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Abstract

This paper provides first evidence on the short-term effect of air pollution on
the physical performance of racing greyhounds using linear regression with mul-
tiple layers of fixed effects. Based on a sample of over 40’000 individual dogs
competing in 13 stadiums in Ireland between 2013 and 2020, the results suggest
that increasing O3 levels decrease race performance. Additionally, by testing
for non-linearities, this analysis shows that the effect of each additional unit of
O3 decreases the race performance of greyhounds exponentially with increasing
O3 concentration. For PM10 and NO2, no unambiguous effect can be confirmed
reliably. Comparably low pollutant concentration levels in Ireland and the use
of reanalysis data are suspected to partially drive this lack of significant results
for PM10 and NO2 as the results of similar studies suggest the existence of
corresponding effects.
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1 INTRODUCTION

1 Introduction

As of today, an extensively growing body of literature leaves little room for doubts that exposure to
air pollution negatively affects humans in different ways. Within this body, health-related effects or air
pollution might be the most prominent research strand. Mostly entering the human via inhalation and
ingestion, air pollutants have negative effects on both the respiratory and the cardiovascular system and
lead to increased mortality and morbidity rates [Anderson et al., 2012; Kampa and Castanas, 2008].

Besides these health-centered effects which are being examined since the early 20th century [Pincus and
Stern, 1937], more recent researchers started to shift their focus towards other effects of air pollution.
Aguilar-Gomez et al. [2022] identify non-health effects1 of air pollution by reviewing empirical studies
and show that modest levels of air pollution can already have negative impacts on productivity, cognitive
performance and decision making. Interested in the effect of air pollution on short-run productivity for
China’s aggregate manufacturing sector, Fu et al. [2021] found that a 1 µg/m3 decrease in particulate
matter (PM2.5) leads to an increase in productivity by 0.82%. Zivin and Neidell [2012] produced similar
results on a smaller scale based on a panel dataset on agricultural worker productivity from a large farm
in California. Gatto et al. [2014] focused on the effects on cognitive functions using an existing dataset
from clinical trials in California and combining it with corresponding air pollution data. With their
regression model, they find significant evidence that higher exposure to ozone (O3), PM2.5 and nitrogen
dioxide (NO2) is associated with lower cognitive abilities. This relation has also been identified by Austin
et al. [2019] using data from before and after the retrofitting of school bus engines across Georgia which
decreased the emitted air pollutants. Their results show that both student health and academic achieve-
ment improved after the air pollution reduction. Generally speaking, the majority of research concerned
with the effects of air pollution on humans is based on long-term effects which occur when a person lives
in a highly polluted environment over a longer period of time. However, there is also scientific evidence
that short-term exposure to air pollution affects humans in both health- and performance-related terms
[Beavan et al., 2023; Le Tertre et al., 2002; Shehab and Pope, 2019].

Keeping the information from the previous section in mind, it is time to move to a rather specific
research strand which is concerned with the impacts of short-term exposure to air pollution on physical
activity. A large part of the available papers in this sector share a similar structure, usually based on an
already existing dataset which is joined by air pollution data and additional case-specific data - a natural
experiment setting [de Vocht et al., 2021]. Using regression analysis methods, the primary goal is to esti-
mate the impact of air pollution on the case-specific dependent variable measuring some sort of physical
activity. Guo and Fu [2019] used a large data set based on marathon races in China and found that
runners need more time to finish the same race if the air pollution is higher. Two years before, Lichter
et al. [2017] found similar results by calculating the effect of air pollution on the individual productivity
of professional soccer players in Germany. The productivity was measured by the total number of passes
per match, and the results confirmed that this number decreases with increasing air pollution at already
moderate levels. Mullins [2018] also fits in with his analysis of intercollegiate track and field athletes, re-
1 Effects of air pollution exposure which are not directly affecting parts of the human body.
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1 INTRODUCTION

porting a 0.39% performance reduction in endurance events for each 10 ppb increase in contemporaneous
O3.

Besides these reports centered around the effect of air pollution on human physical performance, there
is also a small branch of research considered with the effect of air pollution on the physical performance
of animals. Presently, all available research papers within this branch are built upon horse racing data.
Gates [2007] used data from major United States horse racetracks over a 35-year time period to estimate
the effect of air pollution on finish time. She found no significant effect for PM and only small negative
effects for O3 and NO2. To explain the lack of convincing findings, the author mentions the limited size
of the dataset (675 races in total), missing variables in the model and little variance in the air pollution
exposure as potential shortcomings. Following Araneda [2022], physical performance is affected by in-
trinsic and extrinsic factors. While genetic load, degree of training, age or psychological factors belong
to the intrinsic factors, extrinsic factors correspond to the real-world conditions of an event such as race
distance, track condition, wind speed or air pollution2. An optimal study design to measure the effect
of air pollution on physical performance would require athletes endowed with similar intrinsic factors
performing at their best in a large number of similar events under varying air pollution conditions - a
setting which happens to suit the horse racing case: The horses are bred, selected and trained exclusively
for horse racing and compete regularly in similar extrinsic conditions. Therefore, the results should dis-
play an accurate estimate of the effect of air pollution on physical performance. The author employed
a combination of multiple statistical tests to obtain correlation coefficients between the finish times of
horse races held in Santiago, Chile, and local air pollution levels. In two consecutive research papers,
higher air pollution levels were found to be correlated with slower finish times [Araneda, 2022; Araneda
and Cavada, 2022].

Out of the numerous animal species which compete in races around the world, horse racing and grey-
hound racing are by far the most well known. While horse races are being held in numerous countries
across the world, greyhound races are almost exclusively held in the United States, the United Kingdom,
Ireland and Australia [GREY2K, 2024; IFHA, 2024]. In this paper, greyhounds are used as research
subjects to further expand the scope of research regarding the impact of air pollution on animal athletic
performance. More specifically, data from Irish greyhound races is being used to estimate the effect of
three air pollutants (PM10, O3 and NO2) on greyhound racing performance. Like horses, greyhounds
are being specifically bred, selected and trained for racing and compete regularly in similar real-world
conditions. Therefore, greyhound racing happens to be equally suited for this research purpose.

At this point, one might be curious about the topic of this analysis: What is the use of estimating
the effect of air pollution on the performance of racing greyhounds? And who could be interested in
the results? Besides expanding the scope of scientific evidence in a hardly researched field, the most
important justification factor for this analysis is the well-being of the greyhounds. As mentioned earlier,
air pollution affects humans through short-term exposure. Associated effects include decreased cogni-
2 The mentioned elements are not intended to form an exhaustive list; numerous intrinsic and extrinsic factors have case-

specific impacts on physical performance.
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tive and physical performance. While physical performance generally improves human health whereas
air pollution affects it negatively, research has not yet found solid evidence at which point the positive
effect of physical performance outweighs the negative effect of air pollution or vice versa [Tainio et al.,
2021]. What is clear however is that short-term exposure to air pollution both reduces the physical per-
formance of humans and has negative effects on their health. In the case of physical performance, there
is even evidence of exponentially increasing negative effects of the air pollution concentration, meaning
that performance is impaired at an increasing rate for each additional unit of pollution [Lichter et al.,
2017]. But the increased pollutant uptake is not only based on the pollution concentration, but also
on the respiratory system: Air uptake (tidal volume, breath rate), lung perfusion, the metabolic rate
and the breathing pathway (nasal or oral) affect the pollution uptake [Bigazzi and Figliozzi, 2014]. As
greyhounds have a structurally similar respiratory system to humans, these factors apply to them like-
wise. While running on the race track, a greyhound delivers its peak physical performance for about
30 seconds. During this time, its breath rate will be at its peak and the breathing takes place during
the mouth, both increasing factors for the pollutant uptake. Nevertheless, the most important factor
might be the lung perfusion: Greyhounds differ physically from both humans and horses. But it is no
coincidence that both greyhounds and horses are able to run really fast. Both species’ hearts are much
larger in comparison to their entire body mass (1-2%) as the human heart (0.5%), enabling them to
have a quicker oxygen (O2) transportation system which allows for a O2 utilization three times as high
as found in elite human athletes3. This benefit with respect to their peak physical performance on the
other hand allows them to take up more pollutants and, in conjunction with the other factors, poten-
tially exposes them to extraordinarily high health risks in comparison to human athletes. In this context,
the results of this analysis could prove interesting in the discussion on animal welfare in greyhound racing.

Another aspect which has not attracted a lot of research interest yet is the relation between mental
state and physical performance and its possible importance in the context of air pollution. In recent
studies, researchers have found that psychological factors affect athletes performance in various ways
[Beavan et al., 2023; Behm and Carter, 2021; Marcora et al., 2009; Sarkar and Fletcher, 2013; Van Cut-
sem et al., 2017]. As long as these psychological factors are distributed independently from the air
pollution concentration among the athletes, they are only introducing noise which usually can be han-
dled in a regression analysis. However, athletes are well aware of the environment they are performing in
and thus it seems plausible that by knowing they are going to perform in a more polluted environment,
they reduce their performance level unconsciously4. In this case, a fraction of the psychological factors
affecting their performance is not independent from air pollution anymore and by estimating the effect
of air pollution on performance, the physical and psychological effect are not distinguishable anymore.
In contrast, the mental state of greyhounds is unlikely to be affected by the air pollution concentration
as they are not able to receive the necessary information. Therefore, it is expected that a regression
analysis based on greyhounds approximates the sought-after effect more accurately than its human-based
3 They do not only share this: Highly contractile spleens, a high muscle mass percentage of more than 50%, tolerance for

body temperatures up to 42°C and lungs which are bottlenecking the O2 transportation (while still surpassing less athletic
species such as humans by far) suggest that both animal species are potentially affected by air pollutants in a similar way
because of their biological similarities with respect to their O2 transportation system [Poole and Erickson, 2011].

4 Thinking of this as ”fear from physical damages through performing in polluted areas”, there is scientific evidence which
suggests that this fear could impair the performance of an athlete [Datcu et al., 2021; Geukes et al., 2017].
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equivalent.

Lastly, this analysis is not directly suited for participants in the betting industry to improve their betting
strategies by considering air pollution levels among all the other factors. As greyhounds are looked at as
an entire pool of entities without differentiating between them in the result section, it is not possible to
predict the performance of certain greyhounds more accurately with the information found in this anal-
ysis. As the results suggest the existence of certain effects in a general sense, these results would need to
be transferred to group- or even dog-specific cases in order to potentially gain an additional prediction
variable for specific racing outcomes.

Before moving further, it is necessary to make an important preliminary remark: While the respira-
tory systems of greyhounds and humans share a similar biological structure, their performance (e.g. gas
transport rates) differs remarkably [Poole and Erickson, 2011; Tsujino et al., 2005]. This means that
the results of this analysis can not directly be translated to the human case, the specific magnitudes
of the estimated coefficients will only apply to racing greyhounds. However, due to general biological
similarities, animal studies are traditionally utilized to detect patterns or effects which are assumed to
affect humans but are not directly observable. While the magnitude of the results usually does not, both
the proof of existence and the polarity of the estimated effects might be transferable to the human case
[Doncheva et al., 2021; Gabryś et al., 2022; Langley et al., 2007; Wendler and Wehling, 2010].

The remainder of this paper is structured as follows. Section 2 covers the process of collecting and
preparing the data used in this analysis. In Section 3, the empirical model is being laid out. The results
are presented in Section 4 and subsequently discussed in Section 5. At last, Section 6 concludes by
wrapping up the main findings.
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2 DATA

2 Data

To estimate the effect of air pollution on greyhound racing performance, three main data sources are
used in this analysis. Each of the following subsections provides information about the choice, source and
processing of the specific data variables. Afterwards, the final data set is visualized and described from
multiple angles.

2.1 Greyhound Racing Data

Besides simply being considered an entertaining sport event since almost 100 years, there is an entire
industry behind greyhound racing in Ireland which clearly contributes to its popularity [Täubert et al.,
2007]. As a commercial semi-state body, Greyhound Racing Ireland (GRI)5 controls the racing activities
and sets the regulatory framework [GRI, 2024a]. The Irish government also repeatedly granted funding
for the greyhound racing industry, for example €19 millions in the past November 2023 [Oireachtas, 2023].
While private companies operate the betting offices independently, they must pay a levy to the GRI for
each bet. Alone in 2022, over 14’000 races involving over 80’000 individual dogs took place and a total
prize money of €8.3 million was paid out [RCÉ, 2023].

On the result page of the official GRI website, it is possible to access race results ranging from the
present time back to the 1960s. From 1980 onward, almost every race outcome is available6. Using the
website interface, race results can be filtered by time period and stadium7. With thousands of races per
year, a massive amount of data is theoretically retrievable. For the present analysis, the focus lies on the
effect of air pollution on greyhound racing performance which is not necessarily depending on a data set
covering multiple decades. Considering the availability of the other data sources8, the research period
for this analysis is defined as the interval from 2013 to 2020. Using a custom Python-based web scraper,
all race results from the GRI website within the research period were initially saved to a separate data
frame for each year. Each row corresponds to a single race result of a contesting dog in a specific race.
The columns contain selected informations from the GRI race result tables: year, date, stadium, race
track length, track condition, dog name, sire name9, dam name10, weight, finish rank and finish time.
Observations with missing values in at least one column are being dropped. In a next step, air pollution
and weather data is being combined with the race data.

5 Also known as Rásáıocht Con Éireann (RCÉ).
6 While the website does not claim any sort of completeness, random sampling suggests that not many race results should

be missing since 1980.
7 Stadiums are located in the Republic of Ireland as well as in Northern Ireland.
8 More information about this in the following subsections.
9 Name of the father.
10 Name of the mother.
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2.2 Air Pollution Data 2 DATA

2.2 Air Pollution Data

The Irish Environmental Protection Agency (EPA) maintains an air pollution monitoring network across
Ireland. The monitoring stations vary in what they measure: Some only measure PM, others also report
O3, NO2 or other agents. Hourly readings are available on their website. On the SAFER data website,
the EPA gives access to various data sources up to 2021 including various air pollutants. Unfortunately,
the data availability for the research period of this analysis is rather bad. The Irish government has just
recently started to install a state-of-the-art air quality monitoring network: While there were 30 measur-
ing stations in 2016, this number increased to 107 in 2023 and soon, the monitoring network will reach
its anticipated goal of 114 stations [EPA, 2017, 2023]. For this analysis, the limited number of stations
covering the entire research period and reporting hourly measurements of at least two different air pol-
lutants was no viable option. Thus, an alternative was chosen to account for air pollution: A reanalysis
data set from the Copernicus Atmosphere Monitoring Service (CAMS) which is part of the Copernicus
program of the European Union. Based on the reanalysis data availability, hourly model ensemble data
for PM10, O3 and NO2 from 2013 to 2020 is used to account for air pollution in this analysis. The grid
resolution is 0.1° x 0.1° (which translates to about 7 km in Ireland) and the model ensemble is calculated
based on 11 numerical air quality models [CAMS, 2022]. The data can be retrieved as a .csv file using
an API; however, it is necessary to register to the Atmosphere Data Store (ADS) first. Due to its size,
the data had to be requested month by month.

For further processing, Python was used. First, for each year, the monthly data sets were recomposed to
cover the entire year. As almost all greyhound races take place around 8 p.m., only air pollution reanaly-
sis data referring to 8 p.m. was kept in the data set [GRI, 2024b]. Then, inverse-distance weighted means
were calculated for each pollutant at every stadium using a 10 km radius. As a result, for each stadium
there are daily values for PM10, O3 and NO2 which are calculated from all grid points within a 10 km
radius around the stadium. Using a power factor of 2, grid points exponentially decrease in weight with
increasing distance from the stadium in comparison to relatively closer grid points. Finally, the weighted
mean air pollution values were being added to the race data set based on the specific date and stadium
indication of each observation.

2.3 Weather Data

Thinking about control variables in a regression model aiming at estimating the effect of air pollutants on
greyhound racing performance, meteorological variables are among the first to pop up. Numerous reports
confirm the dependency of air pollution on meteorological conditions such as temperature, precipitation
and wind [Elminir, 2005; Kayes et al., 2019; Liu et al., 2020]. Additionally, meteorological control vari-
ables are being included in the majority of reports with a study design similar to this analysis.

From the Irish meteorological service (also known as MET eiréann), hourly readings from past years
are available using their website interface. The start of the time series is indicated for every station and
it is possible to select the variables which should be downloaded. However, the interface only allows
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Figure 1. Overview of all greyhound racing stadiums and weather stations included in this analysis. For each stadium, all
weather stations within its circular red area have been included to calculate the stadium-specific weather parameters. The
exact coordinates for each stadium can be found in the Appendix (Table 6).

downloading data from one station at a time.

For the first processing step, QGIS was used. After creating a layer containing the locations of the
weather stations which cover the entire study period, the coordinates of all unique greyhound racing
stadiums in the data set from Section 2.1 were obtained using Google Maps, saved as a new layer and
exported as .csv file. Figure 1 shows the locations of the stadiums and weather stations. Subsequently,
for each stadium, the distances to all surrounding weather stations were calculated and exported as .csv
file.

The following steps were carried out using Python and run for one year at a time. First, selected
variables of the individual weather station data sets were imported: date, temperature, precipitation,
relative humidity, wind speed and predominant wind direction. Observations with missing values were
dropped. Similar to Section 2.2, only observations within the study period reporting at 8 p.m. were kept
in the data set. Then, the stadium coordinate and weather station distance data sets were imported.
All observations in the weather station distance data set exceeding 50 km were dropped such that only
distances between weather stations and stadiums smaller than 50 km remain. Figure 1 visualizes the
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50 km radius areas around each stadium. Based on this information and again similar to Section 2.2,
inverse-distance weighted means were calculated for each meteorological variable at every stadium and
added to the race data set based on the specific date and stadium indication of each observation; for
each stadium, only data from weather stations within the 50 km radius was included. The choice of a
50 km radius reflects a compromise between minimizing the radius and simultaneously maximizing the
number of weather stations within the radius area around each stadium. Also, Lichter et al. [2017] chose
a comparable radius in their analysis.

2.4 Final Processing Steps

The yearly race data sets including air pollution and weather variables were first being merged to one
data set covering the entire research period from 2013 to 2020. Then, observations with empty meteoro-
logical variable column values were dropped. This eliminates race results from stadiums which have no
weather stations within a radius of 50 km. Further, observations with clearly identifiable outlier values
were dropped11.

Finally, four subsets from the original data set were created based on the race track length. In the
original data set, there is a wide variety of race track lengths. However, around 70% (about 380’000)
of the observations are in the Flat 525 category, which indicates that the races took place on 525 yards
(which is equal to about 480 m) long race tracks [Towcester Racecourse, 2024]. Thus, all observations on
this race track length form the main data set used in this analysis. Besides, subsets for race track lengths
330 yards (300 m), 350 yards (320 m) and 550 yards (500 m) have also been created. Each of these
subsets includes around 5% of the total observation number (between 24’000 and 32’000). By re-running
the calculations for each of them, it is possible to compare the results from the main data set to the
secondary subsets. To some extent, this practice serves as a reliability test for the main results.

2.5 Summary Statistics

The main data set covers the research period from 2013 to 2020 and contains 376’523 race observations
from 41’275 individual dogs. The races took place in 13 stadiums across the Irish island. On average,
each dog participated in 9 races within the data set.

Table 1 reports the summary statistics for the variables used in this analysis. Clearing the 525 yard
distance in the present Flat 525 race category takes the dogs 29.67 s on average; with the fastest time
being 27.7 s, the margins seem rather small. At race day, the dogs weigh between 19.96 and 46.27 kg
and on average 30.45 kg. The track condition value12 lies between -1.3 and 0.5 with a mean of -0.15.
11 A small number of observations with unrealistically high finish time and/or weight values.
12 As race track conditions may vary both across stadiums and across time, the GRI regularly conducts an assessment of

their state and assigns a track condition value to each stadium. As an example, a track condition value of -0.80 means
that from the finish time of a dog, 0.8 s should be subtracted when comparing it to a finish time from a stadium with a
track condition value of 0.
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Table 1. Summary Statistics

Variable Mean St. Deviation Median Minimum Maximum Obs.

Finish Time (s) 29.67 0.52 29.64 27.70 35.52 376523
PM10 (µg/m3) 10.54 6.09 9.23 0.63 60.90 376523
O3 (µg/m3) 55.30 17.20 55.37 0.73 124.79 376523
NO2 (µg/m3) 6.35 7.27 3.57 0.31 69.97 376523
Weight (kg) 30.45 3.25 30.39 19.96 46.27 376523
Track Condition (Value) -0.15 0.25 -0.10 -1.30 0.50 376523
Temperature (°C) 10.58 4.28 10.54 -0.63 22.53 376523
Precipitation (mm) 0.12 0.43 0.00 0.00 5.37 376523
Relative Humidity (%) 83.54 9.29 84.58 43.47 100.00 376523
Wind Speed (kt) 8.52 4.27 7.68 1.32 29.32 376523
Predominant Wind Direction (°) 211.13 76.22 214.56 10.00 353.19 376523

Note: The descriptive statistics shown in this table refer to the main data set (only observations from the Flat 525 racetrack
category are included). Detailed information about the data sources can be found in Section 2.

As for the air pollutants, the average PM10 concentration at race time is 10.54 µg/m3. Minimum and
maximum values are 0.63 and 60.9 µg/m3. O3 concentrations lie between 0.73 and 124.79 µg/m3, the
mean value is 55.3 µg/m3. And finally, the average NO2 concentration is 6.35 µg/m3 with minimum
and maximum values of 0.31 and 69.97 µg/m3. Due to the influence of the Atlantic ocean, the climate
in Ireland is known for its absence of temperature extremes despite its comparably high latitude [MET,
2024]. Therefore, the relatively small temperature range from -0.63 to 22.53 °C in the data with a mean
of 10.58 °C is not surprising, keeping in mind that only values at 8 p.m. are included. Further, hourly
precipitation lies between 0 and 5.37 mm with an average of 0.12 mm. Relative humidity ranges from
43.47% to 100% and its mean value is 83.54%. Wind speed varies between 1.32 and 29.32 kt and the
predominant wind direction is south-west which coincides with the long-term weather characteristics of
Ireland.

The summary statistics help to get an initial idea of the scope of the variables. However, a lot of poten-
tially relevant information is not displayed. While the control variables do not need a closer examination,
it is necessary to look at the main variables in more detail to recognize the different patterns in their
variation. On the left side of Figure 2, the distribution of the observed finish times is shown. The values
are approximately normally distributed around the mean value of 29.67 s and only a few observations
appear to extend the upper tail further than the lower tail. The right side figure shows the distribution
of the number of observations per dog. The number of dogs is exponentially decreasing as the number of
observations in the data increases. This indicates that a large part of the dogs in the data set only raced
a few times. However, due to the large size of the data set, there is still a substantial number of dogs
with higher observation counts. Thus, this should not be a major concern.

As for the pollutants, it is well known that their composition typically changes throughout the year.
Also, their spatial distribution tends to vary substantially within short distances, based on factors such
as wind or the presence of local pollution sources [Bodor et al., 2020; Chen et al., 2017]. Based on a
design from Lichter et al. [2017], Figure 3 visualizes both the spatial and temporal variation of PM10,
O3 and NO2 in the data set. The first row shows that the average PM10 concentrations seem to be the
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Figure 2. Left: Distribution of the observed finish times (n = 376’523). The range from minimal to maximal observed
finish time value is divided into 100 bins and the finish time values are grouped accordingly. Right: Distribution of the
number of observations in the data per dog. Each bin corresponds to an integer, starting at 1 and increasing step wise by 1
until the maximum value of 131 is reached.

lowest in the summer months and peaks in spring. For HRX and SPK, the average PM10 concentration
is slightly higher than for the other stadiums. Altogether, there is both temporal and spatial variation in
the concentration of PM10. The magnitude, however, is really small and the PM10 levels are on average
distinctively below the annual mean concentration limit of 40 µg/m3 set by the European Union which
is only surpassed by a few observations. Moving on to the second row, O3 offers the largest seasonal
variance of all three pollutants with a similar pattern as in the PM10 case: Peak concentrations in spring
and then receding concentrations in the following months. In contrast to PM10, the O3 concentration
peak is slightly delayed in April and the following recession extends until November. Interestingly, the
O3 concentration at the stadiums seems to be inversely correlated to the PM10 and NO2 concentrations;
both HRX and SPK have the lowest O3 values while the other stadiums show little variance. While the
O3 concentration offers greater variation than the two other pollutants, the average concentration level
also stays below the annual mean concentration limit of 120 µg/m3 with only a single value exceeding
this threshold. Lastly, the third row shows that the average NO2 level is very low; however, there are
more observations exceeding the annual mean concentration limit of 40 µg/m3 than in the other two
cases. While the NO2 concentration minimum is, as in the PM10 case, in summer, the peak is not in
spring but in early winter. The concentrations at the stadiums are similar to the PM10 case, but the
peak concentration stadiums HRX and SPK stand out more clearly.

The following Section 3 introduces the model used to estimate the effect of the different air pollutants
on finish time. Before heading there, Figure 4 visualizes the distribution of the observed PM10, O3 and
NO2 concentrations based on finish times. The observations have been grouped using a hexagonal raster
which allows to display not only the distribution but also the density of the data and helps to get a first

12
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Figure 3. Conventional box-whisker plots for PM10, O3 and NO2 concentrations per season, month and stadium (n =
376’523). Seasons are defined as following: DJF = Dec, Jan, Feb; MAM = Mar, Apr, May; JJA = Jun, Jul, Aug; SON =
Sep, Oct, Nov. Full stadium names can be found in the Appendix (Table 6). The dashed red line represents the annual
mean concentration limit of each pollutant set by the European Union [European Parliament and Council of the European
Union, 2008].

impression of the relation between finish time and each pollutant variable13. The spread of PM10 suggests
that the amount of observations decreases with increasing concentration and most observations lie around
5 - 20 µg/m3. Regarding the spread, the same holds for NO2; however, a large part of the observations
lie at very low concentrations below 10 µg/m3. For O3, the observation number increases first until a
concentration of about 50 µg/m3 and decreases afterwards. The observations are also distributed more
evenly around the center than in the other two plots. With respect to finish time, the plots do not show
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Figure 4. Distribution of the observations based on finish time and PM10, O3 and NO2 concentration (n = 376’523). The
observations have been grouped within a hexagonal raster. Based on its color, each hexagonal area contains the specified
number of observations.

clear trends. The NO2 concentration seems to be negatively correlated to finish time. However, with large
parts of the observations being centered at very low concentration values, this trend might be misleading.
As being elaborated in detail shortly, there are further factors which need to be considered when trying
to estimate the effect of air pollution on finish times. Therefore, the main benefit from Figure 4 is the
knowledge of the distribution of the three pollutants which will be relevant for the result interpretation
in Section 5.

13 The vertical alignment of observation groups is due to the pollution value matching to the races. There is always one
pollution level value for each pollutant at a specific day at a specific stadium. Therefore, all observations from the same
race day at the same stadium include the same pollutant concentrations.
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3 Methods

3.1 Initial Situation and Model Choice

As initially stated, the goal of this analysis is to estimate the effect of air pollution (by using PM10,
O3 and NO2 concentration data) on the physical performance of greyhounds (reflected by race finish
times). In line with both theoretical work and empirical case studies with similar research questions,
regression analysis is the preferred method for the present analysis [Cunningham, 2021; Guo and Fu,
2019; Huntington-Klein, 2021; Lichter et al., 2017; Mullins, 2018]. Being able to disentangle the causal
effect, a regression model needs to be set up such that all factors which alter the effect of the independent
on the dependent variable are controlled for. Observable factors can be controlled for by including them
as control variables in the model. If non-observable factors are expected to influence the estimate, several
options such as instrumental variables (IV), fixed effects (FE) or random effects (RE) are available to
control for them as well.

In the present analysis, several observable factors which are expected to have an influence on the de-
pendent variable have been identified and are being included in the model as control variables: Weather
characteristics, dog weight and race track condition. However, there are also various non-observable fac-
tors which might distort the model estimations. Adding four levels of fixed effects to the model controls
for these non-observable factors. With that, the variation between the different entities/categories of each
fixed effect level is being withdrawn from the model as only the variation within each entity/category
remains [Huntington-Klein, 2021]. To account for time-invariant differences between dogs (e.g. different
sensitivity to PM10), dog fixed effects are being used. With stadium fixed effects, time-invariant differ-
ences between stadiums (e.g. average noise level through audience cheering) can be controlled for. Season
fixed effects take the seasonal changes of the air pollution levels into account and year fixed effects make
sure that time-specific variation is being captured (e.g. introduction of a new rule within the research
period which affects the finish times of all dogs equally).

3.2 Empirical Model

Based on the scientific evidence presented in Section 1, air pollution is expected to have a negative impact
on performance. As mentioned earlier, to reliably estimate the causal effect of air pollution on sport per-
formance, several empirical challenges need to be tackled. In the present setting with greyhound racing
results as the main data source and by controlling for both observable and non-observable characteristics,
the estimated coefficients are expected to reflect a good approximation of the true effect of air pollution
on greyhound racing performance.

To find out whether the initially stated expectation holds for greyhound racing outcomes in Ireland,
the following empirical model has been constructed:

timeirds = β1PM10ds + β2Ozoneds + β3NO2ds + X ′
irdsγ +W ′

dsδ + R′
dsµ + αi + σs + κz + νy + ϵirds, (1)

15
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where the finish time of dog i for race r on day d in stadium s (timeirds) is regressed on the PM10, O3

and NO2 concentration at the corresponding day and location of the race (PM10ds, Ozoneds, NO2ds).
X ′

irdsγ contains controls for individual greyhound characteristics: In this analysis, only weight is being
included. To account for the influence of weather conditions on both air pollution as well as individual
productivity of the greyhounds, W ′

dsδ includes controls for various weather variables such as mean air
temperature, total precipitation, relative humidity, mean wind speed and wind direction during the hour
following the approximate race start. R′

rdsµ encloses controls for race-specific features, namely the race
track condition. Finally, several fixed effects are added to control for potentially unobserved differences.
αi contains dog-specific fixed effects to control for unobserved time-invariant differences between the dogs,
σs includes fixed effects for each stadium to account for time-invariant differences across the race track
locations, κz features seasonal fixed effects to capture seasonal patterns within the data and νy takes care
of time trends through yearly fixed effects. ϵirds denotes the error term.

Equation 1 is the baseline model specification. In the following Section 4, several adaptations of the
baseline model will be used; however, no conceptual changes to the model will occur. Therefore, the
variations of Equation 1 are not listed separately.
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4 Results

4.1 Linear Regressions

Table 2 shows the results of the baseline regression model including all three pollutants, control variables
and fixed effects. Columns 1 to 4 represent the stagewise addition of fixed effects as visible in the second
panel. While the coefficient for PM10 is still highly significant in column 1, this changes subsequently
when introducing further fixed effects with no significance remaining at all. In contrast, the coefficients
for both O3 and NO2 maintain their statistical significance on the 0.01 level in all four columns and
suggest that a 1 µg/m3 increase in the concentration of O3 (NO2) increases the finish time by 0.0006
(0.0007) s, given that all other variables are being held constant. While these numbers are small, one
needs to consider the magnitude of pollution level variability. O3 has the potential to vary remarkably
within hours at the same location: As an example, between February 21, 2024 at 2 p.m. and February 22,
2024 at 9 a.m., the O3 concentration in Kilkenny dropped from 79 to 39 µg/m3 as reported on the EPA

Table 2. Full Model Results with Stagewise Fixed Effects

Dependent Variable: Finish Time (s)
Stage: (1) (2) (3) (4)

Variables
PM10 (µg/m3) 0.0004∗∗∗ 9.75 × 10−5 0.0002 0.0002

(0.0001) (0.0001) (0.0001) (0.0001)
O3 (µg/m3) 0.0010∗∗∗ 0.0011∗∗∗ 0.0010∗∗∗ 0.0006∗∗∗

(5.81 × 10−5) (5.73 × 10−5) (6.16 × 10−5) (6.2 × 10−5)
NO2 (µg/m3) -0.0015∗∗∗ 0.0009∗∗∗ 0.0011∗∗∗ 0.0007∗∗∗

(0.0002) (0.0002) (0.0002) (0.0002)
Weight (kg) 0.0132∗∗∗ 0.0133∗∗∗ 0.0120∗∗∗ 0.0149∗∗∗

(0.0014) (0.0014) (0.0013) (0.0014)
Track Condition (Value) -0.0221∗∗∗ 0.2920∗∗∗ 0.3058∗∗∗ 0.2184∗∗∗

(0.0066) (0.0102) (0.0101) (0.0097)
Temperature (°C) -0.0058∗∗∗ -0.0058∗∗∗ -0.0054∗∗∗ -0.0054∗∗∗

(0.0002) (0.0002) (0.0002) (0.0002)
Precipitation (mm) 0.0174∗∗∗ 0.0205∗∗∗ 0.0199∗∗∗ 0.0210∗∗∗

(0.0017) (0.0017) (0.0017) (0.0017)
Relative Humidity (%) -0.0002∗∗∗ -0.0003∗∗∗ -0.0002∗∗ -0.0002∗∗

(7.89 × 10−5) (7.79 × 10−5) (7.96 × 10−5) (7.94 × 10−5)
Wind Speed (kt) 0.0025∗∗∗ 0.0038∗∗∗ 0.0035∗∗∗ 0.0036∗∗∗

(0.0002) (0.0002) (0.0002) (0.0002)
Predominant Wind Direction (°) −5.23 × 10−5∗∗∗ −3.75 × 10−5∗∗∗ −4.81 × 10−5∗∗∗ −5.18 × 10−5∗∗∗

(9.44 × 10−6) (9.41 × 10−6) (9.39 × 10−6) (9.34 × 10−6)

Fixed-effects
Dog Yes Yes Yes Yes
Stadium Yes Yes Yes
Season Yes Yes
Year Yes

Fit statistics
Observations 376,523 376,523 376,523 376,523
R2 0.56227 0.56925 0.57087 0.57310
Within R2 0.00991 0.01418 0.01094 0.00738

Note: Standard errors in parenthesis are clustered at the entity (dog) level.
Significance levels: ***: p<0.01, **: p<0.05, *: p<0.1
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air quality monitoring website. This difference of 40 µg/m3 would increase the finish time of a greyhound
by 0.028 s based on the present regression model. Values of this magnitude are regularly separating the
first from the second place or could decide whether a dog is able to claim the stadium race track record or
not. Also, looking at stages 1 to 3, the estimated coefficients for O3 and NO2 are higher than in stage 4,
suggesting that without year fixed effects, the effect of either of them on finish time would be even more
pronounced. As for the control variables, all of them are significant (on the 0.05 or 0.01 level) throughout
all stages.

By including the effects of all three pollutants simultaneously as in the baseline model in Table 2, the
estimated coefficient for PM10 is only significant in the absence of stadium, season and year fixed effects.
A possible explanation could be that PM10 is correlated to O3 and/or NO2. In fact, the correlation
matrix in Table 7 in the Appendix reports a moderate correlation of 0.28 between PM10 and NO2. While
this value is not considered as a strong correlation value which would be an indicator for potential multi-

Table 3. Pollutant-Specific Results with Fixed Effects

Dependent Variable: Finish Time (s)
Independent Variable: PM10 O3 NO2

Variables
PM10 (µg/m3) 0.0004∗∗∗

(0.0001)
O3 (µg/m3) 0.0005∗∗∗

(5.35 × 10−5)
NO2 (µg/m3) −4.62 × 10−6

(0.0001)
Weight (kg) 0.0149∗∗∗ 0.0149∗∗∗ 0.0149∗∗∗

(0.0014) (0.0014) (0.0014)
Track Condition (Value) 0.2157∗∗∗ 0.2168∗∗∗ 0.2157∗∗∗

(0.0097) (0.0097) (0.0097)
Temperature (°C) -0.0051∗∗∗ -0.0055∗∗∗ -0.0051∗∗∗

(0.0002) (0.0002) (0.0002)
Precipitation (mm) 0.0220∗∗∗ 0.0210∗∗∗ 0.0213∗∗∗

(0.0017) (0.0017) (0.0017)
Relative Humidity (%) -0.0004∗∗∗ -0.0002∗∗∗ -0.0004∗∗∗

(7.81 × 10−5) (7.91 × 10−5) (7.8 × 10−5)
Wind Speed (kt) 0.0039∗∗∗ 0.0034∗∗∗ 0.0039∗∗∗

(0.0002) (0.0002) (0.0002)
Predominant Wind Direction (°) −6.79 × 10−5∗∗∗ −6.7 × 10−5∗∗∗ −7.64 × 10−5∗∗∗

(9.1 × 10−6) (8.74 × 10−6) (8.98 × 10−6)

Fixed-effects
Dog Yes Yes Yes
Stadium Yes Yes Yes
Season Yes Yes Yes
Year Yes Yes Yes

Fit statistics
Observations 376,523 376,523 376,523
R2 0.57296 0.57307 0.57295
Within R2 0.00704 0.00730 0.00701

Note: This table shows the estimated coefficients for the regressions with only one pollutant at a time as independent
variable. Standard errors in parenthesis are clustered at the entity (dog) level.
Significance levels: ***: p<0.01, **: p<0.05, *: p<0.1
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collinearity issues, it might still be the case that through the partial correlation, the coefficient estimate
for PM10 is being affected [Akoglu, 2018; Shrestha, 2020].

Table 3 reports the outputs of three regressions including all fixed effect levels based on a variation of
the baseline model. Each variation includes either PM10, O3 or NO2 as independent variable, everything
else remains unchanged. By isolating PM10 as the only pollution-related variable in the regression, its
estimated coefficient of 0.0004 becomes highly significant on the 0.01 level. Together with the comparably
high correlation value, this leads to the suggestion that the inclusion of NO2 interferes with the coefficient
estimate of PM10 in Table 2. Vice versa, the estimated coefficient of NO2 is not significant anymore. The
estimated O3 coefficient remains almost unchanged compared to Table 2, slightly decreasing to 0.0005
but remaining highly significant on the 0.01 level.

One concern regarding the prior regressions is that many of the dogs in the data set might not have

Table 4. Top Pollution Percentile Results with Fixed Effects

Dependent Variable: Finish Time (s)
Restriction: PM10 ≥ 40 O3 ≥ 80 NO2 ≥ 40

Variables
PM10 (µg/m3) 0.0002

(0.0003)
O3 (µg/m3) 0.0007∗∗∗

(6.46 × 10−5)
NO2 (µg/m3) 0.0005∗∗

(0.0002)
Weight (kg) 0.0165∗∗∗ 0.0139∗∗∗ 0.0100∗∗

(0.0060) (0.0018) (0.0044)
Track Condition (Value) 0.2136∗∗∗ 0.1319∗∗∗ 0.0901∗∗∗

(0.0373) (0.0130) (0.0282)
Temperature (°C) -0.0058∗∗∗ -0.0052∗∗∗ -0.0059∗∗∗

(0.0010) (0.0003) (0.0007)
Precipitation (mm) 0.0164∗∗ 0.0194∗∗∗ 0.0214∗∗∗

(0.0065) (0.0020) (0.0048)
Relative Humidity (%) 6.98 × 10−5 -0.0003∗∗∗ -0.0005∗

-0.0001 (9.68 × 10−5) (0.0003)
Wind Speed (kt) 0.0035∗∗∗ 0.0033∗∗∗ 0.0022∗∗∗

(0.0007) (0.0002) (0.0005)
Predominant Wind Direction (°) 2.77 × 10−5 −7.46 × 10−5∗∗∗ 3.37 × 10−5

(4.26 × 10−5) (1.09 × 10−5) (2.79 × 10−5)

Fixed-effects
Dog Yes Yes Yes
Stadium Yes Yes Yes
Season Yes Yes Yes
Year Yes Yes Yes

Fit statistics
Observations 18,822 220,308 37,531
R2 0.50873 0.50815 0.53842
Within R2 0.00777 0.00608 0.00450

Note: This table shows the estimated coefficients for the pollutant-wise regressions based on restricted data sets: For each
regression, only observations from dogs which have at least one observation with a pollutant concentration value above the
specified value are being included. Standard errors in parenthesis are clustered at the entity (dog) level.
Significance levels: ***: p<0.01, **: p<0.05, *: p<0.1
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Figure 5. Locally weighted scatterplot smoothing (LOWESS) based plots for the distribution of finish times and PM10, O3
and NO2. Observations from the main data set (n = 376’523) have been grouped based on their pollution levels (rounded
to the next integer) such that each dot represents the mean finish times at a given pollution level. Brighter points indicate
that they contain more observations than darker points. The red line represents the results from the LOWESS estimation
of each pollutant on finish time without additional control variables. The grey areas denote the standard error.

a lot of pollution level variation in their observations14. To address this concern, a similar model vari-
ation to the one used in Table 3 is being used. However, the main data set is being filtered based on a
simple restriction: Only dogs which have at least one observation with the respective pollutant concen-
tration value above the respective EU annual mean threshold value15 are being included in the data set16.
By that, each regression uses a specifically filtered data set which might be more suitable to estimate the
effect of pollution on finish time as there is a larger variety in pollution values for each dog compared to
the unfiltered case.

Table 4 summarizes the regression results including the aforementioned restrictions. The role of PM10

and NO2 has changed again back to the situation in the baseline model in Table 2 with the coefficient
estimate of PM10 not being significant while NO2 reaches the 0.05 significance level with a coefficient
estimate of 0.0005. Once again, the O3 coefficient estimate of 0.0007 did not change drastically and
remains highly significant on the 0.01 level. In contrast to the earlier regressions, a few control variables
are less significant or not significant anymore. This might be connected to the decrease in the number
of observations as both PM10 and NO2 show less significant control variables and simultaneously use far
less observations to estimate the coefficients as visible in the bottom panel of Table 4. O3, which still
uses a really high observation number, shows no significance issues in the control variable section.

4.2 Non-linear Regressions

In the previously estimated regression models, a linear effect of the air pollutants on finish time was
implicitly assumed and many of the estimated coefficients were significant. However, it is possible that
a non-linear approach would fit the data better and by that lead to more accurate results [Cunningham,
14 As shown in Figure 4, large parts of the observations are contained within narrow pollution bands, especially for NO2.
15 For O3, due to the lack of observations above the EU annual mean threshold of 120 µg/m3, a lower threshold of 80 µg/m3

has been chosen.
16 E.g. the threshold for PM10 is 40 µg/m3; therefore, only dogs which have at least one observation with a corresponding

PM10 value above 40 µg/m3 are being included in the data set used for the PM10 regression.
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2021; Huntington-Klein, 2021]. Based on locally weighted scatterplot smoothing (LOWESS), Figure 5
visually represents the relationship between pollutants and finish times without including any further
control variables. The LOWESS regression lines for PM10 and NO2 share similar characteristics on the
first glance. However, as in both cases the majority of data points is concentrated at low pollution levels,
it is questionable how much interpretation weight should be given to the fluctuations at higher pollution
levels. The LOWESS regression line for O3 is closer to being linear; however, the slope fluctuates as well
when moving away from the main body of observations.

Altogether, for PM10 and NO2, the visual assessment suggests that accounting for non-linearity in the
model could improve the estimated coefficients. While this is less the case for O3, there are small slope
changes visible in the plot as well which could lead to more accurate estimates when being accounted for.
To test this, the main data set is being filtered such that for each pollutant, the observations are split
into 2 to 3 categories based on their pollutant level. The break points between the categories are defined
based on the LOWESS regression lines from Figure 5: Each category covers the pollution level segments
which follow an approximately linear trend.

The stagewise results for the regressions testing for non-linear effects of PM10, O3 and NO2 on finish
time are summarized in Table 5. For PM10, the observations were split in three groups based on their
pollution concentration: Less than 10, 10 to 30 and more than 30 µg/m3. As indicated by the LOWESS
regression line in Figure 5, the coefficient estimate for low PM10 concentrations is negative and signifi-
cant across all stages. In other words, up to PM10 concentrations of 10 µg/m3, an increase in PM10 is
associated with a decrease in finish time. This relationship would be contrary to the expected outcome.
In contrast, albeit mostly insignificant, the estimated coefficients for higher PM10 concentrations suggest
a positive relationship between PM10 and finish time which appears to hold especially for PM10 values
above 30 µg/m3. In the case of O3, a positive relationship between O3 concentration and finish time can
be seen throughout all stages (significance is given at the 0.01 level except for two coefficient estimates
for O3 concentrations below 25 µg/m3)17. More important, the estimated coefficients show non-linear
characteristics depending on the O3 concentration in every regression stage: With increasing O3 concen-
trations, the impact of O3 on finish time is more pronounced. In the last stage including all fixed effects,
an O3 concentration increase of 1 µg/m3 increases the finish time by 0.0003 s when the O3 concentration
is between 25 and 75 µg/m3, and by 0.0005 s if it exceeds 75 µg/m3. For NO2, the observations are
only split in two groups (NO2 concentration below or above 20 µg/m3) due to the small variation in the
data. The results suggest a negative relationship between NO2 and finish time for the first two stages and
mixed (and insignificant) effects for the third and fourth stage. Based on the estimated coefficients, no
unambiguous non-linear patterns are recognizable. Again, the limited variation in the NO2 concentration
values in the data is highly suspected to render the recognition of any non-linear pattern impossible.

Wrapping up this subsection, the regressions presented in Table 5 provide interesting knowledge re-
garding the actual relationship between the pollutants and the finish time of the dogs, but also solidify
17 Based on Figure 5 and the persistent loss of significance while introducing additional fixed effects, this might be due to

limited data availability as with every fixed effect layer, the data set restrictions are potentially increasing.
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Table 5. Non-linear Regression Results with Fixed Effects

Dependent Variable: Finish Time (s)
Stage: (1) (2) (3) (4)

Regression 1: PM10
PM10 × (PM10 < 10) -0.0014∗∗∗ -0.0011∗∗∗ -0.0012∗∗∗ -0.0015∗∗∗

(0.0003) (0.0003) (0.0003) (0.0003)
PM10 × (10 ≤ PM10 < 30) -0.0003∗ 1.23 × 10−5 6.01 × 10−5 -0.0002

(0.0002) (0.0002) (0.0002) (0.0002)
PM10 × (PM10 ≥ 30) 0.0002 0.0004∗∗ 0.0002 0.0003

(0.0002) (0.0002) (0.0002) (0.0002)

Regression 2: O3
O3 × (O3 < 25) 0.0008∗∗∗ 0.0007∗∗∗ 0.0005∗∗ −5.12 × 10−6

(0.0002) (0.0002) (0.0002) (0.0002)
O3 × (25 ≤ O3 < 75) 0.0012∗∗∗ 0.0008∗∗∗ 0.0007∗∗∗ 0.0003∗∗∗

(6.6 × 10−5) (6.51 × 10−5) (6.75 × 10−5) (6.69 × 10−5)
O3 × (O3 ≥ 75) 0.0012∗∗∗ 0.0010∗∗∗ 0.0009∗∗∗ 0.0005∗∗∗

(5.47 × 10−5) (5.4 × 10−5) (5.74 × 10−5) (5.68 × 10−5)

Regression 3: NO2
NO2 × (NO2 < 20) -0.0045∗∗∗ -0.0009∗∗∗ 0.0001 1.33 × 10−5

(0.0002) (0.0002) (0.0002) (0.0002)
NO2 × (NO2 ≥ 20) -0.0024∗∗∗ -0.0004∗∗∗ 3.19 × 10−5 −3.18 × 10−6

(0.0001) (0.0001) (0.0001) (0.0001)

Fixed-effects
Dog Yes Yes Yes Yes
Stadium Yes Yes Yes
Season Yes Yes
Year Yes

Fit statistics
Observations 376,523 376,523 376,523 376,523
R2 (PM10) 0.56107 0.56860 0.57045 0.57301
R2 (O3) 0.56213 0.56923 0.57084 0.57314
R2 (NO2) 0.56185 0.56856 0.57038 0.57295
Within R2 (PM10) 0.00719 0.01270 0.00996 0.00715
Within R2 (O3) 0.00958 0.01413 0.01088 0.00745
Within R2 (NO2) 0.00896 0.01260 0.00980 0.00701

Note: This table shows the stagewise results from the regressions testing for non-linear characteristics of the relationship
between finish time and PM10, O3 and NO2. Although not reported here, each regression includes all control variables as
specified in Equation 1 (control variable coefficient estimates are unambiguously significant on the 0.01 level). Standard
errors in parenthesis are clustered at the entity (dog) level.
Significance levels: ***: p<0.01, **: p<0.05, *: p<0.1

the role of possible shortcomings of the data set itself which might impair the reliability of this anal-
ysis. As part of the aspects of this work that require discussion, these shortcomings will be examined
subsequently in Section 5.
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5 Discussion

Based on the empirical model and using a data set composed of various data sources, the regression
results as displayed in Section 4 provide numerical estimates of the relationship between the finish time
of racing greyhounds and the concentration level of the pollutants PM10, O3 and NO2. However, the
results still need to be contextualized within similar studies and their reliability needs to be critically
reviewed.

5.1 Interpretation of the Results

5.1.1 Linear Regressions

In the baseline model specification (Table 2) including all three pollutants simultaneously, the estimated
coefficients are all positive and in the case of O3 and NO2 significant on the 0.01 level for all four fixed
effect stages. By running separate regressions for each pollutant (Table 3), the results change insofar as
PM10 is now significant instead of NO2. This lack of consistency in the coefficient estimations of PM10

and NO2 has already been mentioned in the result section and will be addressed in the following subsec-
tion. Regarding the polarity of the results, positive coefficient estimates have been anticipated based on
previous studies [Araneda and Cavada, 2022; Gates, 2007; Guo and Fu, 2019; Lichter et al., 2017]. As for
the magnitude of the coefficients, it is not possible to rely on external results for comparison since this
analysis is the first to examine the influence of air pollution on greyhound racing performance. However,
internal validation is possible to some extent. By comparing the results of the main data set (which
includes only observations from the Flat 525 race category) with results from the same regressions using
observations from three other race category subsets (Flat 550, Flat 330 and Flat 350), a consistency
evaluation of the estimated coefficients between different subpopulations of racing greyhounds can be
made. Based on the plots displaying the distribution of finish times and pollution (Figures 6, 7 and 8 in
the Appendix A), the observations from the data subsets share similar distribution characteristics to the
main data set (Figure 4).

The regression results for the subsets are summarized in Table 8 and 9 in the Appendix A. In Table
8, all three pollutants are included simultaneously in the regression for each subset. The estimated coeffi-
cients for O3 are mostly similar to their equivalent based on the main data set (O3 coefficient in Table 2)
across all three subsets. For PM10 and NO2, the estimated coefficients appear less consistent. While the
polarity of the estimated PM10 coefficients remains positive as in the main data set, both positive and
negative NO2 coefficients are being estimated based on the subsets. Further, the magnitude of the results
differs remarkably: As an example, an increase in the PM10 concentration of 1 µg/m3 increases the finish
time by 0.0019 s based on the Flat 350 subset. The same regression using the main data set estimates
an increase of 0.0002 s, which is an effect almost 10 times smaller. In the pollutant-specific regressions
reported in Table 9, a similar pattern is showing. The estimated coefficients for O3 are directly compa-
rable to their equivalents based on the main data set (Table 3) with mostly significant values between
0.0004 and 0.0007 across all subsets. The estimated PM10 coefficients are uniformly positive and highly
significant for every subset; however, the coefficient values ranging from 0.0008 to 0.0018 including all
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fixed effects are 2 to 4 times higher than the value of 0.0004 based on the main data set (Table 3). And
for NO2, the estimated coefficients exhibit mixed signs again.

Comparing a part of the main results to the subset results reinforces several assumptions concerning
the outcome of this analysis. It is reassuring that the general direction of the estimated coefficients
matches across all four data sets. This indicates that the results are not only specific to one population
sample but can be replicated using different samples of the same population18. On the contrary, the
comparison also emphasizes potential problems emerging from the data structure. The lack of pollution
level variation for PM10 and NO2 already led to changing coefficient signs in the main analysis; this
pattern is only confirmed with the subset regressions, especially for NO2 which has the least variation
in its concentration. Ultimately, it is important to remember that this comparison does not provide new
knowledge about the setup of the model or the quality of the data as it is based on the same empirical
model and the same data sources as the main analysis.

Further regressions based on restricted data subsets from the main data set were carried out with the
intention to increase the variation of the pollutant concentration within each individual dog by only in-
cluding dogs in the regression data set which at least contain one observation above a certain threshold
value19. By reducing the potential impact of the lack of variation in the pollution concentration within
each individual dog, the resulting coefficient estimates are expected to be positive based on empirical evi-
dence from previous studies. Table 4 summarizes the regression outcomes and following the expectations,
all three coefficient estimates are positive. While O3 is significant on the 0.01 level and NO2 is significant
on the 0.05 level, PM10 does not reach significance. As both NO2 and PM10 reached highly significant
positive coefficient estimates in the previous regressions, it seems likely that the significance issues in
these regression outcomes are driven by the decrease in observations: Introducing thresholds may have
increased the quality of the data set, but simultaneously reduced the quantity drastically. From initially
376’523 observations which have been used for the previous regressions, the coefficients for PM10 and NO2

were estimated using only 18’822 (∼5% of total) and 37’531 (∼10% of total) observations, respectively.
Only for O3, the regression was based on a comparably large data subset containing 220’308 (∼60% of
total) observations.

5.1.2 Non-linear Regressions

With the final regressions in Section 4.2, the possibility of non-linear relationships between the air pol-
lutants and the finish time of the greyhounds has been explored. In previous studies, corresponding
results20 were obtained in most but not all cases [Lichter et al., 2017; Matt et al., 2016; Mullins, 2018;
Zhang et al., 2022]. The implementation of non-linearity in this analysis follows Lichter et al. [2017];
however, the results as shown in Table 5 are not as clear as in their report. In the case of PM10, highly
18 The population in this case would be the entirety of racing greyhounds in Ireland and the samples would be the greyhounds

within each of the different data subsets used in this analysis.
19 Especially in the case of PM10 and NO2, chances are high that an individual dog only enters the data set with observations

with low pollution values and thus lacks in pollution variation which is needed to estimate the effect of air pollution on
physical performance.

20 These studies are centered on the effect of air pollution on human performance.
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significant effects are only found for concentrations below 10 µg/m3 and the negative coefficient values are
not in line with the expectations. Comparing this to Lichter et al. [2017], such an opposite effect for low
pollution levels has also been found in their case. Nevertheless, their results are insignificant for low pol-
lution concentrations whereas for higher pollution concentrations, the estimated coefficients are again in
line with the expectations and suggest a non-linear effect of increasing pollution concentrations levels on
physical performance. In this analysis, the results for higher PM10 concentrations are almost exclusively
insignificant which prevents the confirmation of non-linear effects of PM10 on the physical performance
of greyhounds. For NO2, a confirmation of non-linear effects is also not possible when looking at the
estimated coefficients in the later stages. By looking at the significant estimates and the distribution of
the observations based on their pollutant values (Figure 5), suspicion arises that the lack in pollution
concentration variation once more renders the recognition of non-linear patterns impossible. This is only
supported by the fact that in the case of O3

21, significant coefficient estimates for higher O3 concentra-
tions are found across all stages. Additionally, the coefficients suggest the existence of non-linear effects
in the expected way: With increasing O3 concentration, the marginal effect of each additional unit of
O3 is larger. Or in other words, the greyhounds are expected to run slower when the O3 concentration
increases from 60 to 70 µg/m3 compared to an increase from 10 to 20 µg/m3.

5.1.3 Impact of Outliers

By plotting the main data set pollutant distributions for PM10, O3 and NO2, Figure 4 reveals that
there are some visible outliers22 in each subplot. In a linear regression, these outliers may have a dis-
proportionately large influence on the slope of the regression line and thus could distort the coefficient
estimates, especially if their associated dependent variable values would not be in line with the expected
values based on the other observations. To check if these outlier values have a noticeable influence on the
estimated coefficient, the pollutant-specific regressions have been re-estimated and for every regression,
the pollutant-specific observations with outlier values have been excluded. By comparing the estimated
coefficients without outliers (Table 10 in the Appendix A) to the estimated coefficients including outliers
(Table 3), virtually no difference can be found. Thus, the outliers in this analysis are either 1) too few
in number or 2) too close to the bulk of observations or 3) too close to the regression line to have an
influence on the regression results - or any combination of them.

5.2 Reliability Assessment

5.2.1 Data

Focusing on the reliability of the data used in this analysis, there are a few important points to mention.
First of all, the entire analysis is based on reanalysis air pollution data. While this specific reanalysis
data set surpasses other reanalysis data sets in approximating the real world situation, it is still only
a model which reaches its limits in the prediction of small-scale temporal and spatial pollution concen-
tration variation [Zuo et al., 2023]. In addition to this, the pollution levels for PM10, O3 and NO2 in
21 Observations have a larger variation for O3 as for PM10 and NO2.
22 In this case observations which are not directly connected to the large observation bulk.
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Ireland are generally low23. While air pollution already is hard to model due to its rapidly changing
spatial and temporal distribution, the generally low levels in Ireland make it even harder to capture the
relevant information needed for a reliable representation of the real air pollution distribution. Thus, the
reanalysis data set used in this analysis is expected to decrease in accuracy when narrowing the area or
time period down to a few points of interest at a time. Unfortunately, this is exactly what this analysis
seeks: Information on air pollution levels from a certain stadium at a specific hour. In the results section,
the relationship between air pollution and finish time was unveiled as expected in the case of O3 and also
partially for the other pollutants, indicating that the reanalysis data was capable of capturing the real
air pollution distribution at least partially. Nevertheless, the results might be even more meaningful and
clear when the same analysis was carried out using real-world data, particularly in the case of PM10 and
NO2.

A different aspect is the role of singletons. Out of the thousands of dogs included in the main data
set, a considerable fraction only appears with a single observation. Singleton observations might impair
the results by underestimating the standard errors and overestimating the significance (p-value). In this
analysis, singletons have not been dropped. Before applying any sort of fixed effects, they make up about
16.6% of the total number of individual entities (dogs) in the data set24. By introducing fixed effects,
these numbers increase even more [Correia, 2015]. The effect of singletons on the results of this analysis
is not further examined. Nevertheless, as a potential bias source, this topic needs to mentioned.

5.2.2 Empirical Model

By including control variables and fixed effects, the model setup in this analysis aims at isolating the
effect of the three chosen air pollutants on the finish time of greyhound races. However, leaving a rele-
vant variable uncontrolled for introduces bias which could have severe effects on the resulting coefficient
estimates [Cunningham, 2021]. While the present model was constructed to the best knowledge avail-
able, there is at least one aspect which was not controlled for directly: Intertemporal effects of pollution.
Mullins [2018] found that athletes training in environments with low O3 concentrations during the week
before an event are remarkably more affected by the effect of O3 on their performance than athletes
training in higher O3 concentration environments. In this analysis, this effect is controlled for insofar
as the dog fixed effects make sure that only within-group variation is used for the regressions. Thus, as
long as each dog has a fixed training location and the average pollution levels at this location remain
more or less constant, the results in this analysis should be unbiased by the intertemporal effects of pol-
lution. But if the training location was to change between races or the average pollution levels at a fixed
training location were to change drastically within a short timescale, the results might be biased. Under
the case-specific circumstances in Irish greyhound racing, the chances of occurrence of this sort of bias
are luckily quite low. Generally, most of the greyhounds are training at a fixed training location25 and
23 Despite being a concern for the Irish government, local air pollution levels are well below the levels found in mainland

Europe [EPA, 2024].
24 For the subsets, singleton numbers were higher. Flat 550: 38.3%, Flat 330: 39.8%, Flat 350: 39.3%.
25 Usually at their trainers preferred training location.
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in most areas in Ireland, it is unlikely that the average pollution levels change drastically between races26.

Further, no indicator of the performance level of the greyhounds has been included in the regression
models. However, such an indicator is available in the data set, namely the odds ratio. This number
is based on the bidders and bookmakers expectations of the performance of each specific dog. A high
value indicates a high payout for each bet on the dog in case of a victory, simultaneously meaning that
this dog is not expected to win - the high potential payout serves as kind of a risk compensation. Low
odd ratios subsequently indicate a higher expected winning probability [Oxford Stadium, 2024]. By re-
calculating the first two regressions from the main results section, this time including the odds ratio as a
control variable, the resulting coefficients remained practically unchanged (Table 11 and Table 12 in the
Appendix A)27. Based on these results, it is not necessary to recalculate the entire empirical part of this
analysis as the results do not appear to change remarkably when including or excluding the odds ratio
as a control variable.

26 Additionally, with season and year fixed effects, longer-term temporal changes in pollution levels are already controlled
for.

27 As some observations had missing or non-identifiable odd ratio entries and were dropped, the total observation number in
these regressions is slightly smaller than in the main analysis (373’526 instead of 376’523).
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6 Conclusion

Air pollution affects humans in various ways. Long-term exposure endangers human health by dam-
aging the respiratory and cardiovascular system and is further known to impair cognitive performance
[Anderson et al., 2012; Austin et al., 2019; Gatto et al., 2014; Kampa and Castanas, 2008]. But also
short-term exposure is associated with effects such as impaired physical performance [Guo and Fu, 2019;
Lichter et al., 2017; Mullins, 2018]. This analysis transfers the latter to the animal case, more specifically
estimating the effect of three air pollutants (PM10, O3 and NO2) on the finish time of racing greyhounds
in Ireland. As of now, only a few comparable studies have been published which use racing horses as
research subjects [Araneda, 2022; Gates, 2007]. Their results suggest either a negative effect of air pol-
lution on physical performance or no significant effect altogether. Based on a comprehensive data set
containing over 370’000 observations from more than 40’000 individual greyhounds racing in 13 stadiums
between 2013 and 2020 which is paired with weather and air pollution data (Section 2), this analysis
employs a linear regression model which is further extended with four layers of fixed effects to estimate
the relationship between air pollution and greyhound racing performance (Section 3). In the baseline
model under inclusion of all four fixed effect layers (Table 2), the estimated coefficients for O3 (0.0006)
and NO2 (0.0007) are positive and significant; PM10 (0.0002) is not significant. By running separate re-
gressions for each pollutant (Table 3), PM10 (0.0004) and O3 (0.0005) are significant but NO2 (< |0.0001|)
is insignificant. This pattern remains throughout the further regressions: The coefficient estimates for
O3 remain strictly positive and significant while for PM10 and NO2, significance and polarity change
abruptly between regressions or within different stages of the same regression. At least for O3, testing for
non-linearities further reveals that the effect of each additional unit of O3 decreases the race performance
of greyhounds exponentially with increasing O3 concentration (Table 5). The mixed results for PM10

and NO2 might be partially explained by the small variation in the respective pollutant concentration as
visible in Figure 4. Also, as this analysis relies on reanalysis air pollution data, this might as well have
an impact on the results as the model might not be able to accurately reproduce small changes in air
pollutant concentrations which is an essential condition for this analysis.

Altogether, the results of this analysis are not contrary to the expectations: In the case of O3, solid evi-
dence has been found that an increase in its concentration does not only reduce the physical performance
of racing greyhounds but the marginal effect is exponentially intensifying with higher O3 concentrations.
And although the expected similar effects for PM10 and NO2 cannot be confirmed, the coefficient esti-
mates found in this analysis neither suggest contrasting effects; the lack of consistent significant effects
only shows that based on this specific analysis, no clear relationship between either PM10 or NO2 and
the performance of racing greyhounds can be confirmed.

Further work on this field could resolve several uncertainties which are associated with the results of
this analysis. With respect to the lack of variation in the pollutant concentrations, an analysis based on
greyhound race observations from another country such as Australia would potentially offer a broader
range of pollutant concentration values. And ruling out the uncertainty of the impact of reanalysis data
on the results will not be an issue for further work based on the Irish case as the Irish government ex-
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tended the air quality monitoring network gradually since 2017 [EPA, 2023]. Thus, in a few years from
now, working with a research period from 2023 onwards allows the usage of air pollution data from over
100 measuring stations across Ireland (instead of about 30 available for the period from 2013 to 2020)
which eliminates the need for reanalysis data.
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A APPENDIX

A Appendix

A.1 Stadium Information

Table 6. Stadium Information

Stadium Abbreviation Latitude Longitude

Curraheen Park CRK 51.8762016558209 -8.54911570072719
Derry DRY 54.9905919422089 -7.3364784165418
Enniscorthy ECY 52.5007466707794 -6.57530822487508
Galway GLY 53.2791781241726 -9.03967697283273
Harolds Cross HRX 53.323704535055 -6.2774069540582
Kilkenny KKY 52.6625973591212 -7.26191214297558
Limerick LMK 52.6494164259788 -8.65849423328302
Longford LGD 53.7216532788694 -7.79325962258396
Mullingar MGR 53.5215534128107 -7.33923191430418
Newbridge NWB 53.190780536834 -6.82211873888551
Shelbourne Park SPK 53.3405403453828 -6.22971747670822
Thurles Park THR 52.684521511899 -7.82218211450553
Youghal YGL 51.9401200601086 -7.8572566825163

Note: This table provides both the full names as well as the abbreviations for the greyhound race stadiums featured in this
analysis. Also, the exact coordinates of each stadium are presented.

A.2 Correlation Table

Table 7. Correlation Matrix

Finish Time PM10 O3 NO2 Weight Track Cond. Temp. Rain Rel. Hum. W. Speed W. Dir.

Finish
Time

1.00 -0.00 0.08 -0.13 -0.17 -0.12 -0.05 0.02 0.00 0.04 -0.00

PM10 -0.00 1.00 0.05 0.28 0.00 0.08 -0.06 -0.12 -0.01 -0.09 -0.29
O3 0.08 0.05 1.00 -0.44 -0.01 -0.02 0.05 0.07 -0.20 0.22 -0.06
NO2 -0.13 0.28 -0.44 1.00 0.03 0.17 -0.25 -0.00 0.11 -0.22 -0.19
Weight -0.17 0.00 -0.01 0.03 1.00 0.11 0.03 -0.00 -0.01 -0.01 -0.00
Track
Cond.

-0.12 0.08 -0.02 0.17 0.11 1.00 0.01 -0.03 -0.01 -0.02 0.01

Temp. -0.05 -0.06 0.05 -0.25 0.03 0.01 1.00 -0.01 -0.14 -0.02 0.01
Rain 0.02 -0.12 0.07 -0.00 -0.00 -0.03 -0.01 1.00 0.29 0.29 -0.14
Rel.
Hum.

0.00 -0.01 -0.20 0.11 -0.01 -0.01 -0.14 0.29 1.00 0.04 -0.22

W.
Speed

0.04 -0.09 0.22 -0.22 -0.01 -0.02 -0.02 0.29 0.04 1.00 0.12

W.
Dir.

-0.00 -0.29 -0.06 -0.19 -0.00 0.01 0.01 -0.14 -0.22 0.12 1.00

Note: Correlation matrix of all variables which are included in the baseline regression model given by Equation 1.
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A.3 Flat 550, Flat 330 and Flat 350

A.3.1 Finish Time Distribution based on PM10, O3 and NO2 for Flat 550, 330 and 350

Figure 6. Distribution of the Flat 550 observations based on finish time and PM10, O3 and NO2 concentration (n =
32’455). The observations have been grouped within a hexagonal raster. Based on its color, each hexagonal area contains
the specified number of observations.

Figure 7. Distribution of the Flat 330 observations based on finish time and PM10, O3 and NO2 concentration (n =
24’511). The observations have been grouped within a hexagonal raster. Based on its color, each hexagonal area contains
the specified number of observations.

Figure 8. Distribution of the Flat 350 observations based on finish time and PM10, O3 and NO2 concentration (n =
27’329). The observations have been grouped within a hexagonal raster. Based on its color, each hexagonal area contains
the specified number of observations.
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A.3.2 Selected Regression Results for Flat 550, F330 and 350

Table 8. Baseline Model Results for Flat 550, 330 and 350 with Fixed Effects

Dependent Variable: Finish Time (s)
Stage: (1) (2) (3) (4)

Flat 550
PM10 (µg/m3) 0.0007 4.38 × 10−5 6.36 × 10−5 0.0004

(0.0004) (0.0004) (0.0004) (0.0004)
O3 (µg/m3) 0.0008∗∗∗ 0.0007∗∗∗ 0.0007∗∗∗ 6.68 × 10−5

(0.0002) (0.0002) (0.0002) (0.0002)
NO2 (µg/m3) −5.47 × 10−5 0.0014∗∗∗ 0.0014∗∗∗ 0.0004

(0.0004) (0.0005) (0.0005) (0.0005)

Flat 330
PM10 (µg/m3) 0.0006 0.0006 0.0006 0.0005

(0.0004) (0.0004) (0.0004) (0.0004)
O3 (µg/m3) 0.0004∗∗ 0.0005∗∗ 0.0007∗∗∗ 0.0005∗∗

(0.0002) (0.0002) (0.0002) (0.0002)
NO2 (µg/m3) 0.0013 0.0014 0.0021∗∗ 0.0015

(0.0011) (0.0010) (0.0011) (0.0011)

Flat 350
PM10 (µg/m3) 0.0021∗∗∗ 0.0020∗∗∗ 0.0017∗∗∗ 0.0019∗∗∗

(0.0004) (0.0004) (0.0004) (0.0004)
O3 (µg/m3) 0.0003 0.0003 0.0006∗∗∗ 0.0006∗∗∗

(0.0002) (0.0002) (0.0002) (0.0002)
NO2 (µg/m3) -0.0022∗∗∗ -0.0012∗∗ -0.0008 -0.0009

(0.0005) (0.0006) (0.0006) (0.0006)

Fixed-effects
Dog Yes Yes Yes Yes
Stadium Yes Yes Yes
Season Yes Yes
Year Yes

Fit statistics
Observations (Flat 550) 32,455 32,455 32,455 32,455
Observations (Flat 330) 24,511 24,511 24,511 24,511
Observations (Flat 350) 27,329 27,329 27,329 27,329
R2 (Flat 550) 0.68864 0.69526 0.69629 0.69846
R2 (Flat 330) 0.63350 0.63373 0.63432 0.63839
R2 (Flat 350) 0.63113 0.63535 0.63714 0.63963
Within R2 (Flat 550) 0.01648 0.02547 0.02007 0.01682
Within R2 (Flat 330) 0.00715 0.00751 0.00500 0.00380
Within R2 (Flat 350) 0.00871 0.01077 0.00784 0.00602

Note: Baseline model regression results for different race track lengths (each regression includes all three pollutants simul-
taneously). Although not reported here, each regression includes all control variables as specified in Equation 1. Standard
errors in parenthesis are clustered at the entity (dog) level.
Significance levels: ***: p<0.01, **: p<0.05, *: p<0.1
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Table 9. Pollutant-specific Regression Results for Flat 550, 330 and 350 with Fixed Effects

Dependent Variable: Finish Time (s)
Stage: (1) (2) (3) (4)

Flat 550
PM10 (µg/m3) 0.0017∗∗∗ 0.0019∗∗∗ 0.0016∗∗∗ 0.0018∗∗∗

(0.0004) (0.0004) (0.0004) (0.0004)
O3 (µg/m3) 0.0008∗∗∗ 0.0005∗∗∗ 0.0005∗∗∗ 3.27 × 10−7

(0.0002) (0.0002) (0.0002) (0.0002)
NO2 (µg/m3) -0.0007∗ 0.0008∗ 0.0007∗ 0.0005

(0.0004) (0.0004) (0.0004) (0.0004)

Flat 330
PM10 (µg/m3) 0.0009∗∗ 0.0010∗∗∗ 0.0010∗∗∗ 0.0008∗∗

(0.0004) (0.0004) (0.0004) (0.0004)
O3 (µg/m3) 0.0004∗∗ 0.0004∗∗ 0.0005∗∗∗ 0.0004∗

(0.0002) (0.0002) (0.0002) (0.0002)
NO2 (µg/m3) 0.0007 0.0008 0.0010 0.0008

(0.0009) (0.0009) (0.0009) (0.0009)

Flat 350
PM10 (µg/m3) 0.0017∗∗∗ 0.0019∗∗∗ 0.0016∗∗∗ 0.0018∗∗∗

(0.0004) (0.0004) (0.0004) (0.0004)
O3 (µg/m3) 0.0006∗∗∗ 0.0004∗∗∗ 0.0007∗∗∗ 0.0007∗∗∗

(0.0002) (0.0002) (0.0002) (0.0002)
NO2 (µg/m3) -0.0019∗∗∗ -0.0008∗ -0.0010∗ -0.0010∗∗

(0.0005) (0.0005) (0.0005) (0.0005)

Fixed-effects
Dog Yes Yes Yes Yes
Stadium Yes Yes Yes
Season Yes Yes
Year Yes

Fit statistics
Observations (Flat 550) 32,455 32,455 32,455 32,455
Observations (Flat 330) 24,511 24,511 24,511 24,511
Observations (Flat 350) 27,329 27,329 27,329 27,329
R2 (Flat 550; PM10) 0.68827 0.69503 0.69606 0.69845
R2 (Flat 550; O3) 0.68860 0.69513 0.69616 0.69843
R2 (Flat 550; NO2) 0.68827 0.69505 0.69608 0.69844
R2 (Flat 330; PM10) 0.63338 0.63361 0.63409 0.63829
R2 (Flat 330; O3) 0.63336 0.63358 0.63413 0.63827
R2 (Flat 330; NO2) 0.63327 0.63348 0.63397 0.63822
R2 (Flat 350; PM10) 0.63056 0.63515 0.63678 0.63930
R2 (Flat 350; O3) 0.63047 0.63485 0.63680 0.63921
R2 (Flat 350; NO2) 0.63048 0.63474 0.63652 0.63896
Within R2 (Flat 550; PM10) 0.01531 0.02473 0.01932 0.01680
Within R2 (Flat 550; O3) 0.01635 0.02504 0.01965 0.01672
Within R2 (Flat 550; NO2) 0.01529 0.02478 0.01937 0.01677
Within R2 (Flat 330; PM10) 0.00685 0.00717 0.00438 0.00354
Within R2 (Flat 330; O3) 0.00678 0.00710 0.00446 0.00346
Within R2 (Flat 330; NO2) 0.00653 0.00683 0.00405 0.00332
Within R2 (Flat 350; PM10) 0.00717 0.01021 0.00687 0.00511
Within R2 (Flat 350; O3) 0.00692 0.00941 0.00690 0.00485
Within R2 (Flat 350; NO2) 0.00695 0.00911 0.00614 0.00419

Note: Pollutant-specific regression results for different race track lengths (for each race track length, the coefficient of each
pollutant was estimated in a separate regression). Although not reported here, each regression includes all control variables
as specified in Equation 1. Standard errors in parenthesis are clustered at the entity (dog) level.
Significance levels: ***: p<0.01, **: p<0.05, *: p<0.1
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A.4 Pollutant-Specific Regression without Outliers

Table 10. Pollutant-Specific Results without Outliers

Dependent Variable: Finish Time (s)
Independent Variable: PM10 O3 NO2

Variables
PM10 (µg/m3) 0.0004∗∗∗

(0.0001)
O3 (µg/m3) 0.0005∗∗∗

(5.37 × 10−5)
NO2 (µg/m3) −9.79 × 10−5

(0.0001)
Weight (kg) 0.0150∗∗∗ 0.0149∗∗∗ 0.0149∗∗∗

(0.0014) (0.0014) (0.0014)
Track Condition (Value) 0.2159∗∗∗ 0.2170∗∗∗ 0.2162∗∗∗

(0.0097) (0.0097) (0.0097)
Temperature (°C) -0.0051∗∗∗ -0.0055∗∗∗ -0.0050∗∗∗

(0.0002) (0.0002) (0.0002)
Precipitation (mm) 0.0220∗∗∗ 0.0209∗∗∗ 0.0213∗∗∗

(0.0017) (0.0017) (0.0017)
Relative Humidity (%) -0.0004∗∗∗ -0.0002∗∗∗ -0.0004∗∗∗

(7.81 × 10−5) (7.91 × 10−5) (7.8 × 10−5)
Wind Speed (kt) 0.0039∗∗∗ 0.0035∗∗∗ 0.0039∗∗∗

(0.0002) (0.0002) (0.0002)
Predominant Wind Direction (°) −6.77 × 10−5∗∗∗ −6.66 × 10−5∗∗∗ −7.73 × 10−5∗∗∗

(9.1 × 10−6) (8.74 × 10−6) (8.99 × 10−6)

Fixed-effects
Dog Yes Yes Yes
Stadium Yes Yes Yes
Season Yes Yes Yes
Year Yes Yes Yes

Fit statistics
Observations 376,356 376,382 376,378
R2 0.57294 0.57317 0.57297
Within R2 0.00704 0.00731 0.00700

Note: This table shows the estimated coefficients for the regressions with only one pollutant at a time as independent
variable. For each regression, outlier values for the specific pollutant have been excluded from the data set based on visual
inspection. Standard errors in parenthesis are clustered at the entity (dog) level.
Significance levels: ***: p<0.01, **: p<0.05, *: p<0.1
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A.5 Selected Regression Results including Odds Ratio Control Variable

Table 11. Full Model Results including Odds Ratio Control Variable

Dependent Variable: Finish Time (s)
Stage: (1) (2) (3) (4)

Variables
PM10 (µg/m3) 0.0004∗∗∗ 9.26 × 10−5 0.0002 0.0001

(0.0001) (0.0001) (0.0001) (0.0001)
O3 (µg/m3) 0.0010∗∗∗ 0.0011∗∗∗ 0.0010∗∗∗ 0.0006∗∗∗

(5.82 × 10−5) (5.74 × 10−5) (6.18 × 10−5) (6.22 × 10−5)
NO2 (µg/m3) -0.0014∗∗∗ 0.0009∗∗∗ 0.0011∗∗∗ 0.0007∗∗∗

(0.0002) (0.0002) (0.0002) (0.0002)
Weight (kg) 0.0127∗∗∗ 0.0129∗∗∗ 0.0116∗∗∗ 0.0146∗∗∗

(0.0014) (0.0014) (0.0014) (0.0014)
Odds Ratio (Value) -0.0006 -0.0010∗∗∗ -0.0009∗∗ -0.0002

(0.0004) (0.0004) (0.0004) (0.0004)
Track Condition (Value) -0.0199∗∗∗ 0.2921∗∗∗ 0.3058∗∗∗ 0.2185∗∗∗

(0.0066) (0.0102) (0.0101) (0.0097)
Temperature (°C) -0.0059∗∗∗ -0.0059∗∗∗ -0.0054∗∗∗ -0.0054∗∗∗

(0.0002) (0.0002) (0.0002) (0.0002)
Precipitation (mm) 0.0176∗∗∗ 0.0207∗∗∗ 0.0202∗∗∗ 0.0212∗∗∗

(0.0017) (0.0017) (0.0017) (0.0017)
Relative Humidity (%) -0.0002∗∗∗ -0.0003∗∗∗ -0.0002∗∗ -0.0002∗∗

(7.9 × 10−5) (7.8 × 10−5) (7.99 × 10−5) (7.96 × 10−5)
Wind Speed (kt) 0.0026∗∗∗ 0.0038∗∗∗ 0.0035∗∗∗ 0.0036∗∗∗

(0.0002) (0.0002) (0.0002) (0.0002)
Predominant Wind Direction (°) −5.48 × 10−5∗∗∗ −4.07 × 10−5∗∗∗ −5.07 × 10−5∗∗∗ −5.44 × 10−5∗∗∗

(9.47 × 10−6) (9.43 × 10−6) (9.41 × 10−6) (9.36 × 10−6)

Fixed-effects
Dog Yes Yes Yes Yes
Stadium Yes Yes Yes
Season Yes Yes
Year Yes

Fit statistics
Observations 373,526 373,526 373,526 373,526
R2 0.56255 0.56950 0.57111 0.57336
Within R2 0.00996 0.01432 0.01098 0.00739

Note: Standard errors in parenthesis are clustered at the entity (dog) level.
Significance levels: ***: p<0.01, **: p<0.05, *: p<0.1
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Table 12. Pollutant-Specific Results with Fixed Effects including Odds Ratio Control Variable

Dependent Variable: Finish Time (s)
Independent Variable: PM10 O3 NO2

Variables
PM10 (µg/m3) 0.0003∗∗∗

(0.0001)
O3 (µg/m3) 0.0005∗∗∗

(5.37 × 10−5)
NO2 (µg/m3) 4.58 × 10−6

(0.0001)
Weight (kg) 0.0147∗∗∗ 0.0146∗∗∗ 0.0147∗∗∗

(0.0014) (0.0014) (0.0014)
Odds Ratio (Value) -0.0002 -0.0002 -0.0002

(0.0004) (0.0004) (0.0004)
Track Condition (Value) 0.2159∗∗∗ 0.2169∗∗∗ 0.2160∗∗∗

(0.0097) (0.0097) (0.0097)
Temperature (°C) -0.0051∗∗∗ -0.0055∗∗∗ -0.0051∗∗∗

(0.0002) (0.0002) (0.0002)
Precipitation (mm) 0.0223∗∗∗ 0.0213∗∗∗ 0.0216∗∗∗

(0.0017) (0.0017) (0.0017)
Relative Humidity (%) -0.0004∗∗∗ -0.0002∗∗∗ -0.0004∗∗∗

(7.84 × 10−5) (7.93 × 10−5) (7.82 × 10−5)
Wind Speed (kt) 0.0039∗∗∗ 0.0034∗∗∗ 0.0039∗∗∗

(0.0002) (0.0002) (0.0002)
Predominant Wind Direction (°) −7.04 × 10−5∗∗∗ −6.91 × 10−5∗∗∗ −7.83 × 10−5∗∗∗

(9.13 × 10−6) (8.77 × 10−6) (9 × 10−6)

Fixed-effects
Dog Yes Yes Yes
Stadium Yes Yes Yes
Season Yes Yes Yes
Year Yes Yes Yes

Fit statistics
Observations 373,526 373,526 373,526
R2 0.57322 0.57333 0.57320
Within R2 0.00707 0.00732 0.00704

Note: This table shows the estimated coefficients for the regressions with only one pollutant at a time as independent
variable. Standard errors in parenthesis are clustered at the entity (dog) level.
Significance levels: ***: p<0.01, **: p<0.05, *: p<0.1

36



References

Aguilar-Gomez, S., Dwyer, H., Graff Zivin, J., and Neidell, M. (2022). This is air: The “nonhealth”
effects of air pollution. Annual Review of Resource Economics, 14:403–425.

Akoglu, H. (2018). User’s guide to correlation coefficients. Turkish journal of emergency medicine,
18(3):91–93.

Anderson, J. O., Thundiyil, J. G., and Stolbach, A. (2012). Clearing the air: a review of the effects of
particulate matter air pollution on human health. Journal of medical toxicology, 8:166–175.

Araneda, O. F. (2022). Horse racing as a model to study the relationship between air pollutants and
physical performance. Animals, 12(9):1139.

Araneda, O. F. and Cavada, G. (2022). Atmospheric pollutants affect physical performance: A natural
experiment in horse racing studied by principal component analysis. Biology, 11(5):687.

Austin, W., Heutel, G., and Kreisman, D. (2019). School bus emissions, student health and academic
performance. Economics of Education Review, 70:109–126.
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