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Abstract 

With rising temperatures due to climate change and more people living in urbanised areas worldwide, 

the urban heat island effect has become an important topic in the public and scientific discourse. The 

different surface properties of a city compared to rural areas lead to more heat uptake and increased 

temperatures in built-up areas, especially during summer. When looking at surface temperatures in 

isolation, the effect of higher temperatures in urban areas is called surface urban heat island (SUHI). 

To measure surface temperatures over a large area, thermal satellite data are most commonly used. 

However, there is always a trade-off between spatial and temporal resolution for a single sensor. 

Landsat has a high spatial resolution, while Modis has a high temporal resolution.  This study uses the 

fusion-based downscaling method “ESTARFM”, to combine Landsat and MODIS data to improve 

spatiotemporal resolution by generating synthetic Landsat images. The ESTARFM method is able to 

generate accurate surface temperature maps with average RMSE values of 1.811K compared to 

original Landsat images. The most significant limitations of this method are the following: it can only 

be used for cloud-free images, and areas undergoing change in surface properties during the study 

period, for example agricultural areas with changing vegetation, show high errors compared to other 

sites. After validation and accuracy assessments, the synthetic Landsat images are used to study 

surface temperature distributions and the SUHI effect in the city of Bern, Switzerland, in the summer 

of 2019. The results show that the SUHI effect is present in Bern, but it varies between 0K and 16K 

depending on the location within the city. The SUHI maps also show the significant heating effect of 

sealed surfaces, while vegetated areas within the city show lower surface temperatures.  
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1 Introduction 

Human-induced climate change, including more frequent and intense extreme events, has caused 

widespread adverse impacts and related losses and damage to nature and people beyond natural 

climate variability (IPCC 2022, 2022a). Especially in cities and urban areas, the risk faced by people and 

assets from hazards associated with climate change has increased. This problem is amplified by the 

fact that the number of people expected to live in urban areas highly exposed to climate change 

impacts has grown substantially (IPCC 2022, 2022b). In Switzerland, increasing temperatures are one 

of the most noticeable impacts of climate change, with the seven hottest years since the start of the 

measurements occurring after the year 2010 (MeteoSchweiz, 2022b).  Since 1864, the boundary layer 

air temperatures have increased by 2.1°C on average, which is almost double compared to the global 

mean of 1.1°C. An increase in mean temperature also brings stronger extreme events in the form of 

heat waves (MeteoSchweiz, 2021). In Europe, heat and heat waves are the biggest weather- and 

climate-related threat to human health. The latest example is the very hot summer of 2022, where a 

large number of excess deaths all over Europe could be attributed to extreme temperatures and 

prolonged heat waves. In the coming decades, this problem will grow further as heatwaves are 

expected to happen more frequently with longer durations and higher intensity. At the same time, the 

population becomes more vulnerable due to the ageing population and growing urbanisation (EEA, 

2022). 

Such temperature extremes are exacerbated in cities due to the urban heat island (UHI) effect. The 

UHI describes the fact that cities often have locally higher temperatures compared to their rural 

surroundings (Oke et al., 2017). Most relevant for human health is the canopy layer UHI, which is the 

difference of temperatures in urban street canyons 1-3m above ground compared to the rural 

temperatures at the same height (Stewart, 2011). The reasons for these differences are physical 

changes in the surface energy balance caused by urban development. Urban surfaces tend to have a 

high heat capacity, storing more sensible heat during the day than rural surfaces. In addition, urban 

surfaces dry out faster and together with limited vegetation, leading to increased sensible heat fluxes 

while latent heat fluxes are reduced (Oke et al., 2017). Reduced wind speeds and smaller sky view 

factors, both caused by the 3D structure of a city, lead to an obstruction of sensible heat compared to 

rural areas, meaning that urban areas cool down slower after sunset. Because of these effects, the 

UHI is most pronounced during night-time (Stewart, 2011). A different picture can be seen when 

looking at the surfaces themselves. When measuring land surface temperatures (LST), the difference 

between urban and rural surfaces is called surface urban heat island (SUHI) (Parlow et al., 2014). Even 

though surface and air temperature are connected, they behave very differently. The air temperature 
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does not necessarily follow the spatial pattern of surface temperatures, so comparing them is difficult 

(Parlow, 2013). Due to the different energy balances of the surface itself and the near-surface air, the 

resulting heat islands also differ. The magnitude of the SUHI is usually stronger during daytime 

compared to nighttime due to different albedo, heat conductivity and heat capacity of urban and rural 

surfaces (Parlow, 2013; Zhou et al., 2018).  

Measuring the UHI is often challenging as it is never uniform and varies significantly within a city. Most 

official measurement stations for cities are often not in the city centre, where temperatures usually 

rise most, but in the suburbs or at the city's edge. This is also the case in Bern, where the official 

measurement station is situated in Zollikofen, about 5km north of the city centre, in an open field and 

not in the urbanised area. Therefore, it isn't easy to measure the UHI with just the official weather 

stations available in most places, as they are sparse and not representative for different parts of a city 

(Zhou et al., 2018). To study the UHI effect in Bern, an air temperature measurement network has 

been set up, using low-cost sensors to measure air temperatures within the city and its rural 

surroundings. It was shown that even in small cities like Bern, the UHI effect is present and can be 

measured (Gubler et al., 2021). However, a limitation of these in situ measurements across the city is 

that they are still point measurements, which are not equally spaced. Areas around and between the 

measurement points can only be estimated by interpolation or statistical methods. Burger et al. (2021) 

used land use regression (LUR) models to calculate the UHI intensity in Bern using the measurement 

network as validation, showing that the strongest intensities can be found in the old town, which is 

the most densely built-up part of the city.  

Measuring LST over large areas is another challenge, as satellite data is not seamlessly available during 

the day. Therefore, surface temperatures over large areas are often estimated by geostatistical 

modelling, but it is essential to verify those models with actual thermal satellite data. The measured 

brightness temperatures from thermal satellite sensors can be used to calculate LST (Sobrino et al., 

2018). Commonly used satellite platforms with thermal sensors like MODIS and Landsat have 

calculated and calibrated LST products available for free (Wan, 2013; USGS, 2022). Those are usually 

well-documented and have been validated thoroughly for different locations and settings (Mao et al., 

2021). Like the UHI, the SUHI is defined as the temperature difference between the urban and the 

surrounding rural areas but for surface temperature instead of air temperature. Because surface 

temperatures are rarely measured in situ, distinguishing between urban and rural areas is often 

difficult. Thus, there are different ways to calculate the SUHI. One way is to define it as the difference 

between the maximum temperature in the city and a representative temperature for the surrounding 

rural areas (Zhou et al., 2018). Another possibility is to calculate the spatial mean temperature for 

both areas and subtract them. A third way is to calculate the difference spatially, where one 
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representative rural temperature is subtracted from all other points to calculate the difference over 

the whole area, showing the spatial structure of the SUHI (Oke et al., 2017). 

When using thermal satellite data to calculate LSTs, it is important to remember that the sensors can 

never see the entire surface, especially when many buildings and street canyons exist. A satellite 

measuring over a city always sees more of the roofs than the walls of the buildings or the streets, 

which can influence the measured surface temperatures (Parlow et al., 2014). Remotely sensed 

surface temperatures are a function of the city's thermal state, the instrument's optical properties, 

including the position and viewing angle of the satellite and the position of the sun (Yao et al., 2018). 

The timing of the overpass plays a role as well, which is around the same time every day for MODIS 

and Landsat. This makes it difficult to gain information about the development of the SUHI over the 

course of the day (Oke et al., 2017). 

Almost no recent studies in Switzerland look at the SUHI, except in Basel, where UHI and SUHI were 

compared using different methods (Parlow et al., 2014). A significant limitation in using LST is data 

availability in adequate spatial and temporal resolution, especially for heterogeneous areas like cities 

and their surroundings. Single satellite-based sensors cannot deliver high enough spatial and temporal 

resolution due to the trade-off between scanning swath and pixel size (Mao et al., 2021). To solve this 

problem, different downscaling techniques have been developed to enhance the spatial or temporal 

resolutions of satellite images. They were categorised into three main output groups: Spatial 

resolution enhancement, temporal resolution enhancement and simultaneous spatiotemporal 

resolution enhancement (Mao et al., 2021). Another categorisation would be into kernel-driven 

methods and fusion-based methods (Xia et al., 2019). Kernel-based methods often use auxiliary data 

statistically correlated with LST from the visible and near-infrared bands of the same sensor, as they 

usually have higher spatial resolutions than the thermal bands. One example would be the normalised 

vegetation index, which correlates well with the LST distribution, especially in cities (Xia et al., 2019). 

Fusion-based methods on the other hand, use LST data from two or more thermal sensors with 

differing resolutions and fuse them to achieve higher resolutions. The basic idea is to have one sensor 

with frequent coarse resolution and one with sparse fine resolution to produce synthesised images 

with high spatial and temporal resolution (Wu et al., 2021). Spatial resolution enhancement 

approaches are primarily based on kernel-driven methods, while temporal and simultaneous 

spatiotemporal enhancements are mostly fusion-based or a combination of both approaches (Mao et 

al., 2021). In this study, the focus is on fusion-based methods, with the goal to improve the temporal 

resolution of a sensor that already has a satisfying spatial resolution. 

One of the most commonly used Fusion-based methods is called STARFM. It was introduced by Gao 

et al. (2006) and was first used for reflectance images, not LST. STARFM generates high spatial 
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resolution images by using a pair of high- and low-resolution images at the reference time and a low-

resolution image at the target time. The method uses a moving window to predict the high-resolution 

image of the target time by finding similar pixels and weighting them to calculate the centre pixel's 

value (Gao et al., 2006). However, the STARFM and its variants show low accuracy and weak 

robustness in complex and heterogeneous regions (Zhu et al., 2010). Therefore, many studies 

modified the original STARFM and improved the model performance over landscapes with 

heterogeneous land cover. These modified methods have also been used to fuse LST data (Mao et al., 

2021). For example, Liu et al. (2012) directly applied STARFM to ASTER and MODIS thermal data. Wu 

P. et al. (2015) used STARFM as a basis and proposed the spatiotemporal integrated temperature 

fusion model, which takes LSTs from polar-orbiting and geostationary satellite observations to 

generate diurnal Landsat-like LSTs. Weng et al. (2014) introduced the Spatial-temporal Adaptive Data 

Fusion Algorithm for Temperature mapping algorithm for LST prediction based on the STARFM 

algorithm framework. The most significant difference to STARFM is that they considered the annual 

temperature cycle and thermal landscape heterogeneity. Huang et al. (2013) used the STARFM 

framework and added bilateral filtering to try and improve the weighting function by including the 

effects of neighbouring pixels on LST. They used Landsat and MODIS data and downscaled LST data in 

Beijing to monitor the urban thermal environment. Zhu et al. (2010) developed the enhanced STARFM 

(ESTARFM), which improves the basic STARFM in heterogeneous areas by introducing a conversion 

coefficient and using more input images. 

When using fusion-based methods, the assumption is that remotely sensed data from different 

sensors at the same date can be compared and are correlated with each other after radiometric 

calibration, geometric rectification, and atmospheric correction. Nevertheless, some systemic biases 

are expected due to orbit parameters, slightly different acquisition times within the day and different 

bandwidths (Zhu et al., 2010). Another possible source of bias is change in land cover between the 

reference dates, resulting in some uncertainty in selecting similar pixels. Therefore, the method should 

work better if images acquired near the prediction time are used to retrieve the unknown fine-

resolution LSTs (Zhu et al., 2010). 

There are no studies yet for the city of Bern that look at the SUHI using enhanced LST data. Assuming 

that the spatial resolution of the Landsat LST from the Collection 2 (C2) Level 2 Science Product (L2SP) 

is high enough to analyse the SUHI, this study aims to apply a fusion-based algorithm directly to 

available LST data from MODIS and Landsat 8 to generate Landsat-like LSTs to fill the gaps between 

the Landsat overpasses to improve the temporal resolution. While most studies applied the fusion 

models to TIR radiance data because the Landsat LST product is only available since the year 2020, 

this study looks to apply a fusion-based method directly to available LST products from MODIS and 
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Landsat. First, the downscaling results are validated using the available Landsat scenes. The generated 

Landsat-like LST maps are then used to calculate the SUHI in Bern over the whole summer of 2019 to 

better understand its extent, intensity and development during the summer months. 
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2 Data and Methods 

2.1 Study Area and Period 

The study area includes the city of Bern and its close surroundings. The extent of the study area where 

the downscaling is performed can be seen as the red rectangle in Fig. 1. It is 247 x 247 Landsat pixels 

large, each pixel having a spatial resolution of 30m. The centre of the study area is located at 

7°25'52.619"E 46°57'45.097"N. Bern is located between the Alps and the Jura mountains, with a mean 

elevation of 540m above sea level. In this area, we find different types of surfaces, including forested 

areas, agricultural land, built-up urban areas and water bodies with the Aare flowing through the city. 

At the official weather station “Bern / Zollikofen”, the yearly mean temperature from 1991-2020 is 

9.3°C, and the mean annual precipitation sum is 1021.8 mm. Temperature and precipitation are 

highest during the summer months (MeteoSchweiz, 2022a). The study uses data from May 15 to 

September 15 2019, as the summer months are most relevant in urban heat studies. The year 2019 

was chosen because there are enough available Landsat scenes during the summer and the possibility 

to compare the SUHI values with the UHI values from the low-cost temperature measurement 

network in Bern, which is available starting in 2018.  

 

 

Figure 1 Landsat 8 colour composite reflectance image of Bern and its surroundings with the extent of the 
study area in red and the red dot marking the Zollikofen weather station (USGS, 2023).  
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2.2 Data 

2.2.1 Landsat LST Product 

The Landsat LST product is included in the Landsat 8-9 collection 2 level 2 science product, which 

contains surface reflectance, surface temperature, intermediate bands used for calculating the LST 

and quality assessment masks. The surface temperatures in this dataset were generated from the 

Collection 2 Level 1 thermal infrared Sensor (TIRS) band 10, using a single channel algorithm. The 

calculation includes top-of-atmosphere (TOA) reflectance, TOA brightness temperature and additional 

data from other sensors, namely the Global emissivity dataset (GED) and the normalised difference 

vegetation index, both derived from ASTER satellite data. In addition, geopotential height, specific 

humidity and air temperature from GOES-5 forward processing for instrument teams were included. 

The surface temperature data are generated at 30m spatial resolution, resampled from 100m 

resolution of the TIRS sensor on a Universal Transverse Mercator (UTM) mapping grid (USGS, 2022). 

The Landsat LST product was validated by Duan et al. (2020) using in situ data. They showed that the 

Landsat LST product has a mean bias of 1.0K and a root mean square error (RMSE) of 2.1K for snow-

free land with correct emissivity estimations. For some surfaces, the emissivity estimations could lead 

to higher error values. 

Landsat data are split up into paths and rows along the satellite's orbit, and the city of Bern is visible 

on path 195, row 27 and path 196, row 27. The daily acquisition time is 10:16 GMT, which is 11:16 

local time in Bern for path 195, row 27 and 10:22 GMT or 11:22 local time for path 196, row 27. All 

the images for the year 2019 from May to September were downloaded from the “USGS 

Earthexplorer” (USGS, 2023). All images were checked for cloud contamination visually and with the 

quality assurance layer included in the product. To transform the data from Band 10 to Kelvin, it was 

multiplied by 0.00341802 (Multiplicative scale factor), and the additive offset of 149 was added (USGS, 

2022). For the year 2019, from May 15 to September 15, four cloud-free images are available, which 

can be used as input dates and for cross-validation. The dates are the 29 June 2019, 24 July 2019, 9 

August 2019, and 25 August 2019. All the images were cut to the desired size (247 x 247 pixels), pixel 

size at 30m was not changed. The projection of the Landsat images was not changed either. All the 

pre-processing steps were done using Catalyst and ArcMap (PCI Geomatic Enterprises, 2021; Esri Inc, 

2021). 

2.2.2 MODIS LST Products 

For MODIS, two LST products are available, which use different methods to obtain LST at 1km 

resolution. Both products are available daily on a global scale and are published by NASA. The two 
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products use different methodologies to calculate LST, and it depends on local properties, which 

method generates better results.  

The MOD11A1 product is based on the generalised split-window algorithm. This approach assigns 

emissivity based on a land classification scheme. The atmospheric effects are compensated by using 

two different longwave bands. This approach works exceptionally well in areas where it can be 

assumed that most of the surface has the same emissivity (Wan, 1999). 

The newer MOD21A1 products were released in 2018. The primary difference to MOD11 products is 

that MOD21 is calculated using the temperature emissivity separation (TES) algorithm. TES uses an 

emissivity model, which is based on the variability in the surface radiance data (Hulley et al., 2016). It 

performs better over arid regions than the MOD11, while the performance seems to be very similar 

in other areas (Hulley et al., 2020). 

The MOD11A1 product is used for this study, as many similar studies use MOD11A1 (Liu et al., 2012; 

Huang et al., 2013; Weng et al., 2014, Li et al., 2016). MOD21A1 only came out much more recently, 

so it's easier to compare the results with other studies when using the MOD11A1 product. In addition, 

the MOD21A1 product only performs clearly better in arid regions, which is not the case for the chosen 

study area. MOD21A1 was only used as a backup if the MOD11A1 had a quality problem or was not 

available for a particular day. 

MODIS data are split up into horizontal and vertical tiles. The city of Bern is located in horizontal tile 

18 and vertical tile 4. The acquisition time for these images is at 10:54 GMT or 11:54 local time.  All 

the images used were downloaded on the “USGS Earthexplorer” (USGS, 2023). The images were 

checked for cloud contamination visually and with the quality assurance layer included in the product. 

To transform the raw data to Kelvin, all the images were multiplied with a scale factor of 0.02 which 

can be found in the Collection 6 MODIS Land Surface Temperature Products Users Guide (Wan, 2013). 

For pre-processing, all the images were resampled to 30m pixels and reprojected to the same UTM 

mapping grid as the Landsat images. In a second step, they were aligned so that the 30m pixels fit the 

Landsat images. All pre-processing steps were done in Catalyst and ArcGIS Desktop (PCI Geomatic 

Enterprises, 2021; Esri Inc, 2021). 

 

 

 

 



   

 

12 

2.2.3 Land Cover Data 

The land cover data set used to validate the 

performance of the fusion model is taken 

from the official cadastral survey of the 

canton of Bern for the year 2019 (Kanton 

Bern, 2019). It features land cover and land 

use data for the canton of Bern. The data 

are very detailed and include many 

subcategories that are irrelevant for this 

analysis. Therefore, the official categories 

were summarised into five categories of 

land cover which are of interest for the 

validation. The summarised categories can 

be seen in Fig. 2. All land cover data were 

processed in ArcGIS Desktop (Esri Inc, 

2021). 

 

2.3 Methods 

2.3.1 STARFM / ESTARFM Algorithms 

This study uses the enhanced STARFM (ESTRAFM) algorithm proposed by Zhu et al. (2010). It includes 

a conversion coefficient to improve the accuracy in heterogeneous regions, which is a weakness of 

STARFM (Mao et al., 2021). ESTARFM needs two pairs of high- and low-resolution images at the 

reference time instead of one and a low-resolution image at the target time. Like STARFM, ESTARFM 

uses a moving window to find similar pixels and a weight function to predict the value of the centre 

pixel at the target time (Li et al., 2021). Li et al. (2016) applied ESTARFM in the Fujian Province, China, 

over a heterogeneous area which includes some urban areas. They used Landsat 8 and MODIS TIR 

radiance images to perform the fusion and then calculated synthetic Landsat LSTs using a generalised 

single-channel method introduced by Sobrino et al. (2018). They reported RMSE values between 0.56K 

and 1.41K compared to Landsat images, depending on the land cover class. However, their study only 

covers three dates during the winter months. Wu M. et al. (2015) showed that the daily synthetic LSTs 

generated by ESTARFM had a closer match with actual ASTER observations than STARFM, especially 

over cultivated land areas. For STARFM, the RMSE values range between 2.35K and 3.38K, while 

Figure 2 Summarized Landcover classes in the study area with locations 
of interest for SUHI analysis in red 
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ESTARFMs RMSE values were slightly better with 1.97K to 3.12K.  Compared to the STDFA algorithm 

proposed by Wu et al. (2012), the performance was very similar. However, over cities and crop areas, 

ESTARFM worked slightly better. Li et al. (2021) tested, compared and verified STARFM, ESTARFM, 

and the Flexible Spatiotemporal Data Fusion algorithm by Zhu et al. (2016) in the Gansu Province, 

China, and directly applied the models to available LST products instead of raw thermal data. They 

found that all three algorithms showed promising results, and the generated images were consistent 

when compared with actual Landsat LSTs. Out of the three, ESTARFM showed the highest accuracy in 

most cases, with an average RMSE of 2.245K compared to real Landsat images. 

In Fig. 3, the succession of the ESTARFM algorithm can be seen. In the first step, two fine-resolution 

Landsat images and two coarse-resolution MODIS images are used to search for pixels similar to the 

central pixel in a local moving window. The second step calculates the weights of all similar pixels. 

Third, the conversion coefficients are determined by linear regression. The contribution of similar 

pixels to predicting reflectance change at the central pixel is determined by the weight. The weight 

depends on the distance of the similar pixel to the centre pixel and the spectral similarity between the 

fine- and coarse-resolution pixels. Higher similarity and smaller distance of the similar pixel to the 

central pixel produce a higher weight. Finally, the conversion coefficient and the weight are used to 

calculate the fine-resolution reflectance from the coarse-resolution image at the desired prediction 

date (Zhu et al., 2010). 

 

 

 

Figure 3 Flowchart of the ESTARFM Algorithm succession (Zhu et al., 2010) 



   

 

14 

Equation (1) shows how ESTARFM predicts a high-resolution Landsat-like LST map from two pairs of 

high-resolution Landsat images and coarse-resolution MODIS images using a linear spectral mixing 

model. M represents the high-resolution Landsat images, C the coarse-resolution MODIS images, and 

w is the size of the moving window. M(xw/2, yw/2, tp) is the final prediction of high-resolution LST at time 

tp and Mk(xw/2, yw/2, tp) is the predicted LST of high spatial resolution at the prediction time tp based on 

the Landsat 8 LST at time tk where (k = m, n). (xw/2, yw/2) is the location of the central pixel, (xi, yi) is the 

location of the similar pixel, and N is the number of similar pixels in the searching window. Wi 

represents the weight of similar pixel I, and Vi is the conversion coefficient of similar pixel i (Long et al., 

2020).  
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Equation (2) shows the definition of the weight Wi, with Di representing the variance of the distance 

vector, which is used for calculating the weights. Ri is the correlation coefficient between high and 

low-resolution LST of pixel i at tm and tn, with di being the distance weight of pixel i.  Tk defines the 

temporal weight (Long et al., 2020). 
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2.3.2 Calibration of ESTARFM 

The ESTARFM algorithm was implemented in PyCharm using open-source code based on Zhu et al. 

(2010). The code is open source and was downloaded from the webpage of (Zhu, 2022). The process 

needs two Landsat images and two corresponding MODIS images of the same date as the Landsat 

images and one MODIS image at the desired time when the synthetic Landsat image will be generated.  

Two parameters must be set beforehand, based on observation of land cover and experience or trial 

and error. One is the size of the moving window, and the other is the number of significant land cover 

classes expected in the study area. The extent of the downscaled area is 247 x 247 pixels large with a 

spatial resolution of 30m. After a few test runs, a window size of 51 pixels was chosen. The tests 

showed that with this window size, smaller features like the Aare river are still visible in the 

downscaled images, but the window is still big enough to have different land cover classes included. 

The important land cover classes in the study area, with clearly different thermal properties, are built-

up areas, forests, agricultural areas and water bodies. Vegetation was differentiated between forest 

and agricultural areas assuming that agricultural land can change much more during the summer due 

to crop growth and harvest. At the same time, forested regions are expected to show less change in 

surface properties. Parks & gardens were separated from forests and agriculture to not introduce 

error into these categories. However, parks & gardens are not taken into account for the number of 

significant land cover classes as these areas are mostly very split up and therefore often measured as 

mixed pixels.  

Another critical step is the choice of the reference dates used. Li et al. (2021) generally use the dates 

closest to the predicted date as, in theory, this should minimise differences in surface cover, solar 

angle, and sensor difference between predicted and reference images. When using STARFM, where 

only one reference date is used, they look at the correlation between the MODIS image at prediction 

time and the two possible adjacent dates to see which one should be used. In this study, for the 

validation, there are only three reference images available for each validation date. Both methods 

were tested, and the two adjacent dates show higher correlations compared to the third possible 

reference date anyway. Therefore, the two adjacent dates will be used when calculating the synthetic 

images for the target dates where no Landsat image is available. 

2.3.3 Validation of ESTARFM 

According to Mao et al. (2021), there are three different ways to numerically validate enhanced LST 

images. These include using simulated data, comparison with ground-based LST measurements and 

comparison with satellite observations. The ESTARFM method has been validated and discussed in 

other studies, showing that it works well in different areas (Zhu et al., 2010; Wu M. et al., 2015; Li et 
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al., 2016, 2021). Therefore, in this study, comparisons with actual Landsat LST images will be used for 

validation, as this is the most straightforward way to see how well the method works under the 

specific conditions of this particular study area. However, the downside of this validation method is 

that there are not many possible dates available that can be used for validation. The reason for this is 

that Landsat has a revisit cycle of 16 days, and cloud contamination reduces the number of suitable 

images even more. There is no direct way to validate synthetic LSTs for days where no Landsat image 

is available, which makes sense as this is the reason to perform a downscaling, filling the gaps between 

actual LST images with predicted ones. It has to be assumed that the validation on the available 

reference dates is representative for other dates where no Landsat image is available. For the summer 

of 2019, four Landsat LSTs without cloud contamination are available, which can be used for cross-

validation. They can be seen below in Fig. 4, together with the respective MODIS images for the same 

dates in Fig. 5. 
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29 June 2019 24 July 2019 

9 August 2019 25 August 2019 

 

 

 

 

 

Figure 4 Landsat LST product of the study area for the four reference dates (USGS, 2023). 
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Figure 5 MODIS LST product of the study area for the four reference dates, resampled to 30m (USGS, 2023). 
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In the first step, a synthetic Landsat image is calculated for each of the four days with all possible 

combinations of the other Landsat images as reference dates. This results in having three different 

predicted Landsat images for each of the four validation dates. By doing this, it is also possible to see 

the influence of using different reference dates on the downscaling results. Then the generated 

images can be validated visually by comparing the synthetic and the reference LSTs of the same date. 

The general structure of the LST distribution and specific features in the study area can be looked at 

to see if they are preserved in the synthetic images. Especially smaller features can be used to check 

how well the model performs in heterogeneous areas, as these features are not visible in the MODIS 

LSTs. See Fig. 5 as an example where the MODIS LST product is shown for the four reference dates. It 

is not possible to see smaller features like the Aare river in those images, whereas, in the Landsat 

images with higher spatial resolution, the river can be clearly seen.  

In the next step, different numerical and residual related metrics are looked at to compare the 

predicted and the reference LSTs. The most simple comparisons can be made by just looking at the 

range, and the mean of the LST values for original and synthetic images Residual related metrics 

include bias, the mean absolute error (MAE) (Chai and Draxler, 2014), the root mean square error 

(RMSE) (Chai and Draxler, 2014) and the coefficient of determination (R squared) (Barrett, 2000).  

In the last step, the cadastral survey of the canton of Bern (Kanton Bern, 2019) is used to distinguish 

between different land cover classes in the study area. Like this, the error in built-up areas, forested 

areas, agricultural areas and water bodies can be compared in isolation to see if the algorithm 

performs better or worse for specific land cover classes. It is assumed that the land cover, especially 

in the city, does not change significantly during the summer. Most changes, and therefore the highest 

errors, probably occur in agricultural areas as crop vegetation changes drastically over the course of a 

summer. For example, when the crops are harvested, the surfaces change significantly over a very 

short time. 

2.3.4 SUHI Analysis 

To analyse the SUHI, synthetic Landsat images are generated over the whole summer of 2019 for each 

day where a cloud-free MODIS image is available. The generated images are then used to calculate 

SUHI maps over the entire study area. Depending on the goal of the study, the study area and the 

scale, the SUHI can be estimated in different ways (Oke et al., 2017). The aim is to look at the structure 

of the SUHI between different days within a summer. Therefore, a representative point in the rural 

area is chosen as a reference. The chosen rural point is in Zollikofen, where the official weather station 

of Bern is located. The station is in an open field surrounded by grassland and crops. To calculate the 

SUHI, the LST at the reference point is subtracted from all other points in the study area. Using this 
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method, it is possible to directly compare the structure of the SUHI between different days with 

different conditions. It is important to note that while the LSTs change a lot during the day, this 

method can only show a snapshot of the SUHI at a specific time when the two satellites measure over 

Bern, which is between 11:00 and 12:00 local time. Six points within the urban area were chosen to 

examine the SUHI intensity in more detail. Three are in areas with densely built sealed surfaces where 

high SUHI intensity is expected. The other three will be in green spaces within the city, like parks or a 

small forest patch, where lower SUHI intensities are expected. The six points can be seen in Fig. 2. The 

SUHI intensity can then be compared for the six points between all 47 downscaled images to see how 

it evolves over the course of the summer.  
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3 Results 

The first part of the results is the validation of the ESTARFM model for the city of Bern to see how the 

method works in this area, where the most significant errors occur and how much influence the choice 

of the reference dates has on the results. Land cover data is used to see how the model performs for 

different surfaces. For this, visual and statistical validation methods will be used. The second part 

includes the generated time series of synthetic Landsat images for the summer of 2019. An image was 

generated for each date with a cloud-free, low-resolution MODIS image available. In the last part, the 

generated high-resolution LST maps will be used to calculate the SUHI intensity for each day. Using 

these maps, the SUHI can then be analysed, looking at different areas within the city. 

3.1 Visual Validation 

Fig. 6 shows a synthetic Landsat image for each of the four validation dates, the synthetic images 

shown as examples are the ones that were calculated using the two adjacent dates as reference. These 

images are marked in Table 2. with a “*”. The residual images in Fig. 7 were calculated by subtracting 

the synthetic image from the reference Landsat image of the same day. For the residual images, the 

negative values are pixels where the synthetic Landsat images have higher values than the reference 

shown in blue, and positive values are pixels where the synthetic Landsat image is colder, shown in 

red. 

In general, the predicted and original Landsat images look very similar. In all the images, the highest 

temperatures occur in the old town of Bern (1), the Galgenfeld industrial area east of the old town (2) 

and some scattered areas around Weyermannshaus in the west (3). Bigger forest areas are clearly 

visible with the coldest surface temperatures in the area. The Bremgartenwald (4) and the 

Könizbergwald (5) can be seen clearly in every image. Smaller features also seem to be preserved well 

in the synthetic images. The Aare river and the highway (6) passing the city in the northwest are visible 

in each image. Other features like the large public swimming pool at Weyermannshaus (7), the 

Steinhölzliwald (8), and the Bremgartenfriedhof (9) which can all be seen on the original Landsat 

images are also visible in each downscaled image. The heat patterns in the old town, where some of 

the highest surface temperatures are measured, look very similar between the different dates. In 

contrast, the patterns in the rural parts north and south-east of the city show more differences.  

The residuals images show that the highest errors occur in the rural area north of the city (10) / (11) 

for all dates. The land cover classes in Fig. 2 show that these are predominantly agricultural areas with 

villages scattered in between. Forest areas show the lowest errors and the least variation for most 

dates. Built-up areas show similar spatial error patterns in all images. However, they can be 
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overestimated (24 July and 25 August) or underestimated (29 June and 9 August). Each image also has 

a relatively large error in the Viererfeld (12) north of the old town. Viererfeld is an isolated patch of 

agricultural area in which the surface changes significantly during summer. The Aare river also shows 

positive and negative error values depending on the date. In the residual images of the 9 August and 

25 August, the area southeast of the city (13) shows that in some images, very similar patterns can 

occur but with opposite signs. Another pattern that is visible in all the residual images is the oblique 

grid structure all over the images.  
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29 June 2019 

 

24 July 2019 

9 August 2019 25 August 2019 

 

 

  

 

 

Figure 6 Synthetic Landsat images generated by ESTARFM for the four reference dates. 
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  Figure 7 Residual images (Original – Synthetic) for the four reference dates. 
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3.2 Statistical Validation 

Table 1 shows the mean values of the original and synthetic Landsat images. For the synthetic images, 

the table shows the runs where adjacent dates were used as reference, so the images which can be 

seen in Fig 6. The difference in mean values is mostly around 1K. More importantly, it clearly shows 

that the order of temperatures is preserved; the hottest day of the original images is also the hottest 

for the synthetic images. When comparing the temperature ranges of the synthetic images and the 

original Landsat images (Table 2), a similar picture can be seen, but there are some differences. For 

the original Landsat images, the 29 June and the 24 July show almost the same maximum temperature 

but in the synthetic images, the maximum on the 29 June is underestimated, while on the 24 July, it is 

overestimated. Interestingly, the minimum values for the same dates show the opposite.  

Table 1 Mean values of the original and synthetic images for the four validation dates. 

Date Mean original Landsat 

(K) 

Mean synthetic Landsat 

(K) 

29.6.2019 309.808 308.827 

24.7.2019 311.160 312.091 

9.8.2019 306.375 305.098 

25.8.2019 302.666 304.161 

 

Table 2 Min and Max values for the original and synthetic images for the four validation dates. 

Date Min original 

Landsat (K) 

Min synthetic 

Landsat (K) 

Max original 

Landsat (K) 

Max synthetic 

Landsat (K) 

29.6.2019 296.908 297.945 323.719 321.396 

24.7.2019 301.051 299.071 323.343 324.417 

9.8.2019 296.792 296.656 317.608 315.751 

25.8.2019 295.011 294.801 313.027 314.878 

 

Table 3 shows the RMSE, MAE, R squared and bias for each validation date. It includes each day three 

times using all the possible combinations of reference dates as input. The images with the “*” are the 

ones where the input reference dates are closest to the target date, which is the same configuration 

that will be used for the time series. 

The predicted images for the 24 July and the 9 August yield the best results for every combination of 

reference dates when looking at RMSE and MAE, while the 29 June and the 25 August show higher 

values for all combinations of reference dates. The best prediction is the 24 July (9 August / 25 August) 
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with an RMSE of 1.043K and MAE of 0.763K; the worst prediction is the 25 August (29 June / 24 July) 

with RMSE and MAE values reaching 2.471K and 2.099K. On average, over all 12 validation images, 

the RMSE reaches 1.811K and the MAE 1.476K. For the 29 June, the bias shows that for all 

combinations, the predicted images show smaller values than the actual Landsat image. In contrast, 

for the 25 August, the prediction seems too high compared to the reference Landsat image. For the 

24 July and the 9 August, there is both positive and negative bias depending on the reference dates 

used.  

The R-squared values are very similar for all combinations on the 29 June and the 24 July, while the 

other two dates vary much more depending on the chosen reference days. 

Table 3 RMSE, MAE, R Squared and Bias for the four reference dates of the synthetic LSTS with all combinations of possible 
reference dates. 

Date and reference 

dates 

RMSE(K) MAE(K) R Squared Bias(K) 

29.6 (24.7 / 9.8)* 2.108 1.642 0.866 -0.981 

29.6 (24.7 / 25.8) 2.446 1.978 0.866 -1.582 

29.6 (9.8 / 25.8) 2.400 1.907 0.841 -1.280 

24.7 (29.6 / 9.8)* 1.557 1.247 0.920 0.932 

24.7 (29.6 / 25.8) 1.475 1.117 0.905 0.584 

24.7 (9.8 / 25.8) 1.043 0.763 0.929 -0.194 

9.8 (29.6 / 24.7) 1.634 1.199 0.855 0.333 

9.8 (29.6 / 25.8) 1.292 0.999 0.901 -0.532 

9.8 (24.7 / 25.8)* 1.472 1.318 0.964 -1.276 

25.8 (29.6 / 24.7) 2.471 2.099 0.855 1.855 

25.8 (29.6 / 9.8) 2.114 1.897 0.935 1.836 

25.8 (24.7 / 9.8)* 1.721 1.552 0.949 1.495 

Mean 1.811 1.477 0.899 0.099 

* = Adjacent dates 

3.3 Land Cover Classes 

To analyse the errors specifically for the different land cover classes, the best and the worst prediction 

image for each validation date were taken by looking at the RMSE and MAE values in Table 3. The 

summarised land cover classes from the cadastral survey are forest, agriculture, parks & gardens, 

sealed surface and water (Fig. 2). Vegetation classes were separated into three categories as it is 

assumed that agriculture areas change much during the summer due to crop growth and harvest. In 
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contrast, forested areas do not change much. Parks & gardens were separated from the other 

vegetation classes to get a clearer picture of the forested and agricultural areas because they do not 

fit the other two categories. Table 4 shows each Land cover class's mean RMSE and Bias over all twelve 

images of the four reference dates. The full tables with separate values for the best and worst 

prediction for each reference date can be found in the attachments section I. Forest shows the lowest 

error overall, with RMSE values ranging from 0.581K to 1.427K, while agricultural areas show the 

highest RMSE values ranging from 1.559K to 3.093K. Parks & gardens and sealed surfaces are in 

between, with average RMSE values of 1.680K and 1.834K, respectively. Bias values show positive and 

negative signs for all land cover classes on individual images. On average, however, with the exception 

of water, they all are slightly positive.  

Table 4 RMSE and Bias of the land cover classes for the reference dates. 

Land Cover Class Mean RMSE (K) Mean Bias (K) 

Forest 0.997 0.108 

Agriculture 2.334 0.170 

Parks & Gardens 1.680 0.187 

Sealed Surface 1.834 0.211 

Water 1.257 -0.005 

 

3.4 SUHI time series  

After the cross-validation of the reference dates, a time series was calculated for every day between 

15 March and 15 September 2019, where a cloud-free MODIS image was available. Out of the 123 

days, 47 of the corresponding MODIS Images were cloud-free and could be used to generate a 

synthetic Landsat image. Using the synthetic Landsat images, the SUHI was calculated by subtracting 

the value of the rural reference point “Zollikofen Referenz”.  Fig 8. shows two examples; the 30 June 

is the day with the highest SUHI intensity, reaching a maximum value of 16.4K compared to the rural 

reference. The 4 August has the lowest SUHI intensity with a maximum SUHI value of approximately 

11K. There are also pixels with much lower surface temperatures than “Zollikofen Referenz”, mostly 

in forested areas. The minimal values seem to be independent of the strength of the SUHI in the city, 

as for both images shown, the minimum values are -10.908K and -10.544K respectively. 

When just looking at the temperature patterns and comparing them with the landcover classes in Fig. 

2, the higher SUHI values seem to correlate strongly with sealed surfaces in the city. Densely built 

areas like the old town and industrial areas show clear hotspots. The surface urban heat island is not 

one big, connected area. Many smaller, mostly vegetated areas with lower SUHI intensities are 

scattered between warmer areas. Also, the Aare river has a significant impact, splitting the SUHI into 

two parts. As mentioned above, the synthetic images preserved the smaller structures within the city 
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quite well. This can also be seen in the SUHI maps, showing lower values within the city in areas with 

more vegetation, for example the Bremgartenfriedhof or the Steinhölzliwald (Fig. 8). 

  

Figure 8 Surface urban heat island map from synthetic LSTs for the 30 June 2019 and the 4 August 2019. 

 

In the next step, six points were selected to look at the SUHI values within the city in more detail. The 

points can be seen in Fig 8. Three of them are hotspots, the Zytglogge in the old town, Kreuzung 

Brunnmatt west of the old town and Galgenfeld Industrie in the industrial area northeast of the city 

centre. The other three points are spots within the urban area with more vegetation. One is the 

Steinhölzliwald, a small forest area in the southern part of the city, which is surrounded by sealed 

surfaces. The other two points are the Bremgartenfriedhof, a rather large graveyard park with many 

trees and green areas and the Monbijoupark, which is a smaller park compared to the Brem-

gartenfriedhof but still visible in the synthetic images. 

The four reference dates used before were taken again to calculate the SUHI for the original and 

synthetic Landsat images. The resulting SUHI maps were then subtracted from each other to compare 

how much they differ for each day. Fig. 9 shows the difference in SUHI intensities when calculated 

with the original Landsat images and synthetic ones for the six chosen points in the city. The 

differences in SUHI intensity between the original and synthetic Landsat images range from -2.259K 

to 1.710K, with an absolute average of 0.778K over all six points on the four reference dates. Here the 

same thing can be seen as in the statistical validation. The 24 July and 9 August seem to have much 

better predictions than the other dates.  
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Figure 9 Difference of the SUHI when comparing synthetic and original Landsat images for the four reference dates at 
six chosen points within the city. 

 

In the last step, a time series was generated for the whole summer of 2019 at each of the six chosen 

points within the city. Fig. 10 shows the time series for the six points on all 47 cloud-free days. The 

three points in built up areas show higher SUHI values than the other three points every day. Except 

for the Steinhölzliwald, all locations show a positive SUHI effect, but the two parks within the city show 

clearly lower values compared to the points in built-up areas. The three hotspots have SUHI values 

between 5.002K and 12.594K during the summer; the two parks range between -0.136K and 6.272K, 

and in the Steinhölzliwald, the values are between -4.721K and 0.080K. A downward trend is visible 

for the five points showing a SUHI effect, starting in July until the end of the summer. At the end of 

August, there is a strong peak, where 2-3 days show much higher SUHI values than adjacent dates. In 

general, the values show high similarities; even the station Steinhölzliwald shows similar variations to 

the other stations, but the downward trend over the course of the summer is not visible. 
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Figure 10 Time series of the SUHI effect at six selected points in the summer of 2019. 
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4 Discussion 

In the first part, the accuracy of the generated images is discussed by looking at possible sources of 

error and the algorithm's performance in different land cover classes. The second part discusses the 

suitability of the generated images for SUHI analysis in a city like Bern and looks at some limitations 

and possible improvements of ESTARFM and fusion-based methods in general.  

4.1 Accuracy of the Generated Images 

In general, the fused images look very similar to the original ones. Small features that cannot be seen 

in the MODIS images are visible after the downscaling, for example, the Aare river or different parks 

in the city. A clear pattern is visible in all the synthetic images, showing that the city's densely built, 

central parts heat up the most compared to other areas. This can be seen very well when comparing 

the sealed surface areas in Fig. 2 with the generated images in Fig. 6. Looking at the statistical metrics, 

the focus will be on the RMSE as this metric is used in most other studies and is therefore most suited 

for comparisons. With RMSE values ranging from 1.043K to 2.471K and an average of 1.811K for the 

twelve validated images, ESTARFM performed better in Bern and its surroundings than in cultivated 

land areas in Zhangye, China, where the study of Wu et al. (2015) showed RMSE values between 1.97K 

and 3.12K. However, while their study also looked at the summer months, it must be noted that the 

study area was bigger, and they used ASTER images instead of Landsat. Li et al. (2021) also used 

ESTARFM in Zhangye, China, over a smaller area. They used Landsat and MODIS images and reported 

average RMSE values of 2.245K, which is very close to the results of this study. Other than the study 

area itself, the main difference here is that they looked at images between April and October. Li et al. 

(2016) applied ESTARFM with Landsat and MODIS images in the Fujian Province, China showing RMSE 

values between 0.56K and 1.41K. Their study is set in the winter months, and there are barely any 

agricultural surfaces in the study area which could explain the better results. Huang et al. (2013) 

presented a study over urban area in Beijing where they used a method based on STARFM where a 

bilateral filter is introduced to account for the effect of neighbouring pixels in urban areas. While the 

process differs slightly from ESTARFM, the study used Landsat and MODIS images and yielded similar 

results to this study with an average RMSE of 1.699K.  

This study finds the best matches in forested areas and the highest errors in agricultural areas. This is 

expected because forested areas should change the least during the summer, as phenological changes 

in trees happen primarily in spring and autumn. In addition to that, forested areas are protected in 

Switzerland, and while they are used and cultivated to a certain extent, there are rarely large 

deforestations over short times. A third factor is that forested areas heat up slowly, so the time 
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between the overpasses of the two different satellites should generate less error compared to other 

areas.  Agricultural areas on the other hand, change much more between May and September due to 

the crop's phenological changes and the harvest. The crops grow over time and cover a bigger part of 

the soil. After the crops are harvested, bare soil dominates again. These changes are difficult to catch 

when only having four Landsat scenes as reference, which can lead to some errors in the predictions. 

This fits the findings of Li et al. (2021), who also reported larger errors in areas where there is land 

cover change between the reference and the predicted images when using ESTARFM. When looking 

at sealed surface areas, higher errors can be found compared to forested areas. A possible explanation 

other than changes in surface cover could be that sealed surfaces have a much larger temperature 

amplitude during a day and are much more sensitive to fast changes. Sealed surfaces heat up quickly 

when exposed to direct radiation, while forested areas take up the heat much slower due to different 

albedo, evapotranspiration, heat capacity and conductivity (Stewart, 2011). This can introduce some 

errors for sealed surfaces as the two satellites don’t pass precisely at the same time, and even a 

difference of just 30 minutes to 1 hour can be enough to heat sealed surfaces for several Kelvin when 

exposed to direct radiation. While sealed surfaces themselves should not change a lot, urban areas 

are much more sensitive to different observation angles of the satellites and different solar angles 

during a summer due to the complicated 3D structures of cities (Oke et al., 2017). The categories parks 

& gardens and water are more difficult to interpret. These two categories are much more scattered 

than the others and only get measured as mixed pixels on MODIS images. Therefore, their 

temperatures are assumed to be much more dependent on the Landsat reference images as they are 

mostly seen as mixed pixels, especially in the MODIS images. Another source of error is the choice of 

reference images. As shown in the validation, for the same day, there are RMSE differences between 

0.341K and 0.750K, just depending on which reference images were chosen for a specific date. In 

theory, it should be best to choose images closest to the target date (Zhu et al., 2010). However, the 

validation of the reference dates shows that this not always yields the best result. A possible reason 

for this could be the different ranges of temperatures in the reference dates, resulting from differing 

meteorological conditions each day. For example, rainfall or the number of sunshine hours on the 

previous days could impact LSTs.  

Another influence that must be discussed is the changing solar angles over the year. For example, at 

the end of August, the solar angle is smaller than in July. Therefore, the surfaces should heat up slower 

during the morning which can be relevant considering that the satellites overpasses are between 

11:00 and 12:00 local time. This trend of a slower heating with smaller solar angles can be seen in Fig. 

10, starting in mid-July. While all the images are cloud-free, there are still hotter and cooler days 

depending on the abovementioned factors. If the difference between the two references is large, this 
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could also generate an error even in areas with little change in the surface itself. This would also 

explain why there are positive and negative signs of bias for all different surfaces. A possible 

explanation could be that large temperature differences between the two reference images lead to 

favouring one of the two high-resolution reference images when calculating the weights. This could 

lead to similar patterns in the synthetic images of different dates where at least one of the used 

reference images was the same. An example would be the residual images of the 9 August / 25 August 

in Fig. 7, where almost identical error patterns can be seen in some parts of the image. Another pattern 

that can be seen in the residual images are the oblique grid structures over all the images. They are 

most likely an artefact from resampling the 1000m Modis images to 30m. 

In Fig.10, there are some very distinctive peaks visible. The question is whether those peaks represent 

different meteorological conditions for these days or if they result from an error caused by large 

temperature differences between the two reference days. Because there are no original Landsat 

images for these days to verify, the weather station data of two stations in Bern were checked. The 

station data for the days at the end of August, where a strong peak is visible, confirms that these days 

were exceptionally hot, with a high amount of sunshine hours and no precipitation. For the peak in 

mid-June, the air temperatures at midday also show lower values, and there is also some precipitation 

in the previous days which could slow down the heating of the surface due to increased latent heat 

fluxes caused by evapotranspiration. This confirms that the synthetic images are sensitive to the 

meteorological conditions despite them only being measured by the coarse resolution MODIS images 

for the prediction day. 

4.2 Suitability and Limitations of ESTARFM for SUHI Analysis 

The generated images are similar enough to original Landsat images to be useful for SUHI analysis, 

even for a small city like Bern. Important features are preserved, and even small parks surrounded by 

sealed surfaces are still visible in the generated images. The maps can be helpful in identifying hotspots 

of LST in a city. Looking at the land cover data, the strong impact of sealed surfaces on the LSTs can be 

seen clearly. The influence of green areas within the urban area can also be visualised well using these 

maps. The difference between the calculated SUHI values of original and synthetic Landsat images 

seems to be pretty low, considering the large range the surface temperatures can show over a small 

area compared to air temperatures. Looking at Fig. 10, the SUHI values that were calculated using the 

generated images seem reasonable, with values between 5.002K and 12.594K. In comparison, Parlow 

et al. (2014) reported SUHI values between 5K and 10K in Basel, Switzerland, where they used Landsat 

thermal data. In their review of SUHI studies, Zhou et al. (2018) found that the maximum SUHI 

intensity in summer during the day in most studies is larger than 10K, which also fits the results found 
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in Bern using the generated LST maps. Another positive of the method is that some errors are 

predictable quite well, for example in areas where it is known that they undergo changes in surface 

cover over a short time. This was seen especially well in agricultural areas.  

There are also some important limitations to this method of resolution enhancement. First, it can only 

be used for images that are not cloud contaminated. While there are some methods to exclude cloud 

pixels for scattered clouds, it is not possible to gain information about LST on full overcast days. This 

is not a problem when analysing SUHI since the intensity and the effect of the SUHI are not as relevant 

on days with many clouds. In future studies where overcast days are of interest, reconstruction 

techniques for cloudy pixels could be applied, as discussed by Wu et al. (2021). Another problem is 

the error propagation during a fusion-based downscaling. It is important to remember that the 

validation done here is against the original Landsat image, which is not an absolute ground truth. 

Landsat and MODIS LST products also have different errors and uncertainties, and they get propagated 

when doing an image fusion. Therefore, in a more detailed study analysing the SUHI, it would be 

necessary to compare the LST products and the image fusion results with in situ data measured on the 

ground or by a drone. 

Looking at urban areas specifically, the complicated 3D structures of an urban surface can also not be 

forgotten. Due to these complex 3D structures of buildings, vegetation and other features, it is very 

difficult for a satellite-based sensor to see the entire surface. The resulting LSTs are only a result of 

what the sensors can measure, so primarily the horizontal surfaces, while the vertical surfaces get 

neglected. According to Oke et al. (2017), this can make a big difference when calculating SUHI 

intensity. If vertical surfaces not registered by the satellite would be included, the SUHI could decrease 

up to 3K for daytime measurements. To correct this, much higher spatial resolutions would be needed 

to generate detailed 3D maps of the city. This could only be possible using drones or other aircraft 

able to measure with higher spatial resolutions. Another possible step in future studies to improve the 

quality of LST maps could be to use the generated maps as input for a kernel-based downscaling. Such 

methods have been gaining popularity where fusion-based and kernel-based methods are combined 

to further increase spatial and temporal resolution (Xia et al., 2019). 
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5 Conclusion  

In this study, the Landsat and MODIS LST products were combined using ESTARFM to generate 

Landsat-like images of surface temperature for the city of Bern in the summer of 2019. The generated 

images were validated by comparing them with actual Landsat images of the same days. The synthetic 

Landsat images look very similar to real Landsat images. They are in the range of other studies using 

ESTARFM with an average RMSE value of 1.811K for the twelve compared images from four different 

days. In the second part, a synthetic Landsat image was generated for 47 cloud-free days during the 

summer of 2019. The 47 images were then used to look at the structure and development of the SUHI 

in the urban area of Bern. The SUHI was calculated by subtracting a chosen rural reference station 

from the whole image. Six different locations in the city were selected to compare the SUHI values. 

Three of them are in densely built-up areas like the old town, in an industrial area and in the middle 

of the city. As expected, these areas have continuously higher SUHI values compared to the rural 

station, showing a SUHI effect of 5K-12K over the summer. In the Park areas, the surface temperatures 

are still higher than at the rural station, with values between 0K and 6K. In contrast, the SUHI effect is 

not present in the forest patch, and the measured surface temperatures are continuously lower 

compared to the rural reference. To conclude, this study shows that the ESTARFM method is suited to 

generate synthetic Landsat images for a small city like Bern to gain more information about surface 

temperatures. While there are still some limitations to the method, the results are satisfying and can 

be used to calculate the SUHI for days without Landsat overflights. Possible improvements could be 

made by validating the input images of Landsat and MODIS for the study area, specifically by using in 

situ data. Another improvement in future studies could be using data measured by drones with higher 

resolution to gain more information about the 3D structure of the city and the combination of the 

fusion-based images with a kernel-based method to further improve the spatial resolution. To increase 

the temporal resolution, cloud pixel reconstruction methods could also be applied.  
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Attachments 

I – Land cover validation full table 

Forest 

Date and  

Reference 

RMSE(K) Bias(K) 

29.6 (24.7 / 9.8) 0.999 -0.210 

29.6 (24.7 / 25.8) 1.280 -0.733 

24.7 (29.6 / 9.8) 0.743 0.426 

24.7 (9.8 / 25.8) 0.581 -0.040 

9.8 (29.6 / 24.7) 0.910 -0.100 

9.8 (29.6 / 25.8) 0.855 -0.593 

25.8 (29.6 / 24.7) 1.427 1.036 

25.8 (24.7 / 9.8) 1.182 1.081 

Mean 0.997 0.108 
 

Agriculture 

Date and 

Reference 

RMSE(K) Bias(K) 

29.6 (24.7 / 9.8) 2.949 -0.716 

29.6 (24.7 / 25.8) 3.093 -1.491 

24.7 (29.6 / 9.8) 2.066 0.817 

24.7 (9.8 / 25.8) 1.559 -0.142 

9.8 (29.6 / 24.7) 2.449 0.259 

9.8 (29.6 / 25.8) 1.933 -0.475 

25.8 (29.6 / 24.7) 2.756 1.694 

25.8 (24.7 / 9.8) 1.864 1.414 

Mean 2.334 0.170 
 

  

Parks & Gardens 

Date and 

Reference 

RMSE(K) Bias(K) 

29.6 (24.7 / 9.8) 1.860 -1.375 

29.6 (24.7 / 25.8) 2.387 -1.950 

24.7 (29.6 / 9.8) 1.471 1.134 

24.7 (9.8 / 25.8) 0.931 -0.293 

9.8 (29.6 / 24.7) 1.316 0.525 

9.8 (29.6 / 25.8) 1.060 -0.545 

25.8 (29.6 / 24.7) 2.580 2.270 

25.8 (24.7 / 9.8) 1.832 1.729 

Mean 1.680 0.187 
 

Sealed surface 

Date and 

Reference 

RMSE(K) Bias(K) 

29.6 (24.7 / 9.8) 2.155 -1.721 

29.6 (24.7 / 25.8) 2.675 -2.282 

24.7 (29.6 / 9.8) 1.658 1.395 

24.7 (9.8 / 25.8) 0.869 -0.363 

9.8 (29.6 / 24.7) 1.448 0.740 

9.8 (29.6 / 25.8) 1.063 -0.492 

25.8 (29.6 / 24.7) 2.869 2.576 

25.8 (24.7 / 9.8) 1.934 1.833 

Mean 1.834 0.211 
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Water 

Date and 

Reference 

RMSE(K) Bias(K) 

29.6 (24.7 / 9.8) 1.518 0.724 

29.6 (24.7 / 25.8) 1.467 0.377 

24.7 (29.6 / 9.8) 1.034 -0.028 

24.7 (9.8 / 25.8) 0.973 0.552 

9.8 (29.6 / 24.7) 1.555 -1.00 

9.8 (29.6 / 25.8) 1.183 -0.839 

25.8 (29.6 / 24.7) 1.384 -0.322 

25.8 (24.7 / 9.8) 0.940 0.498 

Mean 1.257 -0.005 
 

 

II – Full python code ESTARFM 

from utils import read_raster, writeimage 

import math 

import numpy as np 

from osgeo import gdal 

import os 

import datetime 

from tkinter import filedialog 

import tkinter as tk 

import yaml 

import idlwrap 

import statsmodels.api as sm 

from scipy.stats import f 

from sklearn.linear_model import LinearRegression 

 

# ****************************************************************************

************************** 

#                            ESTARFM PROGRAM 

#               Using two pairs of fine and coarse images 

#         the program can be used for whole TM scene and VI index product 

 

# ****************************************************************************

************************** 

# *******************************Set parameters and read input data***********

************************** 

 

root = tk.Tk() 

root.withdraw() 
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# please set the following parameters 

f = open(filedialog.askopenfilename(title=u"Open the parameter settings file:"

)) 

param = yaml.safe_load(f) 

w = param['w']  # set the half window size, if 25, the window size is 25*2+1=5

1 fine pixels 

num_class = param['num_class']  # set the estimated number of classes, please 

set a larger value if blending images with very few bands 

DN_min = param['DN_min']  # set the range of DN value of the image,If byte, 0 

and 255 

DN_max = param['DN_max'] 

background = param['background']  # set the value of background pixels. 0 mean

s that pixels will be considered as background if one of its bands= 0 

patch_long = param['patch_long']  # set the size of each block,if process whol

e ETM scene, set 500-1000 

 

# set path of a folder to store temporary files 

temp_file = filedialog.askdirectory(title=u"Set the temporary folder") 

 

# open the fine image of the first pair 

path1 = filedialog.askopenfilename(title=u"open the fine image of the first pa

ir:") 

suffix = os.path.splitext(path1)[-1] 

nl, ns, FileName1 = read_raster(path1) 

orig_ns = ns 

orig_nl = nl 

fp = gdal.Open(path1) 

nb = fp.RasterCount 

 

n_nl = math.ceil(orig_nl / patch_long) 

n_ns = math.ceil(orig_ns / patch_long) 

 

ind_patch = np.zeros((n_nl * n_ns, 4), dtype=np.int) 

 

for i_ns in range(0, n_ns): 

    for i_nl in range(0, n_nl): 

        ind_patch[n_ns * i_nl + i_ns, 0] = i_ns * patch_long 

        ind_patch[n_ns * i_nl + i_ns, 1] = np.min([ns - 1, (i_ns + 1) * patch_

long - 1]) 

        ind_patch[n_ns * i_nl + i_ns, 2] = i_nl * patch_long 

        ind_patch[n_ns * i_nl + i_ns, 3] = np.min([nl - 1, (i_nl + 1) * patch_

long - 1]) 

 

tempoutname = temp_file + '\\temp_F1' 

 

for isub in range(0, n_nl * n_ns): 

    col1 = ind_patch[isub, 0] 

    col2 = ind_patch[isub, 1] 
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    row1 = ind_patch[isub, 2] 

    row2 = ind_patch[isub, 3] 

    data = FileName1[:, row1:row2 + 1, col1:col2 + 1] 

    out_name = tempoutname + str(isub + 1) + suffix 

    fp = path1 

    writeimage(data, out_name, fp) 

 

# open the coarse image of the first pair 

path2 = filedialog.askopenfilename(title=u"open the coarse image of the first 

pair:") 

_, _, FileName2 = read_raster(path2) 

 

tempoutname = temp_file + '\\temp_C1' 

for isub in range(0, n_nl * n_ns): 

    col1 = ind_patch[isub, 0] 

    col2 = ind_patch[isub, 1] 

    row1 = ind_patch[isub, 2] 

    row2 = ind_patch[isub, 3] 

    data = FileName2[:, row1:row2 + 1, col1:col2 + 1] 

    out_name = tempoutname + str(isub + 1) + suffix 

    fp = path1 

    writeimage(data, out_name, fp) 

 

# open the fine image of the second pair 

path3 = filedialog.askopenfilename(title=u"open the fine image of the second p

air:") 

_, _, FileName3 = read_raster(path3) 

 

tempoutname = temp_file + '\\temp_F2' 

for isub in range(0, n_nl * n_ns): 

    col1 = ind_patch[isub, 0] 

    col2 = ind_patch[isub, 1] 

    row1 = ind_patch[isub, 2] 

    row2 = ind_patch[isub, 3] 

    data = FileName3[:, row1:row2 + 1, col1:col2 + 1] 

    out_name = tempoutname + str(isub + 1) + suffix 

    fp = path1 

    writeimage(data, out_name, fp) 

 

# open the coarse image of the second pair 

path4 = filedialog.askopenfilename(title=u"open the coarse image of the second

 pair:") 

_, _, FileName4 = read_raster(path4) 

 

tempoutname = temp_file + '\\temp_C2' 

for isub in range(0, n_nl * n_ns): 

    col1 = ind_patch[isub, 0] 

    col2 = ind_patch[isub, 1] 
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    row1 = ind_patch[isub, 2] 

    row2 = ind_patch[isub, 3] 

    data = FileName4[:, row1:row2 + 1, col1:col2 + 1] 

    out_name = tempoutname + str(isub + 1) + suffix 

    fp = path1 

    writeimage(data, out_name, fp) 

 

# open the coarse image of the prediction time 

path5 = filedialog.askopenfilename(title=u"open the coarse image of the predic

tion time:") 

_, _, FileName5 = read_raster(path5) 

 

tempoutname = temp_file + '\\temp_C0' 

for isub in range(0, n_nl * n_ns): 

    col1 = ind_patch[isub, 0] 

    col2 = ind_patch[isub, 1] 

    row1 = ind_patch[isub, 2] 

    row2 = ind_patch[isub, 3] 

    data = FileName5[:, row1:row2 + 1, col1:col2 + 1] 

    out_name = tempoutname + str(isub + 1) + suffix 

    fp = path1 

    writeimage(data, out_name, fp) 

 

# ******************************************************* 

# process each clock 

# ******************************************************* 

 

starttime = datetime.datetime.now()  # the initial time of program running 

print('there are total', n_nl*n_ns, 'blocks') 

 

for isub in range(0, n_nl * n_ns): 

 

    # open each block image 

 

    FileName = temp_file + '\\temp_F1' + str(isub + 1) + suffix 

    nl, ns, fine1 = read_raster(FileName) 

 

    FileName = temp_file + '\\temp_C1' + str(isub + 1) + suffix 

    _, _, coarse1 = read_raster(FileName) 

 

    FileName = temp_file + '\\temp_F2' + str(isub + 1) + suffix 

    _, _, fine2 = read_raster(FileName) 

 

    FileName = temp_file + '\\temp_C2' + str(isub + 1) + suffix 

    _, _, coarse2 = read_raster(FileName) 

 

    FileName = temp_file + '\\temp_C0' + str(isub + 1) + suffix 

    _, _, coarse0 = read_raster(FileName) 
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    fine0 = np.zeros((nb, nl, ns)).astype(float)    # place the blended result 

 

    # row index of images 

    row_index = np.zeros((nl, ns)).astype(int) 

    for i in range(0, nl): 

        row_index[i, :] = i 

 

    # column index of images 

    col_index = np.zeros((nl, ns)).astype(int) 

    for i in range(0, ns): 

        col_index[:, i] = i 

 

    # compute the uncertainty,0.2% of each band is uncertain 

    uncertain = (DN_max*0.002) * np.sqrt(2) 

 

    # compute the threshold of similar pixel seeking 

    similar_th = np.zeros((2, nb)).astype(float) 

    for iband in range(0, nb): 

        similar_th[0, iband] = np.std(fine1[iband, :, :] * 2.0 / num_class) 

        similar_th[1, iband] = np.std(fine2[iband, :, :] * 2.0 / num_class) 

 

    # compute the distance of each pixel in the window with the target pixel (

integrate window) 

    D_temp1 = w - np.tile((idlwrap.indgen(w*2+1)), (int(w*2+1), 1)) 

    d1 = np.power(D_temp1, 2) 

    D_temp2 = w - np.tile(idlwrap.indgen(1, w*2+1), (1, int(w*2+1))) 

    d2 = np.power(D_temp2, 2) 

    D_D_all = 1.0 + np.sqrt(d1 + d2) / float(w) 

    D_D_all = D_D_all.flatten() 

 

    # find interaction of valid pixels of all input images: exclude missing pi

xels and background 

    valid_index = np.zeros((nl, ns)).astype(int) 

    ind_valid = np.where((fine1[0, :, :] != background) & (fine2[0, :, :] != b

ackground) & (coarse1[0, :, :] != background) \ 

        & (coarse2[0, :, :] != background) & (coarse0[0, :, :] != background)) 

    num_valid = int(int(np.size(ind_valid)) / len(ind_valid)) 

    if num_valid > 0: 

        valid_index[ind_valid] = 1  # mark good pixels in all images 

 

    for j in range(0, nl):    # retrieve each target pixel 

        for i in range(0, ns): 

 

            if valid_index[j, i] == 1:     # do not process the background 

 

                ai = int(np.max([0, i - w])) 

                bi = int(np.min([ns - 1, i + w])) 
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                aj = int(np.max([0, j - w])) 

                bj = int(np.min([nl - 1, j + w])) 

 

                ind_wind_valid = np.where((valid_index[aj:bj+1, ai:bi+1]).rave

l() == 1) 

                position_cand = idlwrap.intarr((bi-ai+1)*(bj-

aj+1)) + 1    # place the location of each similar pixel 

                row_wind = row_index[aj:bj+1, ai:bi+1] 

                col_wind = col_index[aj:bj + 1, ai:bi + 1] 

 

                # searching for similar pixels 

                for ipair in [0, 1]: 

                    for iband in range(0, nb): 

                        cand_band = idlwrap.intarr((bi-ai+1)*(bj-aj+1)) 

                        if ipair == 0: 

                            S_S = np.abs(fine1[iband, aj:bj+1, ai:bi+1] - fine

1[iband, j, i]) 

                        elif ipair == 1: 

                            S_S = np.abs(fine2[iband, aj:bj + 1, ai:bi + 1] - 

fine2[iband, j, i]) 

                        ind_cand = np.where(S_S.ravel() < similar_th[ipair, ib

and]) 

                        cand_band[ind_cand] = 1 

                        position_cand = position_cand * cand_band 

 

                cand_band = 0 

                indcand = np.where((position_cand != 0) & ((valid_index[aj:bj+

1, ai:bi+1]).ravel() == 1)) 

                number_cand = int(int(np.size(indcand)) / len(indcand)) 

 

                if number_cand > 5:    # compute the correlation 

                    S_D_cand = np.zeros(number_cand).astype(float) 

                    x_cand = (col_wind.ravel())[indcand] 

                    y_cand = (row_wind.ravel())[indcand] 

                    finecand = np.zeros((nb*2, number_cand)).astype(float) 

                    coarsecand = np.zeros((nb*2, number_cand)).astype(float) 

 

                    for ib in range(0, nb): 

                        finecand[ib, :] = (fine1[ib, aj:bj+1, ai:bi+1]).ravel(

)[indcand] 

                        finecand[ib+nb, :] = (fine2[ib, aj:bj+1, ai:bi+1]).rav

el()[indcand] 

                        coarsecand[ib, :] = (coarse1[ib, aj:bj+1, ai:bi+1]).ra

vel()[indcand] 

                        coarsecand[ib+nb, :] = (coarse2[ib, aj:bj+1, ai:bi+1])

.ravel()[indcand] 

 

                    if nb == 1:   # for images with one band, like NDVI 
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                        S_D_cand = 1.0 - 0.5*(np.abs((finecand[0, :]-

coarsecand[0, :]) / (finecand[0, :]+coarsecand[0, :])) + 

                                              np.abs((finecand[1, :]-

coarsecand[1, :]) / (finecand[1, :]+coarsecand[1, :]))) 

                    else: 

                        # for images with multiple bands 

                        sdx = np.std(finecand, axis=0, ddof=1) 

                        sdy = np.std(coarsecand, axis=0, ddof=1) 

                        meanx = np.mean(finecand, axis=0) 

                        meany = np.mean(coarsecand, axis=0) 

 

                        x_meanx = np.zeros((nb*2, number_cand)).astype(float) 

                        y_meany = np.zeros((nb*2, number_cand)).astype(float) 

                        for ib in range(0, nb*2): 

                            x_meanx[ib, :] = finecand[ib, :] - meanx 

                            y_meany[ib, :] = coarsecand[ib, :] - meany 

 

                        S_D_cand = nb*2.0*np.mean(x_meanx*y_meany, axis=0) / (

sdx*sdy) / (nb*2.0-1) 

 

                    ind_nan = np.where(S_D_cand != S_D_cand) 

                    num_nan = int(int(np.size(ind_nan)) / len(ind_nan)) 

                    if num_nan > 0: 

                        S_D_cand[ind_nan] = 0.5    # correct the NaN value of 

correlation 

 

                    D_D_cand = np.zeros(number_cand).astype(float)   # spatial

 distance 

                    if (bi-ai+1)*(bj-

aj+1) < (w*2.0+1)*(w*2.0+1):   # not an integrate window 

                        D_D_cand = 1.0 + np.sqrt((i-x_cand)**2+(j-

y_cand)**2) / w 

                    else: 

                        D_D_cand[0:number_cand] = D_D_all[indcand]      # inte

grate window 

 

                    C_D = (1.0-

S_D_cand) * D_D_cand + 0.0000001           # combined distance 

                    weight = (1.0/C_D)/np.sum(1.0/C_D) 

 

                    for ib in range(0, nb):   # compute V 

                        fine_cand = np.hstack(((fine1[ib, aj:bj+1, ai:bi+1]).r

avel()[indcand], (fine2[ib, aj:bj+1, ai:bi+1]).ravel()[indcand])) 

                        coarse_cand = np.hstack(((coarse1[ib, aj:bj+1, ai:bi+1

]).ravel()[indcand], (coarse2[ib, aj:bj+1, ai:bi+1]).ravel()[indcand])) 

                        coarse_change = np.abs(np.mean((coarse1[ib, aj:bj+1, a

i:bi+1]).ravel()[indcand]) - np.mean((coarse2[ib, aj:bj+1, ai:bi+1]).ravel()[i

ndcand])) 
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                        if coarse_change >= DN_max*0.02:  # to ensure changes 

in coarse image large enough to obtain the conversion coefficient 

 

                            X = coarse_cand.reshape(-1, 1) 

                            Y = fine_cand.reshape(-1, 1) 

                            XX = sm.add_constant(X) 

                            model = sm.OLS(Y, XX).fit() 

                            regress_result = model.params 

                            sig = model.f_pvalue 

 

                            # correct the result with no significancy or incon

sistent change or too large value 

                            if sig <= 0.05 and 0 < regress_result[1] <= 5: 

                                V_cand = regress_result[1] 

                            else: 

                                V_cand = 1.0 

 

                        else: 

                            V_cand = 1.0 

 

                        # compute the temporal weight 

                        difc_pair1 = np.abs(np.mean((coarse0[ib, aj:bj+1, ai:b

i+1]).ravel()[ind_wind_valid])-

np.mean((coarse1[ib, aj:bj+1, ai:bi+1]).ravel()[ind_wind_valid]))+0.01**5 

                        difc_pair2 = np.abs(np.mean((coarse0[ib, aj:bj+1, ai:b

i+1]).ravel()[ind_wind_valid])-

np.mean((coarse2[ib, aj:bj+1, ai:bi+1]).ravel()[ind_wind_valid]))+0.01**5 

                        T_weight1 = (1.0/difc_pair1) / (1.0/difc_pair1+1.0/dif

c_pair2) 

                        T_weight2 = (1.0/difc_pair2) / (1.0/difc_pair1+1.0/dif

c_pair2) 

 

                        # predict from pair1 

                        coase0_cand = (coarse0[ib, aj:bj+1, ai:bi+1]).ravel()[

indcand] 

                        coase1_cand = (coarse1[ib, aj:bj+1, ai:bi+1]).ravel()[

indcand] 

                        fine01 = fine1[ib, j, i] + np.sum(weight * V_cand * (c

oase0_cand-coase1_cand)) 

                        # predict from pair2 

                        coase2_cand = (coarse2[ib, aj:bj+1, ai:bi+1]).ravel()[

indcand] 

                        fine02 = fine2[ib, j, i] + np.sum(weight * V_cand * (c

oase0_cand-coase2_cand)) 

                        # the final prediction 

                        fine0[ib, j, i] = T_weight1 * fine01 + T_weight2 * fin

e02 

                        # revise the abnormal prediction 
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                        if fine0[ib, j, i] <= DN_min or fine0[ib, j, i] >= DN_

max: 

                            fine01 = np.sum(weight*(fine1[ib, aj:bj+1, ai:bi+1

]).ravel()[indcand]) 

                            fine02 = np.sum(weight*(fine2[ib, aj:bj+1, ai:bi+1

]).ravel()[indcand]) 

                            fine0[ib, j, i] = T_weight1 * fine01 + T_weight2 *

 fine02 

 

                else:  # for the case of no enough similar pixel selected 

 

                    for ib in range(0, nb): 

                        # compute the temporal weight 

                        difc_pair1 = np.mean((coarse0[ib, aj:bj+1, ai:bi+1]).r

avel()[ind_wind_valid])-

np.mean((coarse1[ib, aj:bj+1, ai:bi+1]).ravel()[ind_wind_valid])+0.01**5 

                        difc_pair1_a = np.abs(difc_pair1) 

                        difc_pair2 = np.mean((coarse0[ib, aj:bj+1, ai:bi+1]).r

avel()[ind_wind_valid])-

np.mean((coarse2[ib, aj:bj+1, ai:bi+1]).ravel()[ind_wind_valid])+0.01**5 

                        difc_pair2_a = np.abs(difc_pair2) 

                        T_weight1 = (1.0/difc_pair1_a) / (1.0/difc_pair1_a+1.0

/difc_pair2_a) 

                        T_weight2 = (1.0/difc_pair2_a) / (1.0/difc_pair1_a+1.0

/difc_pair2_a) 

                        fine0[ib, j, i] = T_weight1 * (fine1[ib, j, i] + difc_

pair1) + T_weight2 * (fine2[ib, j, i] + difc_pair2) 

 

    print('finish ', str(isub + 1), 'block') 

    tempoutname1 = temp_file + '\\temp_blended' 

    Out_Name = tempoutname1 + str(isub + 1) + suffix 

    fp = path1 

    writeimage(fine0, Out_Name, fp) 

 

# # *************************************************************** 

# # mosaic all the blended patch 

 

datalist = [] 

minx_list = [] 

maxX_list = [] 

minY_list = [] 

maxY_list = [] 

 

for isub in range(0, n_ns * n_nl): 

    out_name = temp_file + '\\temp_blended' + str(isub+1) + suffix 

    datalist.append(out_name) 

 

    col1 = ind_patch[isub, 0] 
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    col2 = ind_patch[isub, 1] 

    row1 = ind_patch[isub, 2] 

    row2 = ind_patch[isub, 3] 

 

    minx_list.append(col1) 

    maxX_list.append(col2) 

    minY_list.append(row1) 

    maxY_list.append(row2) 

 

minX = min(minx_list) 

maxX = max(maxX_list) 

minY = min(minY_list) 

maxY = max(maxY_list) 

 

xOffset_list = [] 

yOffset_list = [] 

i = 0 

for data in datalist: 

    xOffset = int(minx_list[i] - minX) 

    yOffset = int(minY_list[i] - minY) 

    xOffset_list.append(xOffset) 

    yOffset_list.append(yOffset) 

    i += 1 

 

in_ds = gdal.Open(path1) 

path = os.path.splitext(path5)[0] + "_ESTARFM" + suffix 

if suffix == '.tif': 

    driver = gdal.GetDriverByName("GTiff") 

elif suffix == "" or suffix == ".dat": 

    driver = gdal.GetDriverByName("ENVI") 

dataset = driver.Create(path, orig_ns, orig_nl, nb, gdal.GDT_Float32) 

 

i = 0 

for data in datalist: 

    nl, ns, datavalue = read_raster(data) 

    for j in range(0, nb): 

        dd = datavalue[j, :, :] 

        dataset.GetRasterBand(j + 1).WriteArray(dd, xOffset_list[i], yOffset_l

ist[i]) 

    i += 1 

 

geoTransform = in_ds.GetGeoTransform() 

dataset.SetGeoTransform(geoTransform) 

proj = in_ds.GetProjection() 

dataset.SetProjection(proj) 
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