent altitude levels (y-axis in m asl) for N17, 03/02/10, 10:28 UTC.

Besides the altitude distribution of ACC and forest pixels, the percentage snow cover area for

the same altitude levels it plotted in Figure 5.11. The initial aim of this �gure was to assess

the snow line and with this also the transition zone by using the de�nition of Seidel et al.

(1997), who de�ned the altitude of the snow line as the belt where 50% snow cover is exceeded.

For the example scene it would lie between 500-1000m asl. Unfortunately, the classes of 500m

steps seem to be too coarse to make reliable conclusions. Nevertheless, Appendix B, which

shows the altitude plots for all scenes, is used to �nd a possible relationship between the

ACC distribution per altitude and the corresponding snow cover. It seems that for the scenes

of the year 2003, which have above-average snow extent of roughly ≥70% and consequently

have more snow in lower elevation zones, the reduced ACC values are located in the lower

altitudes, compared to the other scenes. Reduced values seem to more be pronounced between

500-1500m asl rather than between 1500-2000m asl, where scenes before 2003 show more likely

reduced values. The example scene (shown in the previous chapter 5.2.5) lies somewhere in

the middle.

It has to be considered that this approach can just be seen as an additional indicator of the

ACC variability and further research on this topic with numeric results is required. Neverthe-

less, it emphasizes the assumption that possibly not the forest cover per se but the di�culties

emerging from the transition zone (mixed pixels) located at the same altitude levels are the

driving factor of the reduced ACC signal in a certain elevation range (see also the Concluding

Remarks 5.4 and the Outlook 6.2).
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5.2.7 Known snow classi�cation problems from MODIS

When generating snow masks by means of satellite remote sensing systems, further factors

apart from those discussed above might in�uence the results. The ACC di�erences may occur,

for example, due to di�erences in the sensor system di�erences itself. Several di�culties are

known from MODIS, the state-of-the-art sensor for snow cover mapping. The consideration

of obstacles already described in literature (see next paragraph) may also be transferred to

the AVHRR system. In the following, such di�culties are discussed, by no means however

claiming completeness.

Literature on several MODIS validation studies is available, each reaching di�erent conclu-

sions since the assessment of the ACC is not straightforward. Hall and Riggs (2007) observed

that it is not possible to provide one universally valid number for ACC since it depends on

several factors such as time, season, land cover and topography. The same conclusions were

made in this study using AVHRR data. Every scene has its special characteristics and in

combination with the small number of available data it is di�cult to �nd a common pattern.

In Hall and Riggs (2007) an overall ACC of around 93% was summarized with lower ACC in

forested areas, complex topography and under thin-snow conditions. With respect to speci�c

land cover types, Simic et al. (2004) and earlier also Hall et al. (2001) found the lowest ACC

(80%) to occur in areas covered with evergreen forests. This also coincides with the analysis

of the AVHRR data carried out in this project. Figure 5.12 depicts the distribution of the

misclassi�ed pixels on the the land cover types. Out of 771 misclassi�ed pixels of scene N17,

Figure 5.12: Fractions of the present land cover types in the study area (left) and distribution of the misclas-

si�ed pixels over these land cover types for scene N17, 03/02/10, 10:28 UTC. 2=broadleaved, 4=needle-leaved

and 6=mixed-leaved forest cover. 13=Herbaceous cover, 14=Sparse shrub cover, 16=cultivated and managed

areas, 20=Water bodies, 21=Snow and ice, 22=Arti�cial surfaces.

03/02/10, 10:28 UTC 80% are owing to the land cover types 2, 4 and 6 which correspond

to forest, although the study area is only roughly 55% forest-covered. 17.6% are related to
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herbaceous and shrub cover, which hold roughly 36% of the land cover type fraction in the

study area. A negligible amount of misclassi�ed pixels correspond to water bodies, snow and

ice and arti�cial surfaces.

Huang et al. (2011) validated MODIS snow-cover products with Landsat, especially for moun-

tainous areas and obtained ACC values of 95% for plain and 88.1% for mountainous areas.

The combination of low snow depth and high forest cover decreased the ACC below 82%.

Considering that the study area of this project is located as well in a high mountain region

with a large amount of forest cover (more than half of the study subset is covered with forest)

this might explain the lower overall ACC of the validation results.

The �ndings of Huang et al. (2011) and also Simic et al. (2004) with respect to snow depth

(see also section 5.2.3) are an interesting point. To recall, they found that most of the disagree-

ment between MODIS and Landsat originates from snow depths lower than 4cm. Although

it was not possible to test this with AVHRR, a connection might also exist. Looking back at

Figure 5.8, which shows the correlation between date of image acquisition and ACC, leads to

the assumption that at the beginning of the winter the snow layer is thin in large areas of the

lower altitudes and might decrease the ACC.

Another factor possibly responsible for a fraction of the ACC di�erences between Landsat

and AVHRR (or MODIS and AVHRR) is the problem of the di�erent spatial resolutions. The

coarse horizontal resolution of MODIS (500m), compared to Landsat (30m), leads to mixed

MODIS pixels in the snow cover edge and patch snow areas (Hall et al. 2002). The binary

MODIS algorithm classi�es pixels with ∼50% snow cover as snow. Hence, for these mixed

pixels, MODIS will overestimate snow cover. This is also observed here during the valida-

tion process. Apart from scene 01/12/21, MODIS shows a BIAS above 1.0, which indicates

overestimation compared to Landsat. Figure 5.13 illustrates this problem with a patchy Land-

sat scene (left) and the nearly continuously snow-covered corresponding MODIS snow mask

(right), even though it has to be considered that the Landsat image is not resampled to the

coarser resolution of MODIS. However, a similar behavior can be observed in the study area

Figure 5.13: Landsat 7 ETM+ snow map (left) and corresponding MODIS snow mask showing an area near

Keene, New Hampshire, USA. Both at original spatial resolution, i.e. 30m for Landsat, 500m for MODIS. The

coarser resolution of MODIS leads to a high degree of generalization (Hall et al. 2002).
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Figure 5.14: Resampled Landsat 5 TM snow map (left) and corresponding N14-AVHRR snow mask (right)

showing the Rhone Valley at Martigny, Switzerland on May 3th, 1995. Both at a horizontal resolution of

1.1km. Snow pixels in white, snowfree pixels in black (left) or grey (right). Right black pixels correspond

to invalid/cloud pixels. Landsat shows a much patchier snow map, even though the di�erence to the right

AVHRR image is much smaller than in Figure 5.13 since both have same resolutions after the resampling of

the Landsat snow mask.

with AVHRR data (see Figure 5.14), where both images have a 1.1km-resolution. The fact

that the Landsat snow mask is calculated on the basis of the original 30m-resolution data

and resampled afterwards to the 1.1km-resolution of AVHRR causes a certain proportion of

the mosaic structure to remain. The AVHRR sensor, in contrast, is not able to detect struc-

tures on such a �ne resolution and generalizes the Earth's surface a priori. Nevertheless, it

is di�cult to estimate the in�uence of this feature. The overestimation of the AVHRR snow

mask is only observed after the threshold adaptation and might be a simple consequence of

an 'overcorrection' of the thresholds. Too many other factors could in�uence the results to

make a clear conclusion.

5.3 The Subpixel Scale

Up to here, the whole validation process was based on resampled Landsat data to allow for

a pixel-by-pixel comparison. In the following, another approach with 30m-resolution Landsat

data and its applicability are discussed.

5.3.1 Snow fraction analysis

Keeping the Landsat resolution at the original 30m and comparing it with the 1.1km-resolution

of AVHRR allows for a validation approach based on a subpixel ACC. Nevertheless, it has

to be considered that after reprojecting the Landsat image onto the lat/long grid to �t the

AVHRR image, its pixels have a non-quadratic shape (∼0.00038◦ x 0.00027◦), which might

be a further source of error. On the other hand, the error generated by the resizing of the

Landsat pixels to the size of the AVHRR pixels vanishes. With this approach, though, each

AVHRR pixel corresponds to a region of interest (ROI) of 27 x 38 Landsat pixels. The result

is a fractional snow cover area map, where for every AVHRR pixel a fractional SCA between
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0-100% snow cover is calculated from the number of snow-covered Landsat pixels. Figure 5.15

shows such an SCA-map for the N17 scene from February 2003.

Figure 5.15: Snow cover area (SCA) map of the AVHRR study subset derived from Landsat for scene N17,

03/02/10, 10:28 UTC. The color bar indicates fractional SCA per pixel from 0-100%. Pixels in grey represent

invalid data.

Figure 5.16 (top) depicts the snow cover area (SCA) of the AVHRR snow mask pixels derived

from Landsat with B-score default b+3. It is assumed that SPARC classi�es a pixel as snow if

the SCA is greater or equal 50%. The snow pixels are classi�ed nearly perfectly, e.g. 97.92% of

all AVHRR pixels classi�ed as snow have a higher SCA than 50%. For snowfree pixels, SPARC

yields a much poorer result. Only 50.85% of the pixels classi�ed as snowfree have lower SCA

than 50%. Whereas the green bars (snow) follow an ideal logarithmic shape with few pixels

below the 50%-threshold bar, the fraction of the yellow bars (snowfree) above 50% is way too

high. Nearly 500 pixels which were classi�ed as snowfree have 90-100% SCA according to the

Landsat reference. This coincides with the underestimation found in section 5.1.1. Figure 5.16

(bottom) shows the result of the adapted threshold case of b-6. Although the underestimation

could be corrected, a certain misclassi�cation remains (see bars at 90-100%). The fraction

for the snow pixels is slightly reduced to 94.00% and for the snowfree pixels it is enhanced to

72.76% but remains on a moderate level. 6% of the snow pixels have a snow fraction of less

than half the pixel and even 27.24% of the snowfree pixels have more than 50% fractional snow

cover. These values correspond to the signal observed in the di�erence maps, where, despite

threshold shifting, a certain misclassi�cation remained. Since this speci�c scene is roughly

78% snow-covered, the lower values for the snowfree pixels are of minor importance.

However, if we de�ne the best threshold as the B-score where the sum of snow pixels with

SCA≥50% and snowfree pixels with SCA<50% reaches its maximum, i.e. 200% in an optimal
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Figure 5.16: Snow cover area (SCA) of the AVHRR snow mask pixels of N17, 03/02/10, 10:28 UTC derived

from Landsat with B-score default of b+3 (top) and b-6 (bottom) divided in 10 SCA-classes. Number of pixels

on x-axis, fractional SCA per pixel on y-axis.

case, it can be concluded that the optimal B-score threshold value for this scene lies somewhat

lower compared to the pixel-by-pixel approach. The sum is usually maximized at the point

where the smallest di�erence is found between correctly classi�ed pixels above or below the

SCA-threshold. To recall, in Figure 5.3 the best ACC for this speci�c scene was found with

a B-score of b-7. In contrary to that, applying the SCA-approach with the de�nition of the

sum maximum, best values are observed with b-11 for a 50% SCA-threshold. At b+3 the sum

amounts to 148.77%, at b-6 to 166.76% and �nally at b-11 to 176.96%, where the values for

snow and snowfree pixels amount to 89.24% and 87.73%, respectively. As can be seen, the

di�erence is marginal. Averaged over all scenes, the B-score threshold is in the range of b-8 to

b-9. Using only the valid scenes (i.e. no N12, N15, December scenes and satellite angles >40◦)

it is at b-10. Since the B-score values only range to b-11 it is not veri�able if, for scenes with a

maximum at b-11, this actually is the real maximum. Hence, the resulting optimal threshold

could even be lower. From the pixel-by-pixel approach it is known that values lower than b-9

lead to an enhanced BIAS (overestimation of snow cover.) Figure 5.17 of the example scene

with b-11 shows that now both the green and the yellow curves have the expected logarithmic

shape. Nevertheless, the overestimation is present as a large number of snow pixels are below
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the 50%-threshold bar. This di�erence from b-11 to b-6 of the pixel-by-pixel approach (see

Figure 5.17: Snow cover area (SCA) of the AVHRR snow mask pixels of N17,03/02/10, 10:28 UTC derived

from Landsat with a B-score of b-11 divided in 10 SCA-classes. Number of pixels on x-axis, fractional SCA

per pixel on y-axis.

section 5.1.2) might be a consequence of the fact that SPARC does not classify snow at the

threshold of SCA≥50% but lower or higher. Therefore an additional approach is implemented

even though the two approaches can not be compared directly. Instead of keeping the SCA-

threshold of 50% constant and changing the B-score, the SCA-value is modi�ed so that the

sum of snow pixels with SCA≥x and snowfree pixels with SCA<x are maximized at b-6. By

doing this, the value can be derived at which SPARC classi�es a pixel as snow-covered. It

becomes apparent that this value lies in the mean at 58% SCA with a strong dependency on

snow extent. This means that if an AVHRR snow mask is calculated from Landsat, snow

should be classi�ed when the pixel exceeds 58% fractional snow cover. Nevertheless, the

correlation with snow extent has to be considered. While scenes with snow extent around

50% have best values at a 30-40% SCA-threshold, for scenes with snow extent up to roughly

80% the threshold leading to best results lies at 70% SCA.

Due to this dependency it is not possible to set a reliable SCA-threshold valid for all scenes.

Furthermore, it has to be considered that the SPARC algorithm is not best applicable for such

snow fraction calculations since the scores are not directly proportional to the snow fraction

(Huesler et al. 2012). A more sophisticated approach is required to address this goal. A

common method is the linear spectral mixture algorithm which was used, for example, by

Foppa et al. (2004) for operational subpixel snow mapping with NOAA AVHRR data. This

algorithm is, however, only applicable to sensors with channel 3A, namely N17 and a few

scenes of N16. Nevertheless, the presented approach gave an indication of the ACC behavior

when keeping the Landsat resolution at 30m and changing either the snow-covered area or the

B-score threshold.
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5.3.2 An application example

The subpixel approach can also be used for customized snow cover maps. The WSL (Swiss

Federal Institute for Forest, Snow and Landscape Research) Institute for Snow and Avalanche

Research SLF, for example, is interested in special snow maps where pixels which are proven

to be absolutely snowfree are de�ned. Therefore the critical value is lowered from 50% SCA

to 20%. Figure 5.18 shows an example of the resulting map.

Figure 5.18: Snow cover area map for the study area showing pixels in grey with less than 20% of snow cover.

5.4 Concluding Remarks

During the whole validation process, the small number of available scenes was a limitation

and conclusions about in�uencing factors have to be handled with care. Moreover, the small

study area and consequently the small pixel sample size compared to the dimensions of the

whole alpine snow time series might have overestimated the e�ects of certain errors. Such an

example is the reduced overall accuracy due to the high fraction of pixels located in forests and

the transition zone. Nevertheless, the choice of this speci�c study area was on purpose since

the principal objective of the thesis was to have a closer look directly at the points where the

largest de�cits of the algorithm are supposed to be located. That both the transition zone and

the forest area mainly occur in the same region, further complicates the analysis. Whether

the weaknesses in certain elevation ranges are based on a de�cit of SPARC or if they are

just a consequence of the di�erent algorithms of Landsat and AVHRR by dealing di�erently

with mixed pixels is hard to assess. It is certainly a mixture of both. If the SPARC snow

retrieval is validated over the whole Alpine Region, the classi�cation performance is expected

to be higher since certain errors, especially those related to the land cover types and transition

zones will be smoothed. In addition, the analyzed scenes were, in a sense, randomly picked

from the snow time series, since the search criteria were in�uenced by several di�erent factors,

such as for example the Landsat data availability. The fact that, nevertheless, the results

coincide to a large extent with the �ndings of Huesler et al. (2012), supports the quality of
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both studies. It is clear that the found "optimal" mean B-score threshold, for instance, is not

the best value for every scene as the snow character varies from image to image. However,

as already mentioned in the introduction, the improvement process of SPARC is focused on

long-term consistency rather than on single scene accuracy. By means of the Results Chapter

5, this objective was proven to be achieved.





Chapter 6

Conclusion and Outlook

6.1 Summary of the Results and Conclusion

In the framework of the validation of the modi�ed Separation of Pixels using Aggregated Rat-

ing over Canada (SPARC) snow retrieval the accuracy (=ACC) and the BIAS of the AVHRR

snowmask could be quanti�ed. It was shown that the SPARC algorithm underestimates snow

cover substantially when running with default values. Analyses of the algorithm at di�erent

scores were used to �nd the thresholds leading to best ACC values. Whereas the R-score

had a negligible in�uence on the classi�cation performance, an optimal B-score threshold

was found at b-6, whereby an ACC gain of +9.46% for non-forested areas and +1.94% for

forested areas resulting in an overall improvement of +5.21% was achieved. Forest-covered

pixels generally revealed lower ACC values than forest-free pixels. The underestimation

could be corrected with a slight tendency to overestimation. A comparison with the MODIS

snow product (MOD10A1), which is a very robust reference, showed that with this threshold

adjustment the AVHRR snow mask almost (i.e. with -1 to -2%) reached the quality of the

state-of-the-art sensor system for snow cover mapping.

Despite the modi�cation leading to an improvement of the algorithm, the AVHRR snowmask

still did not perfectly coincide with the Landsat snow map. Most of the di�erences are located

in the transition zones (mixed pixels). This is related to the di�erent snow algorithms of

AVHRR and Landsat, i.e. the di�erent treatment of mixed pixels, and to forest cover, where

snow under trees is hard to detect. Several other factors were found to in�uence the ACC of

the snow mask. However, the small number of analyzed scenes (13 to 17) confuses the issue of

drawing conclusions about the quality of the whole time series. Negative correlations with the

ACC were present with the scene satellite zenith angle and the sun zenith angle, whereby the

in�uence of the �rst is much stronger. The ACC was also found to be in�uenced by the date

of scene acquisition. While scenes from December showed low ACC values, the performance

increased throughout the winter, which coincides with several studies. Snow extent also seems
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to be relevant, at least when analyzing forest and non-forest pixels separately. For forest

pixels the lower the snow extent of the scene was, the higher the resulting ACC tended to be.

The opposite was true for forest-free areas (positive correlation). Here, the latter in�uence

was much stronger. Moreover, a dependency was found between the altitudinal distribution

of the forest pixels and the ACC. The highest number of forest pixels was present where the

lowest ACC occurred, namely above 500m asl and below 2000m asl. This result is possibly

also a�ected by the degree of snow extent and the related position of the snow line.

Thus, the dominant factors which a�ect the SPARC performance could be presented.

Nevertheless, the variety of all these factors and the special characteristic of each scene

complicate the assessment of the reasons why certain scenes have higher ACC values than

others. The most dominant ones are certainly the satellite zenith angle and the classi�cation

di�culties in forest and transition zones. It was shown in the course of this thesis that

especially the latter two require special consideration on the way to a further increase of the

quality of SPARC.

The snow fraction analysis revealed that the presented subpixel approach is not preferable to

achieve this objective, especially because the scores are not directly proportional to the snow

fraction. However, a rough number of fractional snow cover could be estimated at which

SPARC classi�es a pixel as snow.

The modi�ed SPARC snow retrieval is particularly developed to study climate change in the

European Alps. As for all long-term applications a high level of time consistency is required

in order to minimize arti�cial trends. Therefore it was emphasized that in the course of

climate change uncertainties of the algorithm ACC which are related to climate depending

factors could change in the future. Such examples are classi�cation weaknesses owing to

shallow snow layers in the beginning of the winter or a future rise of the snow line and the

transition zone.

Overall, the principal objectives to assess and to quantify the quality of the SPARC classi�-

cation performance could be achieved. It was shown that the SPARC snow retrieval is well

suitable for snow cover mapping in the European Alps. For the �rst time, the algorithm was

tested in a small area with a complex terrain, which unfolds existing weaknesses. This gave

the opportunity to study directly how the modi�cation of the score thresholds (mainly the

B-score) changes the ACC. Finally, an improvement setting for the algorithm leading to an

ACC gain could be presented. This is of particular importance towards a consistent high

quality for the aimed 25-year snow time series of the University of Bern. Nevertheless, the

following 'remaining' points are recommended to be addressed in order to further improve this

time series.
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6.2 Outlook

Based on the �ndings of this thesis, future work in the �eld of snow mapping with NOAA

AVHRR should be focused on the following points:

• The improvements with the modi�cation of the SPARC score thresholds could be shown

and the limit of the potential is possibly reached. For snow classi�cation in forest areas,

in contrast, the potential of improvement by applying a land cover correction is still

present although it is a di�cult task and, up to today, no universally implementable

solution seems to be available. Nevertheless, the �ndings of section 5.1.2.1 indicate that

by treating forest-covered and forest-free areas di�erently and analyzing the re�ectance

behavior of forest in combination with snow cover, the classi�cation ACC can be in�u-

enced.

• A separate treatment should not only be made with forest/non-forest areas. In a �rst

step, snow and snowfree pixels should be separated from each other and be divided

afterwards into forest/non-forest classes. With this approach more detailed conclusions

about how forest pixels contribute to the ACC are expected or at least the results might

be better explicable. It is possible, for example, that the ACC of the scene 1995/05/03

is so high because the snow line has already receded to higher altitudes and less snow

pixels are located in the wooded belt.

• Several results indicated that most of the di�erences between the two algorithm products,

i.e. the Landsat and the AVHRR snow mask, are located in the transition zone. In the

course of future work, it should be veri�ed how SPARC deals exactly with mixed pixel

information and if there is a possibility for improvement.

• As discussed in section 5.2, morning satellites (N12 and N15) as well as scenes with large

satellite zenith angles are currently excluded from the 25-year snow time series. This

leads to a reduction of available scenes and hence to a reduction of robustness of the

time series. E�orts to correct the negative e�ects of these features could allow the use of

those scenes. In combination with topographic modeling by means of a digital elevation

model and sun angle information (as applied by Huesler et al. 2012), the detection of

snow in shadows may be improved and lead to an inclusion of the morning satellites.

The problem of the large satellite viewing angles should be addressed in a �rst step by

analyzing more scenes. The optimal outcome would be the presence of a systematic

error that could be corrected, for example the presence of a constant reduction factor of

the ACC depending on the viewing angle.

• More scenes are also required to analyze the ACC behavior with changing sun zenith

angles, which is relevant, for example, in the context of satellite orbit drift over the
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lifetime of a sensor. The results of section 5.2.2 emphasize the need of additional scenes.

If it turns out that the ACC is actually depending on the sun angles, this may be

corrected with a Bidirectional Re�ectance Distribution Function (BRDF), a function of

illumination and viewing geometry which is based on the fact that objects look di�erently

when viewing from di�erent angles and illuminated from di�erent directions (Luo et al.

2008). Certainly this is a challenging task in the complex topography of the Alps.

• Furthermore, Huesler et al. (2012) have undertaken e�orts to address snow classi�cation

weaknesses in shadow areas. A validation of these areas was deliberately excluded from

this thesis since even the Landsat reference snow mask did not perfectly represent snow

in shadows. Also here, shadow modeling could help improve the reference image, which

could then be used for speci�c shadow validation. This could for example be useful for

the morning satellites already discussed above.

• It was shown by Simic et al. (2004) and Huang et al. (2011) that the snow classi�cation

performance depends on snow depth and improves with a thickening of the snow layer.

A similar development is observed here, although it has not been proven that snow depth

actually is a driving factor. However, if it were so, then the SPARC algorithm should be

combined with reliable snow depth data. This allows the �tting of the algorithm to the

actual snow conditions, which is expected to lead to an ACC improvement of the snow

mask. The lacking representativeness of ground station snow depth data for the area of

an AVHRR pixel is certainly a challenge.

• In the framework of this master's thesis it was not possible to assess the classi�cation

error reaching from poor cloud masking. The fact that only clear-sky Landsat scenes

were used and AVHRR cloud pixels were also not considered, reduces the e�ect of

poor cloud classi�cation. Only AVHRR cloud pixels misclassi�ed as snow could not be

captured. A project for the replacement of the poorer performing CASPR cloud mask

with the SPARC cloud mask is currently in progress at the RSGB and will contribute

to a further increase of the data quality.

• Not least, the presented geolocational shift (see section 4.2.2) has to be investigated.

The fact that the MODIS snow mask had to be corrected as well, suggests that the error

does not necessarily need to be located at the original AVHRR image but also at the

Landsat reference. However, special attention should be payed to this since the whole

AVHRR data archive and its applications will be a�ected.

The increasing interest in remote sensing techniques for long-term studies will continue to grow

as remote sensing develops further. The validation study presented here is a contribution to

the 25-year snow time series of the European Alps derived from historical AVHRR data. It is

highly desirable that this series is continued in the future with the ongoing AVHRR mission

since the enormous potential of such a data set for climate change studies is evident.
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Appendix A

Di�erence Maps

Figure A.1: Di�erence maps for B-scores b+3 (top) and b-6 (bottom) referred to the resampled Landsat

reference.
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Appendix B

Altitude Dependency of ACC

Figure B.1: SPARC classi�cation ACC per altitude level (y-axis in m asl) and corresponding

number of pixels (top). Distribution of the number of forest-covered pixels in the study area

(middle) and snow covered area (bottom) for same altitude levels.
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Appendix C

IDL Routines

Pre-processing

• landsat re�ectance.pro Converts the Landsat data from digital number to top-of-

atmosphere re�ectance values according to Chander et al. (2009). For data ordered

from USGS.

• landsat re�ectance npoc.pro Same as landsat re�ectance.pro but for data ordered

via NPOC since the required conversion parameters are read out di�erently.

• landsat ndsi.pro The routine for Landsat snow mask calculation based on NDSI/NDVI

approach according to Hall et al. (1998).

• comparing landsat.pro Comparison of the snow mask generated by means of super-

vised classi�cation (in ENVI) with the snow mask calculated by means of NDSI/NDVI-

approach.

• �ndshift.pro Used to �nd the dimensions of geolocational shift.

• read geometry.pro Reads the scene geometry (satellite zenith and azimuth, sun zenith

and azimuth) out of the AVHRR geometry �les scene geom.ers, which is the basis for

the geometry correlation procedures.

Analysis

• validation.pro The core of the master's thesis validation including all relevant steps

for the ACC and BIAS results and plotting procedures.

• validation nonres.pro A routine to perform the calculations for subpixel approach

using non-resampled 30m-resolution Landsat data.

• datecorrel.pro Calculation and plot of the dependency between date of scene acquisi-

tion and SPARC classi�cation ACC.

81



82 APPENDIX C. APPENDIX: IDL ROUTINES

• forestcorrelation.pro Calculates the dependency between number of forest pixels and

SPARC classi�cation ACC for di�erent elevation zones.

• geometrycorrelation.pro Calculates and plots the dependencies between satellite as

well as sun zenith angle and ACC.
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