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1 Abstract

The exchange of carbon dioxide (CO2) between the atmosphere and ocean encompasses a critical role

in the global carbon cycle. Currently, the global ocean acts as a net sink absorbing atmospheric CO2

and contributing to the mitigation of anthropogenic CO2 emissions. The flux of CO2 between the ocean

and atmosphere is mainly caused by the differences in partial pressure of CO2 in the surface ocean and

overlying air. The partial pressure of CO2 (pCO2) in seawater varies with temperature, making the flux

of CO2 highly sensitive to changes in sea surface temperature. Periods of extremely warm sea surface

temperature - also known as marine heatwaves are increasing in frequency, duration, and intensity in

all ocean basins due to anthropogenic climate change. These extremely warm sea surface temperatures

have the potential to alter the flux of CO2 between the ocean and atmosphere. The dynamics of marine

heatwaves and their impact on sea-air CO2 fluxes has recently gained attention with studies investigating

specific regions or specific marine heatwave events and their impacts on sea-air CO2 fluxes. However,

a global assessment of the impacts and drivers of marine heatwaves on sea-air CO2 fluxes is currently

lacking.

In this thesis we consider observation-based data and Earth System model data to assess the impacts

of marine heatwaves on monthly mean sea-air CO2 fluxes from 1990 to 2019. The sea-air CO2 flux

anomalies are then decomposed into the six driving factors: solubility, gas transfer velocity, oceanic

partial pressure of CO2, atmospheric partial pressure of CO2, and sea ice. Oceanic partial pressure of

CO2, the dominating term driving the flux anomalies during marine heatwaves is further broken down

into its contributing terms.

Averaged across the global ocean, we find a reduction in the sea-air CO2 flux of 0.126 (-0.144 to

0.427) PgC/yr (observation-based data) and 0.717 (0.622 to 0.838) PgC/yr (model-based data). These

reductions are mainly caused by increases in the partial pressure of CO2 in the ocean. Results show the

anomalies of oceanic partial pressure of CO2 during marine heatwaves are a net result of two competing

mechanisms: a thermal effect and a dissolved inorganic carbon (DIC) effect. In agreement with previous

findings, a substantial reduction in the equatorial Pacific’s mean outgassing flux -0.086 (-0.135 to -0.008)

PgC/yr (observation-based) and -0.143 (-0.190 to -0.091) PgC/yr (model), is due to lower than usual

oceanic pCO2, caused by anomalously low DIC. In this tropical outgassing region, the DIC driven decrease

in oceanic pCO2 outweighs the thermally driven increase in oceanic pCO2. For the low to mid latitudes,

which are generally characterized by a net uptake of CO2, the thermal effect on oceanic pCO2 dominates

during marine heatwaves. This leads to higher than usual pCO2 in the ocean and as a result anomalous

outgassing of CO2 in these regions. In the high latitudes, there is greater variation in the mean sea-air

CO2 flux, which leads to more areas of potential mismatch in terms of the flux anomalies during MHWs

and their drivers between the observation-based and model data. The model data suggests flux anomalies

in the high latitudes are mainly due to the thermally-driven increase in oceanic pCO2. The observation-

based data suggests flux anomalies in the high latitudes are also driven by the non-thermal DIC effect

on oceanic pCO2, depending on the specific region. Mismatch in the high latitudes and Southern Ocean

can be partly attributed to the coarse horizontal resolution of the ESM model and monthly temporal

resolution of the analysis.

In general, we find the ESM model is able to represent well the sea-air CO2 fluxes and anomalies
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during MHWs as well as the drivers of such flux anomalies compared to the observation-based data.
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2 Introduction

The ocean and the exchange of carbon dioxide (CO2) between the ocean and the atmosphere play a

critical role in the global carbon cycle and Earth’s climate. The ocean with 38,000 Gt of carbon is the

largest rapidly exchanging carbon reservoir and due to its exchange of carbon with the atmosphere it has

a major control on atmospheric CO2 concentrations (Ciais et al., 2013; Sarmiento and Gruber, 2006).

The surface ocean and atmosphere exchange CO2 through gas exchange. This gas exchange is mainly

driven by the difference in partial pressure of CO2 between the atmosphere and surface ocean (Ciais

et al., 2013). With humans emitting substantial quantities of carbon dioxide into the atmosphere, due to

activities such as fossil fuel burning, production of cement and land-use changes, the partial pressure of

CO2 in the atmosphere is increasing. In response to increased atmospheric pCO2 levels, the ocean uptakes

CO2 in order to equilibrate the sea-air interface. Thus, the global ocean also plays an important role

in mitigating global warming. Each year, the ocean takes up about a quarter of anthropogenic carbon

dioxide emissions (Sabine et al., 2004; Gruber et al., 2009; Friedlingstein et al., 2022). Furthermore,

the ocean comprises the only true net sink (195 ± 35 GtC since 1790) for anthropogenic CO2 over the

past 200 years - for a carbon balance defined as the difference between the fossil-fuel emissions and the

combination of the ocean inventory and atmospheric inventory change (Sabine et al., 2004). Without

the ocean, atmospheric CO2 levels would be more than 80ppm higher than they are today (based on the

419ppm 2022 annual average) (Jiang et al., 2023). Model simulations project an increase in the strength

of the oceanic sink over the next few decades under increasing CO2 emissions, but the spatial distribution

of the oceanic sink strength is still uncertain (Lee et al., 2021).

While the global ocean is a net sink for anthropogenic CO2, it is not evenly distribution throughout

the ocean. For example, high anthropogenic CO2 concentrations are found in the North Atlantic where

upwelling in the subpolar gyre exposes deeper waters to the atmosphere, permitting them to take up

anthropogenic CO2; and deep water forming in the Labrador and Greenland Seas transports the anthro-

pogenic carbon into the deep ocean (DeVris, 2022). As anthropogenic CO2 invades the ocean via gas

exchange at the sea-air interface, it reacts with seawater forming carbonic acid (H2CO3), which then

dissociates into bicarbonate (HCO3-) and carbonate (CO3
2−) ions. The sum of these makes up dissolved

inorganic carbon (DIC) in the ocean. DIC along with wind speed, sea surface temperature (SST), salin-

ity (SSS), alkalinity (ALK, a measure of excess of bases over acids), and atmospheric partial pressure of

CO2 (pCO2) determine the magnitude and sign of the sea-air CO2 exchange. These variables themselves

are governed by physical ocean conditions, ocean circulation patterns, air-sea interactions and biology

(Mignot et al., 2021). For example, the ocean’s ability to absorb carbon is partly dependent on tem-

perature. As temperature increases, the solubility of CO2 in the ocean water decreases, which increases

oceanic pCO2 and drives carbon into the atmosphere (Williams and Follows, 2011). Additionally, in the

North Atlantic where deep water formation occurs and transports carbon to the deeper ocean, the surface

ocean in this region is able to take up more CO2 contributing to a flux of CO2 into the ocean. Regional

patterns in the sign of the sea-air exchange emerge: oceanic outgassing of CO2 occurs in tropical regions

and oceanic uptake of CO2 occurs in mid-high and northern high latitudes (Gruber et al., 2009; Williams

and Follows, 2011).

The increase in oceanic uptake of anthropogenic CO2 is not the only change occurring in the oceans.
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In the past century, marine heatwaves (MHWs) or prolonged periods of anomalously warm sea surface

temperatures have globally increased in frequency, intensity, and duration on average (Oliver et al., 2018;

Holbrook et al., 2019). For example, the number of MHW days has doubled between the beginning of

the satellite period in 1982 and 2016. Projections show on average, an increase in this number by a

factor of 16 for global warming of 1.5 degrees Celsius relative to pre-industrial levels, and by a factor of

23 for global warming of 2.0 degrees Celsius (Frölicher et al., 2018). Over the last few decades, MHWs

were identified in all ocean basins. For instance, prominent and impactful MHW events occurred in the

northern Mediterranean Sea in 2003, along the Western Australian coast in 2011, the northwest Atlantic

in 2012, the northeast Pacific over 2013–2015, off southeastern Australia in 2015/16 and across northern

Australia in 2016. The increase in the likelihood of recent MHWs is mainly due to the mean trend in sea

surface temperatures as a result of anthropogenic climate change (Oliver et al., 2019; Laufkötter et al.,

2020; Frölicher et al., 2018). For instance, as of 2018, 87% of MHWs were attributed to anthropogenic

warming (Frölicher et al., 2018). Individual MHWs however can arise due to a combination of local oceanic

and atmospheric processes including sea-air heat flux, horizontal temperature advection, horizontal and

vertical mixing, and entrainment of water. Sea-air heat flux and horizontal temperature anomalies are the

main contributors to MHW events; the horizontal and vertical mixing and entrainment terms contribute

less to the temperature changes associated with MHWs (Oliver et al., 2021). A MHW event due to

horizontal temperature advection can occur when the background state is perturbed by an anomalous

flow creating high SST anomalies. For example, a poleward geostrophic flow in a western boundary

current region perturbed by an anomalous Ekman flow associated with wind stress to the northeast, can

cause anomalously high SSTs (Figure 1) (Oliver et al., 2021). A MHW event driven by air-sea heat

flux anomalies is a result of changes in the net air-sea heat flux. This net flux is the sum of the net

shortwave and longwave radiation, and latent and sensible turbulent heat fluxes. An air-sea heat flux

MHW event can arise due higher net shortwave radiation and or sensible turbulent heat fluxes due to

lower cloud cover and greater insolation (Oliver et al., 2021; Gupta et al., 2020). These cases are often

accompanied by an atmospheric high-pressure system and reduced wind speeds, which weaken vertical

mixing and reduce the mixed layer depth (Figure 1) (Gupta et al., 2020). Moreover, reduced wind

speeds can cause anomalously lower latent heat loss from the ocean further contributing to sea surface

temperature increases (Oliver et al., 2021). MHWs can also be modified by large-scale climate variability

including remote sources via teleconnections (Oliver et al., 2021). This can be through oceanic Kelvin

waves, Rossby waves, atmospheric blocking, intraseasonal modes (such as Madden-Julian Oscillation),

interannual modes (such as El Niño Southern Oscillation and Indian Ocean Dipole), and decadal modes

(Interdecadal Pacific Oscillation, Atlantic Multi-decadal Oscillation) or a combination of these (Holbrook

et al., 2019).
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Figure 1: Idealized example of a MHW event caused by horizontal temperature advection (b-d), and a MHW event caused by air-sea
heat flux anomaly (e-g). Figure from: Oliver et al. (2021).

The threats associated with MHWs can be severe. MHWs can cause devastating impacts on marine

ecosystems and socio-economic systems (Collins et al., 2019). Observed impacts of MHWs include range

shifts of marine species, toxic algal blooms, mass coral bleaching events, loss of biodiversity and ecolog-

ically important foundation species, and mortalities of important commercial fish species (Cheung and

Frölicher, 2020; Hughes et al., 2017; Smale et al., 2019; Cheung et al., 2021; Frölicher and Laufkötter,

2018). In addition, Mignot et al. (2021) found that persistent MHWs cause a reduction in oceanic CO2

release in the tropics linked to ENSO and a reduction in oceanic CO2 uptake in the North Pacific. While

Mignot et al. (2021) provides a strong foundation to investigate the interplay and impacts of MHWs on

sea-air CO2 fluxes, there are at least two aspects to build on. Firstly, they only consider ’persistent’

MHWs, which they define as MHWs whose duration and mean sea surface temperature anomaly exceed

the 95th percentile of their global historical distribution. This equates to a MHW duration greater than

38 days and mean sea surface temperature anomaly of 2.3 degrees Celsius (Mignot et al., 2021). Fur-

thermore, they consider only points where persistent MHWs have reoccurred at least 3 times during the

period 1985-2017. Applying such an extreme criteria leads to the exclusion of a large number of MHWs.

For example, Vogt et al. (2022) applies a 90th percentile to identify sea surface temperature extremes

for a similar time period (1981-2020) and found the global mean duration of MHWs to be 4.6 days with

observation-based sea surface temperature data and 15 days with model sea surface temperature data.
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Secondly, Mignot et al. (2021) focuses mostly on the Pacific Ocean where the strongest change in sea-air

CO2 flux during MHWs occurs. Mignot et al. (2021) describes the impact of MHWs on sea-air CO2 fluxes

as a result of two competing mechanisms: (1) increased sea surface temperatures reducing the solubility of

CO2, increasing oceanic pCO2, and reducing oceanic CO2 uptake and, (2) increased density stratification

reducing vertical mixing and entrainment, decreasing surface dissolved inorganic carbon, and increasing

oceanic CO2 uptake. These competing mechanisms can be referred to as the thermal effect (1) and DIC

advection effect (2). Mignot et al. 2021 concludes the temperature effect (1) outweighs the advection

effect (2) in the north Pacific. Another recent case study by Duke et al. (2023) on estimating marine

carbon uptake considers MHW impacts on the northeast Pacific ocean CO2 sink. Duke et al. (2023) finds

rather MHWs allow for enhanced atmospheric CO2 uptake. In contrast to Mignot et al. (2021), Duke

et al. (2023) attributes the flux anomalies in the northeast Pacific to the reduced winter mixing which

is a result of weaker winds and increased density stratification, enhancing atmospheric CO2 uptake (the

advection effect dominates). The differences are potentially due to the study area, as Mignot et al. (2021)

considers the North Pacific subtropical gyre and Duke et al. (2023) looks at the North Pacific subpolar

gyre. Nevertheless the varying results underline the need for more studies focusing on the interplay of

MHW events and sea-air CO2 fluxes to understand how carbon sinks and sources react to climate change

and eventually help humans plan their carbon reduction commitments.

This thesis involves a global approach to investigate the impacts of MHWs on the sea-air CO2 fluxes

and the drivers behind these CO2 flux anomalies using both observation-based and model-based data. A

comprehensive global approach to the impact of MHWs on sea-air CO2 fluxes has not been done yet and

is particularly important because oceanic regions vary greatly in terms of the magnitude and direction

of the mean sea-air flux due to unique physical characteristics, ocean circulation patterns, biological net

production and sea-air interactions. This thesis has three aspects. The first objective is to globally

assess if and how MHWs impact sea-air CO2 fluxes using observation-based data. The second objective

is a replication of objective 1 but for the GFDL ESM2M model data. The third objective is to assess

the drivers of the CO2 flux anomalies during MHWs for both the observation and model-based data,

by decomposing the sea-air CO2 flux into it’s individual contributions, and finally further decomposing

the dominating contribution. The parallel approach of using observation-based and model data for

each objective not only allows for an evaluation of the accuracy of the model data but can aid future

downstream analyses furthering the investigation of the driving mechanisms behind changes in the sea-air

CO2 flux during MHWs.

3 Data & Methods

In this section, the observation-based data and the Earth System Model (ESM) data used to assess

sea-air CO2 fluxes during marine heatwaves and their drivers are described. Additionally, the analytical

tools to derive the results are introduced.

3.1 Observation-based data

The global observational-based SST data used in this research to identify marine heatwaves is sourced

from the National Oceanic and Atmospheric Administration (NOAA) Daily Optimum Interpolation Sea
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Surface Temperature (OISST) dataset v2.1 (Huang et al., 2021). It is a long-term climate data record from

1 September 1981 to present day, available in daily mean time steps with a resolution of 0.25°x0.25°. The
product incorporates in situ ship and buoy sea surface temperature observations with satellite sea surface

temperatures derived from the Advanced Very High-Resolution Radiometer to provide a daily global

record of surface ocean temperature observations on a regular global grid. The dataset is interpolated to

fill any gaps and provide a spatially and temporally complete map of sea surface temperature. In this

thesis, the daily mean SST data is regridded to 1°x1° and averaged to monthly timesteps for the period

1982-2021 to match the spatial and time resolution of the pCO2 data.

For the observation-based sea-air CO2 flux data, the SeaFlux version 2021.04 data product with 1°x1°
grid is used (Fay et al. 2021). SeaFlux is an ensemble data product that utilizes six global observation-

based pCO2 products and five global wind reanalyses to generate sea-air CO2 fluxes in monthly time

steps for the time period 1990-2019. The six observation-based pCO2 products used in SeaFlux consist of

three neural network-derived products (CMEMS-FFNN, MPI-SOMFFN, NIES-FNN), one mixed layer

scheme product (JENA-MLS), one multiple linear regression product (JMA-MLR), and one machine

learning ensemble product (CSIR-ML6) which is an ensemble average of six machine-learning models.

As seen in table 1, the six observation-based pCO2 products use different versions of the raw pCO2 data

available from the Surface Ocean Carbon Dioxide Atlas (SOCAT) (Bakker et al., 2016). SOCAT is an

activity of the international marine carbon research community, with the aim to provide public access to

gridded monthly mean surface water fugacity of carbon dioxide on a 1°x1° grid with minimal temporal

or spatial interpolation (Bakker et al., 2016). SOCAT data are released in versions, with each succeeding

version containing new data sets as well as updates of older ones. More information on SOCAT can be

found at the webpage: https://socat.info/. The five wind reanalysis products in SeaFlux are CCMPv2,

ERA5, JRA55, NCEP2, NCEP1, which were created by extrapolating historical wind speed observations

through modeling and data assimilation systems (Fay et al., 2021). In this research, the SeaFlux dataset

(with the six different pCO2 products and five different wind products) makes up an observation-based

ensemble of 30 members. Refer to Table 1 and 2 for a complete summary of the differences between the

pCO2 and wind products.

The common approach to estimate the net flux of CO2 across the sea-air interface is through the use

of surface ocean CO2 observations and a bulk parameterization approach. SeaFlux applies the standard

bulk parameterization approach to estimate the net sea-air CO2 flux (Fsea−air). This approach is based

on the bulk formula (Wanninkhof, 1992):

Fsea−air = kw · ρ · sol · (pCO2 − pCO2atm) · (1− ice) (1)

where kw is the gas transfer velocity (in units m s−1), ρ is a constant (1035 kg m−3) representing the

density of surface seawater, and it is only included depending on the units of solubility), sol is the

solubility of CO2 in seawater (in units of mol kg−1µatm−1 with ρ; or mol−3µatm−1 without ρ), pCO2 is

the partial pressure of surface ocean CO2 (in units of µatm), and pCO2atm represents the partial pressure

of atmospheric CO2 in the marine boundary layer (in units of µatm). The ice fraction is included to take

into account the seasonal ice cover in high latitudes. Sea ice can act as a lid inhibiting sea-air carbon

exchange (Gupta et al., 2020). Thus, the fluxes are then weighted by 1 minus the ice fraction, i.e. the

open ocean fraction (Fay et al., 2021). The gas transfer velocity is calculated using the quadratic wind
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speed dependence (Wanninkhof, 1992):

kw = a · U2 · (Sc/660)−0.5 (2)

where the units of kw are in m s−1, Sc is the dimensionless Schmidt number, and U denotes the average

monthly wind speed for 10m high winds (m s−1) and a is the scaling of the coefficient of gas transfer in

units (m s−1)2. In the SeaFlux dataset, the coefficient, a, is not consistent for each wind product and is

individually calculated based on Naegler (2009). Morever, the Schmidt number for CO2 is defined as:

Sc = A−B · T 2 + CT 2 −DT 3 (3)

where A, B, C, and D are constants which differ between the observation-based and model calculations.

For the observation-based, the coefficients for CO2 are taken from Jähne et al. (1987). For the ESM2M

data, A = 2068.9, B=118.63, C=2.9311, and D=0.027. T is temperature (in °C).
SeaFlux applies this uniform methodology for CO2 flux calculations on the different pCO2 and wind

products. However, before this flux calculation is done two important steps occur: area filling for missing

pCO2 product data and calculation of the gas exchange coefficient a. The largest contributors to the

methodological discrepancies can be attributed to these steps (Fay et al., 2021). For example, the pCO2

area adjustment results in an increase in CO2 uptake of 0-17% relative to the original (depending on the

product) (Fay et al., 2021). The first step of pCO2 area filling is necessary because the six pCO2 products

have variable spatial coverage (as seen in Table 1). There is variable spatial coverage because pCO2

products are limited by the areal extent of proxy variables which help extrapolate in situ observations

(Supplementary Figure 1). Some of the mapped pCO2 products miss coastal and high latitude regions.

To address this, SeaFlux applies Landschützer et al. (2020b)’s open and coastal merged climatology

product which includes coverage in the coastal and Arctic regions to fill any missing grid cell with a

scaled value based on this global-coverage climatology. This allows for consistent and complete global

ocean coverage of the flux for each pCO2 product despite missing areas in the original pCO2 product.

The second step pertains to the scaling of the gas transfer coefficient (a). The ideal coefficient depends

on the wind speed product. SeaFlux scales the gas transfer coefficient for each product with Naegler

(2009)’s equation for a, in which it chooses to scales kw to a single global value of 16.5 cm h−1 for all

wind products. Fay et al. (2021) states scaling kw to a single global value for all wind products reduces the

spread of flux estimates. Without scaling (a) for each product, and just applying a set value for the gas

transfer coefficient, calculated global fluxes could be as high as 9% different depending on the pCO2 and

wind reanalysis product considered (Fay et al., 2021). By determining the optimal a coefficient for each

of the reanalysis winds, uncertainty in the global fluxes is decreased. Results are presented in terms of

the ensemble member average, but analyses were done for each ensemble member (i.e. each combination

of one pCO2 and one wind product). Additionally, we compare the sea-air flux anomalies between the

individual pCO2 products, and between the individual wind products.
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Table 1: Summary of the six observation-based pCO2 products used in SeaFlux to calculate the sea-air
CO2 flux.

pCO2 mapping
product

Area coverage (%
global ocean)

Surface-ocean
pCO2 data

Reference

CMEMS-FFNN 89% SOCAT v5
Denvil-Sommer et al. (2019),
Chau et al. (2022)

CSIR-ML6 93% SOCAT v5 Gregor et al. (2019)

JENA-MLS 100% SOCAT v1.5 Rödenbeck et al. (2013)

JMA-MLR 85% SOCAT v5 Iida et al. (2020)

MPI-SOMFFN 89% SOCAT v5
Landschützer et al. (2014),
Landschützer et al. (2020a)

NIES-FNN 91% SOCAT v2 Zeng et al. (2014)

Table 2: Summary of five observation-based wind products used in combination with the observational
pCO2 products in SeaFlux. The date range starts for the first full year of data. Mean wind speed is given
for the ice-free ocean for the three decade period 1990-2019.

Wind
product
name

Temporal
Resolu-
tion (hr)

Spatial
Resolu-
tion (°)

Date range
Mean
speed (m
s−1)

Scaled co-
efficient of
gas transfer
(a) (m/s)2

Reference

Cross-
Calibrated
Multi-
Platform
v2

6 0.25
1988-
present

7.7 0.257
Atlas R. et al.
(2009)

ECMWF
Reanalysis
5th Gener-
ation

1 0.25
1979-
present

7.5 0.271
Hersbach et al.
(2020)

Japanese
55-year
Reanalysis

3 0.50
1958-
present

7.6 0.260
Kobayashi et al.
(2015)

NCEP-
NCAR
reanalysis
1

6 2.50
1948-
present

7.2 0.287
Kalnay et al.
(1996)

NCEP-
NCAR
reanalysis
2

6 2.50
1979-
present

8.3 0.218
Kanamitsu
et al. (2002)

3.2 ESM2M model data

The Earth System Model (ESM) data used in this thesis is from the global coupled carbon-climate

Earth System Model, ESM2M developed at the Geophysical Fluid Dynamics Laboratory (GFDL) of the

National Oceanic and Atmospheric Administration (NOAA) (Dunne et al., 2012, 2013). ESMs represent
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major carbon reservoirs and fluxes based on atmosphere, ocean, land, and sea ice dynamics and include

chemistry and ecological dynamics as well. ESM2M consists of an ocean model MOM4p1 (Griffies, 2009)

which includes an ocean biogeochemistry model TOPAZ2 (Dunne et al., 2013), an atmospheric model

AM2 (Anderson et al., 2004), a land model LM3.0 (Shevliakova et al., 2009), a sea ice model (Winton,

2000), and iceberg dynamics (Martin and Adcroft, 2010). A coupler allows the modules to pass fluxes

across their interfaces, and ensures energy, mass and tracer conservation (Dunne et al., 2013). The ocean

component runs with a two hour time step. Likewise, the fluxes between the ocean and atmosphere are

exchanged on a two hour timestep. Thus, the sea-air flux data is calculated in 2 hourly timesteps. For

this thesis, the original flux data was averaged into monthly timesteps to align with the observation-based

data.

For the purpose of this research, the MOM4p1 and TOPAZv2 are briefly described. The MOM4p1

has a 1° horizontal grid up to 1/3° meridionally at the equator and tripolar grid above 65°N (two poles

in the Northern Hemisphere and one in the Southern Hemisphere) with 50 vertical levels. The ocean

biogeochemical and ecological component TOPAZ, includes 30 tracers to describe the cycles of carbon,

nitrogen, phosphorous, silicon, iron, oxygen, alkalinity, lithogenic material, and lastly surface sediment

calcite (Dunne et al., 2012). It includes processes such as gas exchange, atmospheric deposition, scav-

enging, N2 fixation and denitrification, river inputs, and sediment processes to represent the interaction

of biologically active elements and ecological cycling with the carbon cycle (Dunne et al., 2010). The

carbonate chemistry and sea-air CO2 exchange are based on the Ocean Carbon-Cycle Model Intercompar-

ison Project (OCMIP2) recommendations of Najjar and Orr (1998). The carbonic acid and bicarbonate

dissociation constants are based on Mehrbach et al. (1973), the solubility of CO2 is consistent with Weiss

(1974), and finally, the gas transfer velocity is calculated from the wind speed and Schmidt number based

on Wanninkhof (1992).

ESM2M has been proven to successfully simulate sea surface temperature variability, and has been

used in previous studies to analyze MHWs (Frölicher et al., 2018; Vogt et al., 2022; Bopp et al., 2013;

Le Grix et al., 2022) as well as MHW events in terms of their impacts on carbonate chemistry related

variables (Burger and Frölicher, 2023). For this thesis we use a model ensemble of 30 members each with

differing initial conditions.

3.3 Marine heatwave definition

There are various options to quantitatively define a marine heatwave (Oliver et al., 2021). MHWs

are often defined as periods in time where sea surface temperature exceeds a certain absolute or relative

threshold, with definitions differing mainly in the choice of threshold. This thesis applies a seasonally

varying threshold. A seasonally varying threshold allows extremes to occur at equal likelihood throughout

the year regardless of the season (Hobday et al., 2016). A unique threshold is defined for each month

which varies according to the seasonal cycle and seasonal variability. For the seasonally varying threshold

a percentile for the threshold must be selected. The 90th percentile is selected, consistent with other

extreme analyses (Hobday et al., 2016; LeGrix et al., 2021), as it is high enough to indicate extremes but

also low enough to provide a sufficient sample of MHW months for statistical analyses. Detrended sea

surface temperature data from January 1982 - December 2021 is used to identify the seasonally varying

percentile. For every grid cell, a MHW is identified if the sea surface temperature anomaly for a month
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is greater than 90 percent of anomalies for the same month in all years at that grid cell. This results in

a marine heatwave mask of three dimensions (time, latitude, longitude). It can also be noted that the

marine heatwave identification is unique for each model ensemble member, as in the seasonally varying

threshold is recalculated for each model ensemble member. However, the ensemble variation is minimal

in this regard.

3.4 Marine heatwave metrics

To assess the skill of the ESM2M model in simulating MHW events, three MHW metrics are compared

between the model-based data and NOAA OISST v2.1 dataset. MHW magnitude, intensity, and duration

on a monthly timescale between 1982-2021 are considered. MHW intensity is calculated as the maximum

difference between the SST data and the seasonally varying threshold; MHW magnitude is calculated as

the maximum difference between the SST data and the seasonal climatological cycle; and MHW duration

quantifies the length in consecutive months when the data exceeds the seasonally varying threshold

(Frölicher et al., 2018; Oliver et al., 2021; Holbrook et al., 2019). For observation-based and model

comparisons, the calculated observation-based MHW metrics are regridded onto the model tripolar grid.

Figure 2 shows the model-observation comparison for all three metrics. Overall, the model simulates

similar spatial patterns of the three metrics. The model and observation spatial patterns of maximum

MHW intensity agree well. Global mean intensity is at 1.0 K in the NOAA dataset and 1.1 K in the model.

The equatorial Pacific and western boundary currents emerge as regions with the highest maximum

intensity (Figure 2d, 2e ). For the equatorial Pacific this is most likely a result of El Niño events. For

the western boundary currents, it is likely a result of the intense atmosphere-ocean interactions, strong

currents, and sharp horizontal temperature gradients in these regions. The model shows slightly more

intense heatwaves in these regions compared to the observations, as well as more intense heatwaves in the

Southern Ocean and northern high latitudes. The high latitude and Southern Ocean deviations could be

a result of limited or poor observation-based data.

Larger differences between the observation and model data occur for the maximum magnitude and

duration metrics (Figure 2c, 2i). Although the spatial patterns of MHW magnitude agree well between

the model and observations, the model predicts greater magnitudes than the observation data. The global

maximum magnitude is 1.9 K in the NOAA dataset and 2.1 K in the model. The model overestimates the

maximum magnitude mainly in the equatorial Pacific, Southern Ocean, northwest Pacific. On the other

hand the model predicts a lower magnitude for the latitudinal strip around 45°S and off the west coast

of the United States. In terms of mean duration, the model clearly overestimates the mean duration

compared to observations (Figure 2i). The global average duration of MHWs is 1.867 months in the

NOAA dataset and 2.377 months in the model. MHWs are longer at almost all locations globally in the

model, and longest in the equatorial pacific region, where it is directly impacted by El Niño events. The

model shows a larger area in the equatorial Pacific with the longest events, where the MHW duration

is 4 months or longer. This is consistent with the overly strong simulated ENSO variability in ESM2M

model (Dunne et al., 2012).
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(a) Max magnitude ESM2M (b) Max magnitude OISST (c) Max magnitude model - observations

(d) Intensity ESM2M (e) Intensity OISST (f) Max intensity model - observations

(g) Duration ESM2M (h) Duration OISST (i) Duration model - observations

Figure 2: Global comparison between model and observation-based marine heatwave metrics: magnitude (top row), max intensity
(middle row), and duration (bottom row). The difference between the model and observational values are presented in the far right
column. Intensity is calculated as the maximum magnitude, meaning the maximum exceedance of the SST data to the seasonally
varying percentile threshold. Magnitude is calculated as the maximum exceedance of the SST data to the seasonal climatological cycle.
Duration is calculated as the length of time in which the data exceeds the seasonally varying threshold in months. These metrics are
from MHWs over the period January 1982 through December 2021.

Although these metrics are considered on the monthly timescale, monthly data is able to capture the

spatial trends seen in these metrics with daily data. Similar patterns are observed between the global

maps produced with monthly data presented above, and Vogt et al. (2022)’s global maps of the metrics

produced with the same NOAA OISST v2.1 dataset at daily time steps.

3.5 Analysis Methods

3.5.1 Region definitions

A set of specific geographical regions is established in this thesis for more in depth analyses. Eight

regions were selected in regard to the differing characteristics of ocean basins (e.g., strong or weak CO2

sink or source regions) to highlight patterns and dynamics at play during MHWs with particular ocean

basin characteristics. The regions are visualized in Figure 3, and the geographical coordinates can be

found in Table 3. The data in all the grid cells of a rectangular box are averaged, weighted by their grid

cell area.
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Figure 3: Definition of the eight study regions used for analysis. Each region is a rectangular box. The background coloring depicts
the average sea-air CO2 flux state from the 30 observation-based ensemble for the years 1990-2021, with blue indicating an ingassing
of CO2 into the ocean and red indicating an outgassing of CO2 from the ocean.

Table 3: Definition of regional latitude–longitude boxes.

Region Longitude range Latitude range

Northern Pacific 140°E - 130°W 65°N - 40°N
Northern Atlantic 70°W - 10°E 65°N - 40°N
Low-Mid Latitude Northern Hemisphere Full 10°N - 40°N
Equatorial Indian 40°E - 125°E 10°S - 10°N
Equatorial Pacific 125°E - 80°W 10°S - 10°N
Equatorial Atlantic 77°W - 10°E 10°S - 10°N
Low-Mid Latitude Southern Hemisphere Full 10°S - 45°S
Southern Ocean Full 65°S - 45°S

3.5.2 MHW sea-air CO2 flux anomalies

The monthly sea-air CO2 flux anomalies during MHWs are obtained for the period 1990-2019 by first

removing a climatological value in the monthly mean flux data. The climatological values correspond to

the sum of the long-term linear trends and seasonal monthly means. These flux anomalies are denoted

as prime moving forward (eg. F′
sea−air). In order to find the flux anomalies during marine heatwaves,

the three dimensional (time, latitude, longitude) marine heatwave mask is applied to this flux anomaly

data to isolate data for only the time periods and grid cells that experienced MHWs, resulting in the

sea-air CO2 flux anomalies during MHWs. Flux anomalies during MHWs were calculated for each grid

cell experiencing a heatwave and for each of the 8 study regions. The same MHW definition and process

to calculate flux anomalies is applied to both observation-based and model data.

In order to determine if the sea-air CO2 flux anomalies during MHWs present a significant change

to the mean CO2 flux, a two-mean statistical test for difference is conducted globally and for each

region. This test is performed under the assumption that the two mean samples are independent and

have identical variances. The null hypothesis is that the two samples have identical averages and the

alternative hypothesis is that the averages are significantly unequal. The test statistic t is calculated as
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the difference in means of sample 1 and 2, divided by the standard error. The test statistic outputs are

used to determine the p-values. If the p-value is below the 0.05 level threshold for statistical significance

(a 95% confidence interval), then the null hypothesis is rejected in favor of the alternative hypothesis.

3.5.3 Decomposition of sea-air flux anomalies

As a precursor to the Taylor decomposition of the flux anomalies during MHWs, monthly sea-air

CO2 fluxes are manually calculated using equation 1 and the five flux equation inputs. This step is done

to ensure confidence in the individual flux input data before the Taylor decomposition is performed.

Firstly, for the observation-based data, SeaFlux provides the flux input datasets: gas transfer velocity

(kw), solubility (sol), pCO2oc , pCO2atm , and sea ice fraction, all in monthly time steps. The gas transfer

velocity (kw) can be recalculated based on equation 2. The solubility can be recalculated according to

Weiss (1974), where:

sol = −60.2409 + 93.4517

(
100

SST

)
+ 23.3585 log

(
SST

100

)
+

SSS

(
0.023517− 0.023656

(
SST

100

)
+ 0.0047036

(
SST

100

)2
) (4)

The observation-based pCO2 atmosphere can be recalculated as the dry air mixing ratio of atmospheric

CO2 multiplied by sea level pressure at monthly resolution, and then corrected for water vapor accord-

ing to Dickson et al. (2007). Using these individual datasets of solubility, gas transfer velocity, pCO2oc ,

pCO2atm , and sea ice, we recalculate the flux and refer to this as the observation-based ’manually recal-

culated’ monthly flux.

In terms of the model data, the existing model data for sea surface temperature, salinity, wind speed

(U), and oceanic pCO2 is used. The gas transfer velocity (kw), solubility, and atmospheric pCO2 need to

be calculated. The gas transfer can be calculated with equation 2, with the constant a equal to 0.337.

Solubility can be calculated with equation 4 based on Weiss (1974). Finally, the model atmospheric pCO2

data is calculated according to Najjar and Orr (1998), where sea level pressure is first subtracted by the

water vapor pressure at saturation and then multiplied by the dry air mixing ratio of atmospheric CO2:

[A]sat = K0fA = K0CfpA = K0Cf (Pa − pH2O)xA (5)

For a gas A, K0 is its solubility, Cf is its fugacity coefficient, Pa is the total atmospheric pressure (atm),

pH2O is the water vapor pressure at saturation (atm), and xA is its mole fraction in dry air (Orr et al.,

2017).

After manually recalculating the fluxes for both the observation-based and model data, flux anomalies

during MHWs for these recalculated data are determined using the same definition outlined in 3.3.

These manually recalculated anomalies will be compared to the ’true’ SeaFlux and model simulated flux

anomalies and eventually to the sum of the flux decomposition terms. It must be noted that in this

thesis, the model simulated data for the flux variables (sea surface temperature, salinity, wind speed,

pCO2 ocean) were only available in monthly time steps (the data with the original 2 hourly timestep was
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not currently available but could be obtained for future analyses). As a result, the model ’recalculated

flux’ is in monthly timesteps whereas the ’true’ ESM2M flux data is originally for 2 hourly timesteps and

then averaged to monthly timesteps.

To determine the driving mechanisms causing the sea-air CO2 flux anomalies during MHWs, a first-

order Taylor series decomposition is performed in terms of the flux equation components. This allows

to see how much sea surface temperature, oceanic pCO2, atmospheric pCO2, salinity, wind, and sea ice

each contribute to the overall sea-air CO2 flux anomaly during MHWs. The first order Taylor series

decomposition for equation (1) is:

F ′
sea-air ≈

∂Fsea-air

∂sol
·∆sol +

∂Fsea-air

∂kw
·∆kw +

∂Fsea-air

∂pCO2oc
·∆pCO2oc

+
∂Fsea-air

∂pCO2atm
·∆pCO2atm +

∂Fsea-air

∂ice
·∆ice

(6a)

∂Fsea-air

∂sol
= kw · ρ · (pCO2 − pCO2atm) · (1− ice) (6b)

∂Fsea-air

∂kw
= sol · ρ · (pCO2 − pCO2atm) · (1− ice) (6c)

∂Fsea-air

∂pCO2oc
= kw · ρ · sol · (1− ice) (6d)

∂Fsea-air

∂pCO2atm
= −kw · ρ · sol · (1− ice) (6e)

∂Fsea-air

∂ice
= −kw · ρ · sol · (pCO2 − pCO2atm) (6f)

The right hand side of equation (6a) represents the contributions of solubility, the gas transfer velocity,

partial pressure of CO2 for the ocean and atmosphere, and sea ice fraction. The delta values represent

the anomalies of the variable during MHWs. As noted in section 3.1, the density of surface seawater

(ρ) is a constant and only applied with the model data to satisfy the solubility unit. Thus, ρ does not

constitute a term in the decomposition. The partial derivatives were calculated for each grid cell.

The decomposition was done for each of the 30 observation-based ensemble members, the six observation-

based pCO2 products (using the average of the 5 wind products), and for each model ensemble member.

Results are presented in terms of the ensemble average (observation-based and model). The sum of the

decomposition terms is then compared to true and recalculated anomalies for the SeaFlux and model data.

If the sum of the decomposition terms is close to the true and recalculated observation-based/model data

sea-air CO2 flux anomalies, it suggests the decomposition results are meaningful and interpretable. A

mismatch between the sum of the decomposition terms with the true and recalculated anomalies can be

due to the non-linearity in the function that maps solubility, gas transfer velocity, oceanic and atmospheric

pCO2 and sea ice fraction to sea-air CO2 flux.
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3.5.4 Decomposition of pCO2 anomalies

Contingent on successfully similar values for the sum of decomposition terms and flux anomalies, the

dominating flux component can be decomposed to further comprehend the drivers behind flux anomalies

during MHWs. The initial flux decomposition reveals oceanic pCO2 as the dominating factor behind

sea-air CO2 flux anomalies and is decomposed as:

pCO′
2 ≈

∂pCO2

∂DIC
·∆DIC +

∂pCO2

∂ALK
·∆ALK +

∂pCO2

∂SST
·∆SST +

∂pCO2

∂SSS
·∆SSS (7)

where oceanic pCO2 is a function of dissolved inorganic carbon, alkalinity, sea surface temperature,

and salinity. Variations in these variables, and thus oceanic pCO2, stem from a complex interplay of

chemical, biological, and physical processes. Since the seawater carbonate system is well constrained, it is

common to measure or simulate two passive variables (dissolved inorganic carbon and total alkalinity) and

compute all other carbonate system variables such as corresponding pH, partial pressure of carbon dioxide,

concentrations of aqueous CO2, carbonate and bicarbonate ions, related Revelle factors, and saturation

state of aragonite and calcite from associated thermodynamics (Orr and Epitalon, 2015). OCMIP first

provided routines to compute surface pCO2 and sea-air CO2 fluxes from total alkalinity and DIC and

were adapted to include the full suite of other carbonate system variables (Orr and Epitalon, 2015).

These equilibrium computations can be made with software packages. In this thesis, we use the public

’mocsy 2.0’ Fortran 95 routines to model the ocean carbonate system. The mocsy package is based on the

OCMIP model code, and computes other carbonate system variables from two passive tracers (DIC and

ALK) and requires only additional input for temperature, salinity, total dissolved inorganic phosphorus,

total dissolved inorganic silicon as well as pressure or depth. Mocsy applies the recommendations of

Dickson et al. (2007), including the formula for solubility of CO2 in seawater according to Weiss (1974);

Lueker et al. (2000) for the first and second dissociation constants of carbonic acid; measurements from

Mehrbach et al. (1973) for the NBS scale to the total pH scale; Millero (1995) for equilibrium constants

of boric acid, phosphoric acid, silicic acid and water (which mocsy converts from the seawater scale to

the total scale); Dickson (1990) for the equilibrium constant for the dissociation of bisulfate on the free

scale; Perez and Fraga (1987) for the equilibrium constant for hydrogen fluoride on the total scale; and

Mucci (1983) for the CaCO3 solubility products for aragonite and calcite. The equations for carbonate

system thermodynamics require in situ temperature, concentrations in moles per kilogram and in situ

pressure. Mocsy provides the partial derivatives of temperature, salinity, DIC, and ALK with respect to

pCO2 for each grid cell.

For both the observation-based and model calculations, total dissolved inorganic phosphorous and

silicate were obtained from World Atlas 2018 (WOA18) in monthly climatologies on a 1° grid for the

year 1958. The climatologies were concatenated to match the 1990-2019 time frame of the analysis.

For the observation-based decomposition, the same satellite-based sea surface temperature from the

NOAA OISST v2.1 used in the MHW identification and salinity from the EN4.2.2 dataset of the Met

Office Hadley Centre observations were used to calculate total alkalinity using the locally interpolated

alkalinity regression (LIARv2) regression algorithm (Carter et al., 2018). DIC is then calculated with the

PyCO2SYS package using the estimated total alkalinity, pCO2 from the six different pCO2 data products,

temperature and salinity data. This results in a six different DIC datasets, one for each pCO2 product.
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Pressure is assumed to be 5 decibel (db) and atmospheric pressure is assumed to be 1 atm. The ESM2M

model data output for SST, SSS, DIC, and ALK in monthly time steps for the years 1990-2019 is used

for the model pCO2 decomposition.

The pCO2 Taylor decomposition was again done for the 30 observation-based ensemble members,

each of the six observation-based DIC data products (using the average wind product), and the 30 model

ensemble members. As done for the flux decomposition, the sum of the pCO2 decomposition terms

is compared to pCO2 anomalies found with the SeaFlux data and model data. If the sum of the pCO2

decomposition terms is close to the SeaFlux and model pCO2 flux anomalies, it suggests the decomposition

results are meaningful and interpretable.

4 Results

4.1 MHWs and Sea-air pCO2 Fluxes

In this section, the impact of MHWs on sea-air CO2 fluxes from observation-based and model-based

data are presented at global and regional scales. Variations in the sea-air CO2 flux anomalies between

observation-based products and across individual simulated ensemble members are also analyzed.

4.1.1 Global

The observation-based and model-based data estimate on average a net global uptake of CO2 of

-0.481 (-0.574 to -0.418) mol C/m2/yr (observation-based) and -0.537 (-0.544 to -0.529) mol C/m2/yr

(model). Globally, an opposite pattern between the mean CO2 flux state and CO2 flux anomalies during

marine heatwaves emerges (Figure 4). For example, most regions with a mean state of oceanic CO2

ingassing (indicated as blue in Figure 4a and Figure 4b) are mainly associated with anomalous CO2

outgassing during MHWs (indicated as red in Figure 4g and Figure 4h). Regardless of the direction of

the CO2 flux, the flux is most often reduced during MHWs. As a result, the ocean’s global net ingassing

of CO2 is weaker by 0.021 (-0.023 to 0.070) mol C/m2/yr in the observation-based and 0.117 (0.101 to

0.137) mol C/m2/y in the model data during MHWs.

In comparing the observation-based and model results, we find the model estimates the global mean

flux within the observation-based ensemble spread. However the model seems to overestimate the mag-

nitude of the global flux anomaly during MHWs beyond the observation-based ensemble spread. A two

mean statistical tests find these globally averaged flux anomalies do not present a significant change com-

pared to the mean state. This is possibly due to the counterbalancing direction of the fluxes and their

resulting anomalies globally. Therefore, we investigate the regional anomalies that comprise this global

result.
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(a) Mean flux: SeaFlux (b) Mean flux: ESM2M (c) Mean flux: model - observation-based

(d) Flux during MHWs: SeaFlux (e) Flux during MHWs: ESM2M (f) Flux during MHWs: model - observations

(g)
Flux anomaly during MHWs: SeaFlux

(h)
Flux anomaly during MHWs: ESM2M

(i) Flux anomaly during MHWs: model - ob-
servations

Figure 4: Global comparison between model and observation-based ensemble averages for the mean sea-air CO2 flux (top row), sea-air
CO2 flux during MHWs (middle row), and sea-air CO2 flux anomalies during MHWs (bottom row) for the years 1990-2019. The
difference between the model and observational values are the visualized in the third column. Observation-based data ensemble average
is the average of the 6 pCO2 and 5 wind products. Model based ensemble is average of the 30 GFDL ESM2M model ensemble members
concatenated from historical simulations 1990-2005 and RCP8.5 forced simulations for 2006-2019. Negative values indicate oceanic
uptake (blue), while positive values indicate oceanic outgassing (red) of CO2.

For the observation-based data, three of the eight study regions experience significantly weaker sea-air

CO2 fluxes during MHWs compared to the mean flux state (Low-Mid latitudes regions in both hemi-

spheres, and the Equatorial Pacific). Of the remaining five study regions, one experiences a significantly

stronger sea-air flux during MHWs (Southern Ocean), and four experience insignificant changes to the

sea-air flux during MHWs (Northern Atlantic, Northern Pacific, Equatorial Atlantic, Equatorial Indian).

Results will focus on the regions with significant anomalies but all regions and their mean fluxes are

depicted in Figure 5.

4.1.2 Equatorial pacific

The equatorial Pacific is one of the strongest oceanic CO2 source regions. During MHWs, the region

experiences a significant reduction to the mean oceanic CO2 outgassing. It exhibits the largest absolute

CO2 flux anomaly -0.287 (-0.455 to -0.028) mol C/m2/yr (observation-based) and -0.481 (-0.638 to -

0.305) mol C/m2/yr (model). This is equivalent to about a -31% (-3% to -49%) (observation-based) and

-39% (26% to 50%) (model) reduction in the region’s net outgassing of CO2. In terms of observation-

based and model comparisons, the model seems to overestimate the region’s mean flux as it does not fall

within the observation-based spread. However, the model predicted flux anomaly does fall within the

observation-based anomaly spread.
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4.1.3 Low-mid latitude regions

The low-mid latitude regions of the Northern and Southern Hemisphere (NH, SH), also experience

weaker sea-air CO2 fluxes. However, on average they act as net sinks, absorbing CO2. Thus, the NH

low-mid latitudes experience an anomalous outgassing of about 0.154 (0.104 to 0.201) mol C/m2/yr

(observation-based) and 0.267 (0.245 to 0.290) mol C/m2/yr (model) (Figure 5). For the SH low-mid

latitudes, flux anomalies are 0.118 (0.039 to 0.173) mol C/m2/yr (observations) and 0.194 (0.172 to 0.225)

mol C/m2/yr (model). The flux anomaly in the NH low-mid latitudes equates to about a -30% (-20%

to -39%) (observation-based) and -42% (-38% to -46%) (model) reduction in the ingassing flux relative

to its mean flux; while for the SH low-mid latitude region the anomaly equates to a -14% (-5% to -21%)

(observation-based) and -27% (-24% to -31%) (model) reduction to the mean ingassing flux. The low-mid

latitude along with the equatorial Pacific represent the regions with the greatest flux anomalies during

MHWs. The larger flux anomalies for the low-mid latitude regions and equatorial Pacific, suggests that

regions with larger mean CO2 fluxes are often areas associated with stronger CO2 flux anomalies during

MHWs (Figure 5). When integrating the mean flux and anomalies over the area of the region, the low-

mid latitude regions result with the two largest mean CO2 flux states and strongest CO2 flux anomalies

during MHWs (Figure 6). This is most likely a result of the large areal extent of the low-mid latitude

study regions.

4.1.4 Southern Ocean

The Southern Ocean is a unique region due to its variable sea-air flux. It it encompasses both ingassing

and outgassing regions of CO2 and contrasting CO2 flux anomalies (Figure 4g, 4h). In this thesis, the

Southern Ocean region is identified with a mean net state of CO2 ingassing for the observation-based

data -0.462 (-0.635 to -0.310) mol C/m2/yr, and for the model data -0.010 (-0.072 to 0.024) mol C/m2/yr

but to a lesser degree. The Southern Ocean is the sole study region where the sign of the flux anomaly

diverges between observation-based and model results. For the observation-based data, the ingassing

flux is enhanced by -0.057 (-0.162 to 0.038) molC/m2/yr during MHWs. This counters the general

pattern that sea-air CO2 fluxes are reduced during MHWs. The model however, shows a transition of

the mean ingassing flux into an outgassing flux 0.117 (0.069 to 0.167) C/m2/yr. This model result is

due to a combination of a weak mean ingassing flux and strong anomalous outgassing during MHWs.

Additionally, the model flux anomaly during MHWs for the Southern Ocean is larger than the model’s

mean flux for the region. Low data availability in the region can be one reason behind the different sign

anomalies found between the observation-based and simulated data. Additionally, in general models do

not simulate well the Southern Ocean (Frölicher et al., 2015).
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Figure 5: Mean sea-air CO2 flux and sea-air CO2 flux anomalies during MHWs for the years 1990-2019 in molC/m2/yr. The bars
represent the observation-based ensemble averages: the dark grey bars represent the flux at mean state, the light grey bars represent the
flux during MHWs, and the black bars signify the flux anomalies during MHWs. The flux during MHWs is the sum of the anomaly and
mean flux. The black error lines associated with the bars represent the spread of the 30 observation-based member ensemble (minimum
and maximum values). The purple errors bars represent just the spread between the six observation-based pCO2 products. The model
ensemble average results are also shown as green dots, and the green error lines represent the 30 member ensemble spread (minimum
and maximum values). Positive values signify oceanic outgassing of CO2 and negative values signify oceanic ingassing of CO2.

Figure 6: Mean sea-air CO2 flux and sea-air CO2 flux anomalies during MHWs for the years 1990-2019 integrated over the region’s
area in PgC/yr. The bars represent the observation-based ensemble averages: the dark grey bars represent the flux at mean state, the
light grey bars represent the flux during MHWs, and the black bars signify the flux anomalies during MHWs. The flux during MHWs is
the sum of the anomaly and mean flux. The black error lines associated with the bars represent the spread of the 30 observation-based
member ensemble (minimum and maximum values). The purple errors bars represent just the spread between the six observation-based
pCO2 products. The model ensemble average results are also shown as green dots, and the green error lines represent the 30 member
ensemble spread (minimum and maximum values). Positive values signify oceanic outgassing of CO2 and negative values signify oceanic
ingassing of CO2.
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4.1.5 Observation-based data product differences

We can see in Figure 5 a noticeable spread in the sea-air CO2 flux anomalies among the 30 observation-

based ensemble members. The anomaly spread among different pCO2 products (violet error bars in Figure

5) seems to dominate the overall observation-based ensemble spread (black error bars in Figure 5). To

confirm if the spread is mainly due to the variation in pCO2 products or wind products, we compare flux

anomalies calculated for each pCO2 product with the average wind product to flux anomalies calculated

for each wind product with the average pCO2 product. Globally, minimal variation is found between CO2

flux anomalies calculated with different wind products and the average pCO2 product (Figure 7b). The

anomaly values are also quite uniform between all products in each study region (Figure 8b). Comparing

the flux anomalies calculated with different pCO2 products and average wind, reveals the main source

of variation within the observation-based. Globally, we observe a larger spread (0.082 molC/m2/yr) in

flux anomalies calculated with different pCO2 products (Figure 7a). This effect is enhanced regionally.

The spread of flux anomalies calculated with the different pCO2 products across all regions ranges from

0.049 - 0.339 molC/m2/yr, nearly 4 to 5 times greater than the wind product variation. This implies the

choice of pCO2 product to be a greater source of variation than the choice of wind product.

Figure 7: The global sea-air CO2 flux anomalies (in mol C/m2/yr) during MHWs for the years 1990 to 2019 for the different observation-
based pCO2 products (left) and observation-based wind products (right). The six pCO2 products are MPI, NIES, JMA, JENA, CMEMS,
CSIR. The five wind products are CCMPv2, ERA5, JRA55, NCEP2, NCEP1. The anomalies for each pCO2 product are calculated
with the average wind product; and the anomalies for each wind product are calculated with the average pCO2 product. The y-axis
scale for the anomalies is the same as Figure 8 to allow for easy comparison.
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(a) pCO2 Product Spread (b) Wind Product Spread

Figure 8: The pCO2 and wind observation-based product spreads for the sea-air CO2 flux anomalies (in molC/m2/yr.) during MHWs
in the eight study regions for the time period 1990-2019. The six pCO2 products are MPI, NIES, JMA, JENA, CMEMS, CSIR. The five
wind products are CCMPv2, ERA5, JRA55, NCEP2, NCEP1. The anomalies for each pCO2 product are calculated with the average
wind product; and anomalies for each wind product are calculated with the average pCO2 product.

4.2 Drivers of Sea-Air CO2 Flux Anomalies during MHWs

4.2.1 Mean state and anomalies of flux components

First, the five inputs to the sea-air CO2 flux equation are presented at mean state and as anomalies

during MHWs for both the observation-based (Figure 9) and model data (Figure 10) ensemble averages.

This establishes a background understanding of how each flux driver changes during MHWs. This analysis

is restricted to the area where all six observation-based pCO2 products have data despite model data

existing for the entire global ocean.

During MHWs, the gas transfer velocity (kw) experiences a global decrease of -1.042 (-4.164 to 1.931)

cm/hr (observation-based) and -2.262 (-2.390 to -2.078) cm/hr (model) compared to the mean state (Fig-

ure 9b, 10b). The regions experiencing stronger decreased gas transfer velocity are in the western Pacific,

the western equatorial Pacific, north Atlantic, and tropical Indian Ocean. In both the observation-based

and model results, a zonal dipole pattern emerges in the equatorial Pacific: an anomalous increase in kw

near the eastern equatorial Pacific off the coast of Peru and anomalous decrease in kw in the western equa-

torial Pacific (Figure 9b, 10b). Since the gas transfer velocity is driven by wind speed, we can investigate
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the model data mean wind speed and anomalies during MHWs to see if this is causing the dipole. We see

the same zonal dipole pattern emerge in the equatorial Pacific for wind speed anomalies during MHWs

(Supplementary Figure 4). Localized variations in wind patterns due to specific atmospheric responses

and pressure gradients near the coast of South America/eastern equatorial Pacific could potentially cause

this zonal dipole pattern in the wind speed and gas transfer velocity anomalies during MHWs. For in-

stance, the shift in the Walker cell circulation that occurs during warmer sea surface temperatures leads to

a decrease in atmospheric pressure in the eastern equatorial Pacific bringing more deep convection which

could potentially cause positive anomalies in wind speed (and thus gas transfer velocity). Additionally,

small areas of increased gas transfer velocity appear in some western boundary currents such as the Gulf

Stream and Kuroshio currents. Lastly, a noticeable difference between the observation-based and model

data is the magnitude of the gas transfer velocity anomalies. The model data shows larger gas transfer

velocity anomalies across the global ocean compared to those of the observation-based data.

The solubility anomalies mirror the global MHW magnitude and intensity patterns (Figure 2b, 2e,

2a, 2d). This is expected as CO2 solubility is mainly a function of temperature (equation 4). The

higher the temperature, the lower the solubility. The global average solubility decrease during MHWs

is -0.754 µmol/m3/µatm (observation-based) and -0.996 (-1.005 to -0.891) µmol /m2/µatm (model).

The strongest decreases are observed in the equatorial Pacific, Northern Pacific, Northern Atlantic, and

Southern Ocean regions (Figure 9d, 10d). The spatial patterns of the anomalies are in high agreement

between the observation-based and model data.

The oceanic pCO2 anomalies mirror the spatial pattern of sea-air flux anomalies during MHWs (Figure

9h, 10h). At the global scale, oceanic pCO2 is increased during MHWs by 0.090 (-0.731 to 2.020) µatm

(observation-based) and 2.324 (1.559 to 3.055) µatm (model). However, these global mean values are

deceiving because there is great regional variation in the oceanic pCO2 anomalies. For instance, in the

equatorial Pacific there is anomalously lower partial pressure of CO2 during MHWs. In contrast, we

see anomalously higher pCO2 in the mid latitudes. Additionally, hot-spots of particularly higher pCO2

emerge off the northwestern coast of the United States, the North Atlantic, North Pacific and off the

northwestern coast of Australia. The considerably different reactions of pCO2 during MHWs emphasize

the impact of regional characteristics and processes.

On average, atmospheric pCO2 is higher in the mid-high latitudes and lower in the tropics. During

MHWs, the atmospheric pCO2 globally decreases by -0.444 µatm (observation-based) and -0.129 (-0.406

to 0.336) µatm (model) (Figure 9f, 10f). A decrease in atmospheric pCO2 is possibly a result of the

warmer SSTs increasing the water vapor in the atmosphere and reducing the atmosphere’s capacity to

intake pCO2. Differences in the global spatial patterns between the observation-based and model based

results arise, which will be further discussed in the regional results section. However it should be noted

that the model data is based on ’concentration runs’, where the atmosphere has a restoring flux. Restoring

fluxes are often used so that values do not deviate too far from observations and defined equilibriums can

be reached.

Unfortunately, due to the pCO2 areal mask minimal areas with sea ice remain. We can initially see

some areas of lower sea ice fraction during MHWs, however the pCO2 mask prevents any substantial

interpretation. Overall, the observation-based and model data are in agreement in terms of spatial

patterns and magnitude for the flux component mean states. Some spatial and magnitude differences
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appear when comparing the anomalies during MHWs for each flux component. For instance, the model

estimates stronger anomalies than the observation-based data for the gas transfer velocity, solubility, and

particularly oceanic pCO2. The opposite holds for atmospheric pCO2, where the model based results

show weaker anomalies during MWHs. The observation-based and model data disagree most in spatial

patterns for the gas transfer velocity and atmospheric pCO2, particularly in the Southern Ocean for gas

transfer velocity and the equatorial region for atmospheric pCO2.
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(a) kw mean (b) kw anomaly

(c) solubility mean (d) solubility anomaly

(e) pCO2atm
mean (f) pCO2atm

anomaly

(g) pCO2oc mean (h) pCO2oc anomaly

(i) ice fraction mean (j) ice fraction anomaly

Figure 9: Global depiction of the mean state (left column) and anomalies during MHWs (right column) for each component of the
sea-air CO2 flux equation for the observation-based data for 1990-2019. The gas transfer velocity (kw) is the ensemble average across
the five wind products. The oceanic CO2 is the ensemble average across the six observation-based pCO2 products. An areal pCO2

product mask including only the areas where all six pCO2 products have data is applied here for each driver.
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(a) kw mean (b) kw anomaly

(c) solubility mean (d) solubility anomaly

(e) pCO2atm
mean (f) pCO2atm

anomaly

(g) pCO2oc mean (h) pCO2oc anomaly

(i) ice fraction mean (j) ice fraction anomaly

Figure 10: Global depiction of the five sea-air CO2 flux drivers in their mean state (left column) and anomalies during MHWs (right
column) for the model ensemble average over the years 1990 to 2019. Original model data is available for the global ocean but is masked
to match the area of the observation-based data.

4.2.2 Global patterns of sea-air CO2 flux decomposition

For the observation-based data, we can directly compare the ’true’ SeaFlux anomaly and the sum of

the Taylor decomposition terms as they are both calculated with monthly data. For the model-based
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data, the monthly recalculated flux anomalies and sum of decomposition terms are compared. The ’true’

model flux anomalies are calculated with 2 hourly data that is then averaged to monthly means. Since

the decomposition uses monthly data, it would be inconsistent if we compare the decomposition sum to

the true 2-hour flux anomalies. Hence, we have to compare the decomposition results to the monthly

recalculated flux anomalies.

For the observation-based product results, the sum of the decomposition contributions mirrors the

true SeaFlux anomaly quite well (Figure 11a, 11b). The global mean difference between the masked

SeaFlux anomaly (0.036 mol C/m2/yr) and the sum of the Taylor decomposition contributions is -0.015

(-0.025 to -0.012) mol C/m2/yr (Figure 11c). The largest differences stem from the north Pacific Ocean,

particularly near the western boundary where the decomposition overestimates the outgassing anomaly, as

well as in the equatorial Pacific and North Atlantic where the decomposition overestimates the ingassing

anomaly.

For the model data, the sum of the Taylor decomposition terms also agrees well with the recalculated

monthly flux anomaly. The mean difference between the masked model monthly flux anomaly (0.124

mol C/m2/yr) and the sum of the decomposition terms is -0.043 (-0.057 to -0.025) mol C/m2/yr (Figure

12c). The model decomposition seems to overestimate the flux anomaly on average. For instance, in the

north Pacific, southwestern Pacific and southern Indian ocean the model decomposition overestimates

the anomalous outgassing; and in the equatorial Pacific the decomposition overestimates the anomalous

ingassing. More rare are regions where the decomposition underestimates the flux anomaly, such as in

the North Atlantic where the decomposition underestimates the outgassing anomaly. The regions of

disagreement are similar between the model and observation-based. The relative differences between the

decomposition sums and true flux anomalies are similar for the observation-based and model data. The

main difference between the observation-based and model data results seems to be the magnitude in

which the decomposition overestimates the flux anomalies. This can be expected since the model flux

anomalies are larger in magnitude than the observation-based flux anomalies to begin with.

Of the five flux contributions, oceanic pCO2 immediately emerges as the dominating contribution

to the overall sea-air CO2 flux anomaly during MHWs in the observation-based and model-based data

(Figure 11g, 12g). If the flux anomaly is negative (positive), signifying anomalous ingassing (outgassing),

then a negative (positive) contribution from the Taylor decomposition signifies a concordance or rein-

forcement of the flux anomaly. The oceanic pCO2 shows strong negative contributions in the equatorial

Pacific and high latitudes and strong positive contributions in the mid latitudes. This corresponds with a

negative flux anomaly (anomalous ingassing of CO2) in the equatorial Pacific and a positive flux anomaly

(anomalous outgassing) in the low-mid latitudes. Thus, for both the observation-based and model data

the large contribution of oceanic pCO2 suggests the flux anomalies during MHWs are mainly a result of

the changes in oceanic pCO2. The presence of both strong positive and negative contributions of oceanic

pCO2 across the global ocean counteract each other. As a result, the global mean pCO2oc contribution is

only 0.013 (-0.024 to 0.073) mol C/m2/yr (observation-based) and 0.148 (0.112 to 0.196) mol C/m2/yr

(model). Oceanic pCO2 is the only flux component where the observation-based and model-based differ

considerably in magnitudes.

The second greatest contribution to flux anomalies is the gas transfer velocity (kw) which repre-

sents wind (Figure 11d, 12d). On average kw has a positive global contribution 0.013 (0.005 to 0.019)
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molC/m2/yr (observation-based) and 0.029 (0.021 to 0.038) mol C/m2/yr (model) to the sea-air CO2

flux anomaly during MHW events. A positive contribution of the gas transfer velocity can be understood

by considering a low-mid latitude region where there is mean ingassing of CO2 into the ocean. Since the

partial derivative of the sea-air flux with respect to the gas transfer velocity includes the difference of

pCO2 between the ocean and atmosphere at mean state, a decrease in the gas transfer velocity during

MHWs would drive a reduction in the mean ingassing state, leading to a positive contribution of kw to

the flux anomaly. Thus, the positive contribution of the gas transfer velocity means the wind speed and

subsequently the gas transfer velocity is reduced in regions of CO2 ingassing and increased in regions

of CO2 outgassing. In both the observation-based and model results, a zonal dipole of the gas transfer

velocity contribution emerges in the equatorial Pacific, which was already observed with the gas transfer

velocity anomalies. The western equatorial Pacific, a mean outgassing region, experiences a decrease in

gas transfer velocity, and thus a negative contribution of kw to the flux anomaly. For the eastern equato-

rial Pacific, the anomalous increase in gas transfer velocity along with the mean outgassing state results

in the gas transfer velocity having a positive contribution to the flux anomaly. In terms of observation-

based-model comparison, the model replicates well the observation-based findings only the magnitude of

the model contributions is larger than those of the observation-based data.

Solubility and atmospheric pCO2 have less of an impact on the sea-air CO2 flux anomalies during

MHWs. In terms of global means, solubility has a slightly positive contribution of 0.010 (0.009 to 0.012)

mol C/m2/yr (observation-based) and 0.012 (0.011 to 0.013) mol C/m2/yr (model) to the flux anomalies

during MHWs. A positive contribution from anomalously lower solubility in regions of mean ingassing

(negative flux) such as the Northern Atlantic means the mean ingassing flux is reduced because the ocean

can not absorb as much carbon. Likewise, a negative contribution from lower solubility in a region of mean

outgassing such as the equatorial Pacific means the ocean’s ability to release carbon is reduced. Negative

solubility anomalies reduce the flux for both an ingassing or outgassing region. The largest contributions

of solubility occur in the equatorial Pacific and high latitudes. The low to mid latitudes have essentially

weaker solubility anomalies during MHWs and thus nearly no contribution to the flux anomalies during

MHWs. The model data shows stronger solubility contributions in the northwest Atlantic and northwest

Pacific where warm and cold currents mix which is not present in observation-based results.

The global average contribution of atmospheric pCO2 to flux anomalies is 0.012 (0.012 to 0.012) mol

C/m2/yr (observation-based) and 0.006 (-0.028 to 0.026) mol C/m2/yr (model). There are no emerging

spatial patterns in terms of atmospheric pCO2’s contribution. Both the observation-based and model

results show a nearly uniform positive contribution with some negative contributions on the edge of the

study area in the Southern Ocean. It can be noted that the sign of the atmospheric pCO2 contribution

will be the opposite to the oceanic pCO2 contribution due to the minus sign in the partial derivative

show in equation 6e. Lastly, with the limited study area to observe the sea ice contribution to sea-air

CO2 flux anomalies, it is just initially seen that sea ice has a global contribution of -0.015 (-0.091 to

-0.000) mol C/m2/yr (observation-based) and -0.022 (-0.030 to -0.010) mol C/m2/yr (model) to sea-air

flux anomalies during MHWs. A negative contribution from sea ice is a result of reduced sea ice in a net

outgassing region. Less sea ice would mean a greater area for CO2 exchange between the sea-air and thus

enhanced fluxes. We can only hypothesize that the sea ice contribution to the sea-air CO2 flux anomalies

would be stronger with a larger study area encompassing more sea ice.
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Figure 11: Global depiction of the flux decomposition for observation-based data using the average of pCO2 and wind products for the
time-period 1990-2019. The right hand column shows the Taylor decomposition contributions of each flux component to the overall
sea-air CO2 flux anomaly during MHWs (kw, solubility, pCO2atm , pCO2oc , ice). The left column shows the SeaFlux sea-air CO2 flux
anomaly during MHWs (a), the sum of the flux decomposition contributions (b), and the difference between the two (a - b). The data
is masked to include only the regions where all six products have data.
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Figure 12: Global depiction of the flux decomposition for the ensemble average model data for the time period 1990-2019. The right
hand column shows the Taylor decomposition contributions of each flux component (kw, solubility, pCO2atm , pCO2oc , ice. The left
column shows the recalculated monthly flux anomaly during MHWs (a), the sum of the flux decomposition contributions (b), and the
difference between the two (a - b). The model data is masked to include only the regions where all six observation-based products have
pCO2 data to allow for model-observation data comparisons.
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4.2.3 Regional patterns sea-air CO2 flux decomposition

The Taylor decomposition of the flux anomaly is presented for the 8 study regions in terms of the

ensemble averages for both observation and model based data in Figure 13b, 14b. The sum of the five

decomposition contributions is always compared to the ’true’ flux anomaly (black line) and the manually

recalculated flux anomaly (red line). We will consistently focus the results on the four regions that

showed significant sea-air flux anomalies (equatorial Pacific, low-mid latitudes, and Southern Ocean).

When interpreting these results, it must be remembered that the sea ice fraction is near zero due to the

pCO2 data product mask.

Beginning with the equatorial Pacific, the strong negative flux anomaly signifying anomalous in-

gassing, is clearly driven by oceanic pCO2’s negative contribution to the flux anomaly (Figure 13). The

lower than usual oceanic pCO2 anomalies combined with the region’s mean outgassing state leads to a

lower outgassing flux which is seen as a negative contribution. The oceanic pCO2 contribution is -0.261

(-0.382 to -0.014) mol C/m2/yr (observation-based) and -0.442 (-0.733 to -0.212) mol C/m2/yr (model),

which is equivalent to about 86% (observation-based) and 66% (model) of the region’s total flux anomaly.

At the same time, the reduced gas transfer velocity in the western equatorial Pacific as a result of weaker

winds also contributes to the anomalous ingassing / negative flux anomaly. Often, warm SSTs are associ-

ated with the El Niño phenomenon, as it is an invasion of warm water off the west coast of northern South

America (Holbrook et al., 2019; Oliver et al., 2018). El Niño is associated with low Southern Oscillation

(ENSO) index which brings reduced trade winds and reduced middle-latitude westerlies (Bacastow, 1976).

The lower solubility due to the warmer SSTs also contributes to the anomalous ingassing, but to a much

lesser degree. Atmospheric pCO2 is the only flux component that has a net contribution counteracting the

overall flux anomaly. Summing the decomposition terms reveals the decomposition slightly overestimates

the ingassing flux anomaly in the equatorial Pacific on average by 0.063 mol C/m2/yr (observation-based)

and 0.194 mol C/m2/yr (model) compared to the ’true’ or monthly recalculated flux anomaly.

For the low-mid latitudes regions, the contribution of oceanic pCO2 continues to dominate the flux

anomaly: 0.133 (0.092 to 0.184) mol C/m2/yr (observation-based) and 0.148 (0.112 to 0.196) mol C/m2/yr

(model). This indicates the anomalous outgassing is a result of anomalously higher oceanic pCO2. None of

other flux components strongly impact the sea-air CO2 flux anomaly. For example, the contribution of the

gas transfer velocity in the NH low-mid latitudes is only 0.029 (0.020 to 0.036) mol C/m2/yr (observation-

based) and 0.030 (0.026 to 0.034) mol C/m2/yr (model); and the solubility term contribution for the NH

low-mid latitudes is 0.008 (0.006 to 0.009) mol C/m2/yr (observation-based) and 0.009 (0.008 to 0.010)

mol C/m2/yr (model). For the SH low-mid latitudes, similar numbers prevail. The contribution of the

gas transfer velocity in the SH low-mid latitudes is only 0.035 (0.032 to 0.044) mol C/m2/yr (observation-

based) and 0.046 (0.041 to 0.051) mol C/m2/yr (model); and the solubility term contribution for the SH

low-mid latitudes is 0.014 (0.013 to 0.018) mol C/m2/yr (observation-based) and 0.014 (0.013 to 0.015)

mol C/m2/yr (model). For both low-mid latitude regions, all the flux components have a net positive

contribution to the anomalous outgassing. In terms of observation-model comparisons, the decomposition

replicates the true anomaly well in the observation-based data but less so with the model data. For

instance, in the NH low-mid latitude region the decomposition overestimates the true anomaly by only

0.019 mol C/m2/yr in the observation-based data but 0.106 mol C/m2/yr in the model data. For the SH

low-mid latitudes the decomposition overestimates the true anomaly on average by 0.040 mol C/m2/yr
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(observation-based) and 0.122 mol C/m2/yr (model).

For the Southern Ocean, oceanic pCO2 continues to drive the flux anomalies during MHWs in both the

observation-based and model data (Figure 13,14). For the observation-based data, where the Southern

Ocean experiences an enhanced ingassing flux during MHWs, the lower oceanic pCO2 has on average a

negative contribution to the negative flux anomaly of -0.108 (-0.226 to 0.021) mol C/m2/yr (observation-

based). In the model data, the Southern Ocean experiences anomalous outgassing which equates to a

positive flux anomaly. The model data also does not predict such homogeneous pCO2 anomalies as the

observation-based data. Rather, the model predicts a mix of positive and negative pCO2 anomalies in the

Southern Ocean study region. On average the pCO2 anomaly for the Southern Ocean in the model data is

positive. Thus, the higher pCO2 anomalies have a positive contribution to the outgassing anomaly of 0.214

(0.129 to 0.354) mol C/m2/yr (model). The gas transfer velocity also has a positive contribution to flux

anomalies: 0.009 (0.006 to 0.011) mol C/m2/yr for the observation-based data and 0.058 (0.048 to 0.070)

mol C/m2/yr in the model data. This can be expected because the model predicts stronger gas transfer

velocity anomalies in the Southern Ocean, compared to the observations which shows nearly no change

in gas transfer velocity during MHWs in the Southern Ocean. The contribution of atmospheric pCO2

contributes to more ingassing in the observation-based and model data. However due to the different signs

of the flux anomalies, the atmospheric pCO2 contribution strengthens the negative flux anomaly in the

observation-based data, and weakens the positive flux anomaly in the model-based data results. Finally,

the Southern Ocean is one of the few study regions with remaining sea ice after applying the pCO2 areal

mask. In both the observation-based and model data, since the Southern Ocean is a net ingassing region,

the reduced sea ice coverage provides a greater extent for sea-air exchange, thus it enhances the mean

flux. Since the flux anomaly in the observation-based data is negative (representing enhanced uptake)

the contribution of lower sea ice is negative, supporting enhanced uptake. For the model data, since the

flux anomaly is positive (anomalous outgassing), but less sea ice allows for enhanced mean flux exchange,

the sea ice contribution is negative.

Lastly, the accuracy between the sum of decomposition terms and flux anomaly for the observation-

based data is greater compared to the results using model data. For example, with the observation-based

data, the sum of the decomposition terms remains in the ensemble spread for the data for all eight

regions. This statement does not hold for the model data. In the low-mid latitudes regions, the model

decomposition sum is outside ensemble spread of the calculated monthly flux anomaly.
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(a)

(b)

Figure 13: Global and regional Taylor decomposition of sea-air CO2 flux drivers for the average observation-based pCO2 and wind data.
The blue bars are the average ensemble contribution for each flux component. The total bar is the sum of the five flux contributions.
Data is for the time period 1990-2019. The horizontal black line is the true SeaFlux anomaly, with the pCO2 product spread represented
with the dashed black vertical line. The red line is the recalculated flux anomaly described in Section 3.5.3. The violet spread bars
represent the range (minimum and maximum values) for each contribution between just the 6 pCO2 data products.
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(b)

Figure 14: Global and regional Taylor decomposition of the sea-air CO2 flux for the model ensemble average. The blue bars are the
average ensemble contribution for each flux component. The total bar is the sum of the five flux contributions. Data is for the time
period 1990-2019. The monthly flux anomaly (red line) is recalculated using monthly flux equation inputs as described in 3.5.3. The
true 2 hourly flux anomaly (black line) is obtained from the model data which uses the original model out in 2 hour time-steps. The
violet spread bars represents the ensemble range (minimum and maximum values) for each contribution.
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4.3 Drivers of oceanic pCO2 anomalies during MHWs

4.3.1 Mean state and anomalies of pCO2 components

First, the four main components of oceanic pCO2 (alkalinity, dissolved inorganic carbon, sea sur-

face temperature, and salinity) are presented at mean state and as anomalies during MHWs for the

observation-based and model data (Figure 15, 16). This is to illustrate how each pCO2 component

varies naturally and during MHWs across the global ocean. Results are limited to the area where all six

observation-based pCO2 products have data. For the observation-based data results, only DIC is reported

with a spread as it is calculated from six different pCO2 products. Observation-based alkalinity, salinity,

and sea surface temperature were calculated with one product and therefore do not have an ensemble

spread. For the model-based data, results are still presented as the ensemble average with the spread of

the 30 members.

Alkalinity is not influenced by changes in temperature, pressure nor by the exchange of CO2 between

the ocean and atmosphere (Williams and Follows, 2011). This is why it is considered a conservative

tracer and used as an input to measure other carbonate system parameters. At the surface, alkalinity

is influenced by freshwater fluxes such as precipitation and evaporation which are exhibited in salinity

changes. This is why we see alkalinity mimicking patterns of salinity: lower concentrations in the high

latitude regions compared to subtropical areas and higher alkalinity concentrations in the open ocean

particularly subtropical gyres (Figure 15a, 15c). Alkalinity distributions are also impacted by biological

production at the surface such as calcification and production of soft matter, and dissolution and rem-

ineralization at depth (Planchat et al., 2023). The regional variations in alkalinity and salinity at mean

state are mainly a result of the dominating effect of evaporation or precipitation which concentrate or

dilute alkalinity and salinity.The main regions of high alkalinity concentrations at mean state emerge in

the Northern Atlantic, South Atlantic, and eastern subtropical Pacific.

Since alkalinity acts as a conservative tracer, the global decrease in alkalinity during MHWs of

-1.37 µmol/kg (observation-based) and -2.213 (-2.770 to -1.810) µmol/kg (model) can only be a result

of indirect changes from warmer SSTs. During MHWs, alkalinity seems to experience a decrease in the

tropics (especially in the equatorial Pacific and equatorial Atlantic). The decrease in alkalinity during

MHWs is possibly a result of less mixing and dilution initiated by weaker winds. During MHWs, the

weaker gas transfer velocities observed in section 4.2, can lead to less mixing, which results in less deep

water brought to the surface. Thus, any parameter with a vertical profile could be impacted during

MHWs. Since alkalinity generally increases with depth due to the dissolution of CaCO3 in most regions

(Takahashi et al., 1993), less mixing and upwelling of deep water results in lower alkalinity at the surface.

Additionally, MHW events often bring more precipitation especially in the equatorial Pacific where MHWs

are associated with El Niño which is characterized by weaker winds and warmer SSTs which warm the

atmosphere above it, causing moisture-rich air to rise and develop into rain clouds. Greater precipitation

dilutes the tracers, leading to lower alkalinity values. Likewise, salinity experiences a global decrease of

-0.014 psu (observation-based) and -0.028 (-0.038 to -0.021) psu (model) during MHWs. The salinity

and alkalinity anomalies relative to mean state are of similar magnitude. For the observation-based data

salinity anomaly is about 0.04% and alkalinity is 0.06% relative to mean state; and for the model data

salinity anomaly is 0.08% and alkalinity is 0.09% relative to mean state. The strongest decrease in salinity
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occurs in the equatorial Pacific. On the other hand, some regions experience an increase in alkalinity

and salinity such as the north Atlantic and areas of the mid latitudes. For alkalinity this could be due to

the varying vertical profiles. For example, Takahashi et al. (2006) shows that total alkalinity decreases

with depth in the North Atlantic. Thus, if MHW events cause less mixing and upwelling, this would lead

to higher alkalinity values at the surface because the low-alkaline waters are not being brought to the

surface.

Opposite to alkalinity, at mean state, DIC is lower in the low latitudes and increases toward the

poles. This is mainly since the solubility of CO2 in seawater increases with decreasing temperature. The

spatial patterns of mean DIC and SST seem to share an inverse relationship (Figure 15e, 15g). DIC

increases toward the poles and temperature decreases toward the poles. During MHWs where we have

elevated SSTs globally and flux anomalies arising due to anomalously higher pCO2oc, we see an net global

decrease in DIC of -9.171 (-9.994 to -8.508) µmol/kg (observation-based) and -8.828 (-9.567 to -7.421)

µmol/kg (model). These DIC anomalies are larger in absolute terms and relative to mean state compared

to the alkalinity and salinity anomalies during MHWs. The negative DIC anomalies are a result of a

global increase in oceanic pCO2 (seen in section 4.2.2). Warmer temperatures increase the oceanic pCO2,

and to maintain equilibrium of pCO2 between the atmosphere and ocean (following Henry’s Law), DIC

must decrease. Areas with stronger increases in SSTs during MHWs, align with the regions of stronger

decreases in DIC (Figure 15f, 15h and Figure 16f, 16h). The decrease in DIC during MHWs can also be

a result of less mixing and upwelling due to the weaker winds or thermal stratification occurring during

MHWs. DIC increases with depth as organic particles sink and get remineralized (Takahashi et al.,

2006), thus if less deep water is transported to the surface, DIC concentrations will be lower. Similarly,

the warmer the surface waters, the lighter they become which increases density differences between cooler,

heavier subsurface waters, making it more difficult for the surface and subsurface waters to mix.

In terms of comparisons between the observation-based and model data, the observation-based data

exhibits a noticeable band of lower than usual alkalinity values during MHW along the equator and around

60°S, which is not seen with the model data. Instead the model data also shows a stronger decrease in

alkalinity in the western equatorial Pacific and Indian Ocean, and positive alkalinity anomalies in the

eastern equatorial Pacific. In addition, the similarity between the alkalinity and salinity anomalies is

stronger in the model data compared to the observation-based data. Lastly, for DIC the model data

shows some positive DIC anomalies in coastal areas such as the west coast of North America and east

coast of South America whereas nearly no positive DIC anomalies emerge with the observation-based

data.
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Figure 15: Global maps of the mean state (left column) and anomalies during MHWs (right column) of each contributing term to
pCO2oc for the observation-based data during 1990-2019. DIC is presented as the average between the six DIC products (derived from
the six observation-based pCO2 products). The same areal mask used in the flux decomposition is applied.
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Figure 16: Global maps of the mean state (left column) and anomalies during MHWs (right column) of each contributing term to
pCO2oc for the model ensemble average during 1990-2019. The same areal mask used in the flux decomposition is applied.

4.3.2 Global patterns of pCO2 decomposition

The Taylor decomposition of oceanic pCO2 anomalies during MHWs reveals on average, the pCO2oc

anomalies and consequently sea-air fluxes during MHWs are a result of higher-than-usual temperature

and negative DIC anomalies. These two effects can be further understood. Firstly, higher temperature

anomalies decrease the solubility of CO2 in seawater, which causes an increase in oceanic pCO2 since

oceanic pCO2 is a ratio of CO2 and solubility (DeVris, 2022):

K0 =
[CO2]ocean
pCO2ocean

(8)
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As a result, temperature has a positive contribution to pCO2oc anomalies (Figure 17g and 18g). The global

average contribution of temperature to pCO2oc anomalies is 15.360 (15.244 to 15.421) µatm (observation-

based) and 15.9392 (14.388 to 16.963) µatm (model). On the other hand, the lower DIC concentrations

during MHWs lead to lower oceanic pCO2 (Figure 17f and 18f). Oceanic pCO2 can be expressed through

the relationship of carbonate and bicarbonate ions, and three equilibrium constants (Sarmiento and

Gruber, 2006):

pCO2 =
[K2]

K0 ·K1
· (HCO−

3 )
2

CO2−
3

(9)

Knowing DIC is a sum of carbonic acid (H2CO3), which dissociates into bicarbonate (HCO3-) and car-

bonate (CO3
2−), if DIC is lower during MHWs, then the oceanic pCO2 will also be lower. The global

mean contribution of DIC to pCO2oc anomalies is -17.253 (-18.478 to -16.003) µatm (observation-based)

and -16.085 (-17.602 to -13.470) µatm (model). DIC and SST act as competing factors and nearly cancel

out each other’s effect on pCO2oc anomalies on a global scale (Figure 17b and 18b). As a result, the

global sum of the pCO2oc decomposition terms is 0.616 (-0.440 to 1.452) µatm (observations) and 2.364

(1.789 to 3.023) µatm (model) (Figure 19a and 20a). The temperature effect on oceanic pCO2 dominates

at the global scale. However, the inharmonious sign of the pCO2oc anomalies suggests that depending on

the region, the dominating effect on pCO2oc varies.

Alkalinity and salinity play a less influential role on oceanic pCO2 anomalies during MHWs compared

to DIC and temperature. Nevertheless, the global average of lower alkalinity concentrations during MHWs

results in anomalously higher pCO2oc. Alkalinity and pCO2oc generally share an inverse relationship. A

decrease in alkalinity means a weaker dissolution reaction of carbon dioxide in seawater, increasing H2CO3,

and consequently increasing the partial pressure of CO2 in the ocean. The global contribution of alkalinity

to higher pCO2oc is minor: 2.195 (2.159 to 2.213) µatm (observation-based) and 2.792 (2.235 to 3.546)

µatm (model). The largest positive alkalinity contribution occurs in the equatorial Pacific where the

largest negative alkalinity anomalies are observed (Figure 17d and 18d). In contrast, the north Atlantic

and some mid latitude regions where higher than usual alkalinity concentrations are observed during

MHWs contribute to negative pCO2oc anomalies. Higher alkalinity concentrations shift the dissolution

reaction of carbon dioxide in water to form carbonic acid to the right by consuming hydrogen ions, thus

lowering the concentration of CO2 in the ocean and hence the partial pressure of CO2 in the ocean.

The weakest contribution of the four components of pCO2oc is salinity. Oceanic pCO2 is not strongly

influenced by changes in salinity. The contribution of salinity to oceanic pCO2 anomalies during MHWs

is only -0.159 (-0.160 to -0.157) µatm (observation-based) and -0.282 (-0.373 to 0.219) µatm (model)

(Figure 17e and 18e).

On average the pCO2oc decomposition is able to replicate the pCO2oc anomalies during MHWs. For

both the observation-based and model, the spatial patterns of pCO2oc anomalies are well captured by the

decomposition. Globally, the observation-based decomposition slightly overestimates the SeaFlux pCO2oc

anomaly, with a difference of -0.440 (-0.723 to 1.49) µatm. This overestimation by the decomposition can

be observed in the north Pacific, Atlantic Ocean, and edge of the Southern Ocean. At the same time, in

the equatorial Pacific, the pCO2oc decomposition underestimates the SeaFlux pCO2oc anomaly (Figure

17c and 18c). For the model data, the sum of the pCO2oc decomposition terms slightly underestimates
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the positive pCO2oc anomaly, with a global difference of 0.745 (0.679 to 0.810) µatm (model). The region

of largest disagreement (largest underestimation by the decomposition) is in the eastern central Pacific

(Figure 18c). The regional patterns are described in more detail in the next section.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Figure 17: Global maps of the oceanic pCO2 decomposition for observation-based data using the average of the six DIC products for
the time-period 1990-2019. The right hand column shows the Taylor decomposition contributions of each pCO2oc component to the
overall pCO2oc anomaly during MHWs (alkalinity, salinity, dissolved inorganic carbon, and sea surface temperature). The left column
shows SeaFlux pCO2oc flux anomaly during MHWs (a), the sum of the pCO2oc decomposition contributions (b), and the difference
between the two (a - b). The data is masked to include only the regions where all six DIC products.
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Figure 18: Global maps of the oceanic pCO2 decomposition for the ensemble model average for time-period 1990-2019. The right
hand column shows the Taylor decomposition contributions of each pCO2oc component to the overall pCO2oc anomaly during MHWs
(alkalinity, salinity, dissolved inorganic carbon, and sea surface temperature). The left column shows ESM2M pCO2oc flux anomaly
during MHWs (a), the sum of the pCO2oc decomposition contributions (b), and the difference between the two (a - b). The data is
masked to include only the regions where all six observation-based DIC products have data for consistency during comparisons.

4.3.3 Regional patterns pCO2 decomposition

The Taylor decomposition reveals the lower DIC to be the dominating contribution to the negative

pCO2oc anomaly during MHWs in the equatorial Pacific (Figure 19b, 20b). It is also the region with the

largest negative contribution of DIC. In the equatorial Pacific, the DIC contribution is -37.220 (-41.428

to -27.819) µatm (observation-based) and -50.079 (-68.445 to -32.604) µatm (model). At the same time,

the contribution of higher sea surface temperatures to increased pCO2oc is 18.679 (18.488 to 18.977) µatm

(observation-based) and 29.470 (21.943 to 34.826) µatm (model). Alkalinity also contributes to positive

pCO2oc anomalies by 7.325 (7.178 to 7.469) µatm (observation-based) and 10.960 (5.015 to 18.342) µatm

(model). The DIC effect on pCO2oc is able to offset the temperature and alkalinity effect of increased

pCO2oc, leading to a net result of lower than usual pCO2oc and a reduced outgassing flux during MHWs.

The stronger DIC effect on pCO2oc in the equatorial Pacific is most likely a result of weaker trade winds

in the region which can have cascading effects. Vogt et al. (2022) found over three-quarters of MHWs to
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co-occur with El Niño, which is characterized by an eastward shift of the low pressure system and warmer

SSTs. During El Niño events, easterly trade winds weaken and even reverse in the western and central

equatorial Pacific. This induces eastward propagating Kelvin waves which deepen the thermocline (Feely

et al., 2002). A deeper thermocline contributes to warmer surface waters as it pushes down further the

cold water that feeds upwelling. However, the depth of the thermocline and strength of trade winds control

the upwelling rate of deeper waters with higher DIC concentrations. Thus, weaker winds and a steeper

thermocline reduce the upwelling of subsurface water which leads to lower surface DIC concentrations and

lower pCO2 anomalies. Comparing the observation-based and model based results in equatorial Pacific,

we see the model data results have a slightly greater accuracy of the decomposition to the ’true’ pCO2

anomaly than the observation-based results. For example, in the model data, the difference between

the true pCO2 anomaly (-10.036 µatm) and the sum of the pCO2 decomposition terms in the equatorial

Pacific region is 0.543 µatm. Whereas in the observation-based data, the difference is -2.394 µatm (for a

true pCO2 anomaly of -9.574 µatm).

In the low-mid latitudes, temperature generally has the dominating effect on the pCO2oc anomalies

(Figure 19b and 20b). In the Northern Hemisphere low-mid latitude region, the temperature contribution

is 13.404 (12.635 to 14.081) µatm (observation-based) and 14.291 (13.555 to 14.970) µatm (model).

Similarly, in the Southern Hemisphere low-mid latitude region the temperature contribution is 14.523

(14.171 to 14.800) µatm (observation-based) and 14.094 (12.985 to 15.026) µatm (model). The DIC

contribution is -13.543 (-14.622 to -12.52524) µatm (observation-based) and -7.722 (-9.134 to -6.376)

µatm (model) in the NH; and -13.303 (-14.884 to -12.316) µatm (observation-based) and -10.289 (-11.831

to -9.045) µatm (model) in the SH. The dominating thermal effect on pCO2 in the low-mid latitudes is

more clearly exhibited in the model data. For the observation-based decomposition, the stronger thermal

effect on pCO2oc is evident in the SH low-mid latitudes. In the observation-based results for the NH

low-mid latitude, the decomposition underestimates the total increase in pCO2oc. The temperature and

DIC contribution are nearly in balance, but the positive contribution of lower alkalinity concentrations on

pCO2oc in the NH low-mid latitude tips the balance in favor of a thermally driven increase in pCO2oc. The

contribution of alkalinity in the observation-based NH low-mid latitude is nearly double the contribution

of alkalinity in the SH low-mid latitude region. The alkalinity contribution to pCO2oc are: 1.214 (1.141 to

1.283) µatm (observation-based) and -0.636 (-1.740 to 0.883 µatm (model) for the NH low-mid latitudes;

and 0.402 (0.390 to 0.410) µatm (observation-based) and 0.549 (-0.297 to 2.063) µatm (model) for the

SH low-mid latitudes. Nonetheless, the anomalous outgassing observed in the low-mid latitudes is a more

often a result of the warmer temperatures causing positive pCO2oc anomalies which is partly dampened

due to anomalously lower DIC.

Finally, for the Southern Ocean the observation-based data reveals the stronger ingassing flux during

MHWs is a result of lower than usual DIC concentrations leading to negative pCO2oc anomalies which

offset the thermally driven increase in oceanic pCO2. The ocean is able to take up more CO2 and the

ingassing flux is strengthened during MHWs. As for the model data results, the anomalous outgassing

or reduced uptake of the Southern Ocean is a result of a dominating thermal effect on oceanic pCO2.

Several speculations can be made as to why we see a dominating thermal effect in the model data and

dominating DIC effect in the observation-based data. First of all, differences can be related to the spatial

variability in the Southern Ocean’s sea-air CO2 flux and the model’s ability to simulate the same spatial
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variability and circulation patterns. We already see differences between the observation-based and model

data in the sign of the sea-air flux anomalies during MHWs - the first step of the analysis. Additionally, a

weaker model simulation of vertical mixing with DIC rich subsurface waters could be one factor causing

a lower DIC effect seen in the model data compared to observation-based data.
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(a)

(b)

Figure 19: Global and regional flux decomposition of oceanic pCO2 anomalies for the average observation-based DIC data for 1990-2019.
The blue bars represent the average for each of the pCO2oc decomposition contribution terms. The violet error bars correspond to the
blue bars, and represent the range (minimum and maximum values) of each contribution across the 6 DIC data products. The black
horizontal line represents the average pCO2oc anomaly and the black vertical line represents the spread of these pCO2oc anomalies
between the six products. 47



(a)

(b)

Figure 20: Same as Figure 19 but for ESM2M model ensemble data.
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5 Discussion

Observation-based and model data show that during MHW events over the time period 1990 to 2019,

the global ocean’s average uptake of CO2 is slightly reduced. This is in contrast to climate extremes

in the terrestrial biosphere which have substantial impacts on carbon fluxes between the land and air

(Reichstein et al., 2013). However, regional sea-air CO2 fluxes can be substantial. In agreement with

a previous study (Mignot et al., 2021) on sea-air CO2 fluxes during MHWs, we find the sea-air CO2

flux is reduced in the equatorial Pacific and low-mid latitude regions. Due to the differing directions

of the mean sea-air exchange between these regions, a decrease in the flux during MHWs equates to an

anomalous ingassing in the equatorial Pacific and anomalous outgassing in the low to mid latitudes of the

Northern and Southern Hemisphere. Several studies (Fay and McKinley, 2017; Sarmiento and Gruber,

2006; Doney et al., 2009) on seasonal variations in sea-air CO2 flux anomalies established flux changes

to be a balance between thermal and non-thermal components. We find the sea-air CO2 flux anomalies

during MHWs to be mainly driven by oceanic pCO2 anomalies which are a net result of two competing

mechanisms: higher than usual temperatures (thermal effect) and lower than usual DIC (non-thermal

DIC effect). This agrees with established findings that the most important factors to oceanic pCO2 are

temperature and DIC (Takahashi et al., 1993). Positive temperature anomalies lead to a reduction in the

solubility of CO2 in ocean water due to a lower Henry’s law constant (Gilbert et al., 2016), causing an

increase the pCO2 in the ocean. An higher partial pressure of pCO2oc directly causes a reduction in the

ocean’s ability to hold CO2. While about two-thirds of the sensitivity of pCO2oc to temperature is due

to solubility changes, the dissociation constants that control the carbon system reactions also directly

influence the sensitivity of pCO2oc to temperature (Sarmiento and Gruber, 2006). On the contrary, lower

DIC levels during MHWs induce negative pCO2oc anomalies and increase the ocean’s uptake ability, acting

in contrast to the thermal effect on pCO2oc. Depending on the region, the thermal or DIC dominates.

In agreement with Mignot et al. (2021) we find in the equatorial Pacific, the DIC effect on pCO2oc

dominates over the temperature effect. The tropical pacific study region of Mignot et al. (2021) can be

compared to our equatorial Pacific study region. In our study we find the region’s flux reduced by about

-31% (-3% to -49%) (observation-based) and -39% (26% to 50%) (model), which on average is of similar

magnitude found by Mignot et al. (2021) (40±9%). The good agreement in this reason can be due to

the similar observation-based pCO2 products used in the analysis. The four observation-based products

used by Mignot et al. (2021) (JENA, CMEMS, CSIR, MPI) are also used in this thesis in addition to

two others (JMA-MLR, NIES-FNN). Moreover, the high agreement in flux anomalies with Mignot et al.

(2021) despite their consideration of only ’persistent’ MHW events (lasting longer than 38 days and with

a mean sea surface temperature anomaly of 2.3 degrees Celsius), could be due to the fact that MHW

events in this region are known to manifest as long-lasting MHWs driven by El Niño (Holbrook et al.,

2019). Additionally, these results align with Feely et al. (2002) who found lower sea-air CO2 fluxes in the

equatorial Pacific during El Niño periods of warmer SSTs particularly in 1991-94 and 1997-98. In fact,

the occurrence of anomalous ocean uptake during El Niño events is well known (Keeling and Revelle,

1985; Bacastow, 1976).

In the low-to-mid latitude net ingassing study areas, our findings of reduced ingassing (or anomalous

outgassing) mainly due to the dominant thermal effect on pCO2oc is in agreement with what Mignot
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et al. (2021) finds in their mid latitude North Pacific region. The low-mid latitude Northern Hemi-

sphere study region of this thesis includes most of Mignot et al. (2021)’s North Pacific sink region

(23.5°N–59.5°N, 123.5°E-121.5°W). In our study we find the region’s flux reduced by about -30% (24-%

to -34%) (observation-based) and 42% (37% to 47%) (model) which on average is of similar magnitude

found by Mignot et al. (2021) (29±11%). Additionally, several studies (Fay and McKinley, 2017; Taka-

hashi et al., 2002) on the seasonal variation of sea-air CO2 fluxes find, during summertime in subtropical

regions, the thermally driven increase in pCO2oc is slightly counteracted by the decrease in pCO2oc due to

increase stratification which brings less DIC to the surface but, in the end, the thermal effect dominates.

Furthermore, our findings of a reduced flux in the Northern Hemisphere low-mid latitudes agree with a

recently published case study on sea-air CO2 fluxes during MHWs in the Mid Atlantic (MAB) and South

Atlantic Bight (SAB) (Edwing et al., 2024). Edwing et al. (2024) considers the two longest MHW events

in the MAB and SAB which fall into the NH low-mid latitude study region of this thesis. In general,

Edwing et al. (2024) attributes the reduced ingassing flux during MHWs to increased pCO2oc, with the

thermal effect as the main contributor the pCO2oc anomalies despite an offset by non-thermal factors.

Edwing et al. (2024) takes the analysis a step further by analyzing MHW months that exceed the 75th

percentile of CO2 flux anomalies and is able to identify conditions during substantial flux changes. This

element is something to consider for future analyses to provide a better understanding of the drivers of

substantial sea-air flux anomalies during MHWs.

We can further compare our findings to the recent publication by Duke et al. (2023). It must be

noted that Duke et al. (2023) considers a specific region in the Northeast Pacific (45-62°N, 120-155°W).

This region makes up just half of our North Pacific region. Thus, we must refer to global maps for

comparison and not the regional results of our North Pacific region. Consistent with Duke et al. (2023),

we observe this northeastern Pacific study region to be on average a net sink of CO2 (albeit stronger

in the model data than the observation-based data). Duke et al. (2023) considers sea-air flux anomalies

during the strongest MHW (’the Blob’ late 2013-2015) and another heatwave (mid 2018-2020). The Blob

was associated with declines in local wind speed, decreased the mixing of deep, cold water to the surface

and higher sea surface temperatures. These impacts are consistent with our observation-based findings

of reduced gas transfer velocity (from weaker winds) and lower pCO2 from reduced DIC at the surface.

Duke et al. (2023) concludes impact of reduced winter mixing (because of decreased winds and increased

density stratification) tipped the balance toward enhanced atmospheric CO2 uptake during these marine

heat waves. We both find a non-thermal effect driving lower pCO2, leading to enhanced uptake of CO2.

The Southern Ocean study region encompasses sea-air flux anomalies of opposite signs between the

observation-based and model data but on average acts as a net sink CO2 sink for both. The observation-

based results indicate a strengthening in the sea-air CO2 exchange (stronger ingassing) during MHWs.

This is a result of negative DIC anomalies reducing the oceanic pCO2 at the surface and allowing for

greater CO2 uptake. This result would be consistent with Lerner et al. (2021), which states in the

Southern Ocean seasonal changes in sea-air CO2 fluxes are mainly caused by changes in DIC. However,

our model results suggest a decrease in the Southern Ocean’s net uptake during MHWs as a result of

the strong thermal effect increasing the pCO2. The opposing findings between our observation-based

and model data and the limited availability of observational-based data products for the Southern Ocean

prevents a clear conclusion on how the Southern Ocean sea-air CO2 flux reacts during MHWs. Mignot
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et al. (2021) does not analyze results for the Southern Ocean, due to the minimal CO2 flux anomalies

during persistent marine heatwaves. Greater coverage and more robust observation-based data products

are needed to understand the changes and drivers of sea-air CO2 fluxes during MHWs in the mid-high

latitude Southern Ocean.

This brings us to the limitations of the thesis research. Firstly, observation data is limited for pCO2.

The six observation-based pCO2 products all use SOCAT pCO2 data albeit different versions. Although

this data coverage has increased four-fold from the 1990s to the 2000s, there are still regions where data is

sparse such as the Southern Ocean and Indian Ocean. For context, Figure 21 shows on the top panel the

measured data observations from 1957 onward, the middle panel shows the measured data observations

for November 2020 to January 2021, and the bottom panel is shows data mainly for the period 2018-

2020. For the period 2018-2021, there is minimal data in the Southern Ocean, south Pacific Ocean, Indian

Ocean. This emphasizes the need for caution when interpreting observation-based results and comparing

model results to them. Secondly, we use monthly sea surface temperature data during our identification

of marine heatwaves. Ideally, SST data with daily resolution should be used to identify and characterize

MHWs according to Hobday et al. (2016). For example, monthly SSTs cannot resolve many individual

MHWs directly, since many events are shorter in duration than 1 month (Oliver et al., 2018; Vogt

et al., 2022). In terms of the model-related limitations, only data from the GFDL ESM2M model is used.

Ocean models with different resolutions simulate temperature extremes differently due to different choices

of parameters, limitations, and as a result can differently simulate processes that can give rise to MHWs

(Pilo et al., 2019). Thus, the usage of an ensemble of ESM model data would improve the robustness of

the presented results. For instance, Frölicher et al. (2018) used a suite of ESM model simulations to assess

MHW metrics for historical data of the past few decades. Additionally, the horizontal resolution (1°) of
the ocean model component in the GFDL ESM2M is quite coarse which presents challenges in simulating

small scale circulation patterns and basin-scale ocean variability particularly in smaller basins and coastal

regions (Turi et al., 2018; Saba et al., 2016). The ocean model resorts to applying the Gent-McWilliams

parameterization to simulate mesoscale (10-100km) circulation patterns (Dunne et al., 2012). An ideal

improvement would be to use a global high-resolution model that resolves ocean eddies and has greater

performance in coastal regions. Regarding the Taylor decomposition of the sea-air CO2 flux, it assumes

linearity but not all the components of the equation have linear functions. For example, the gas transfer

velocity has a quadratic dependence on wind speed. As a result, the Taylor decomposition results can only

provide an approximation. Other methods to understand the drivers of the sea-air CO2 flux anomalies

could be explored in future analyses such as a nonlinear regression which would take into account any

nonlinear dependencies, a principal component analysis, or machine learning techniques. Additionally,

the Taylor decomposition is performed with monthly data for solubility, gas transfer velocity, oceanic

and atmospheric pCO2 and sea ice fraction. However, the model is able to produce flux data in 2 hourly

time steps. Theoretically this decomposition could be replicated using model output for the flux variables

at daily or even 2 hourly time steps to possibly improve the accuracy of results and allow for a direct

comparison between the true 2 hour flux anomalies and decomposition sum anomalies. Furthermore,

using a higher temporal resolution data in the decomposition would give the opportunity for a more

precise analysis such as comparing drivers between seasons and during the onset and decline phases of

MHWs.
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Figure 21: Measurements from ship and sailboat tracks in SOCAT version 2022 shown in black. The colored line indicates the measured
fugacity of CO2. The top panel (a) shows all data from 1957 onward and the middle panel (b) shows the data from November 2020
through January 2021. Figure from: Landschützer et al. (2023). Finally, the bottom panel (c) shows the new measurements for the
SOCAT 2021 version, which is mostly data from 2018-2020. Figure from: Metzl (2021). It should be noted that the difference between
partial pressure and fugacity is less than 1% (DeVris, 2022).
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6 Conclusion

In this thesis we investigated the impact of MHW events on sea-air CO2 fluxes across the global

ocean for the time period 1990-2019. While the global average uptake of CO2 is only slightly reduced

during MHWs, regional sea-air CO2 flux anomalies appear substantial, mainly in the equatorial Pacific,

low to mid latitudes of the Northern and Southern Hemisphere and the Southern Ocean. The impact

of marine heatwave events on sea-air CO2 fluxes depend on several often competing climatic factors

that influence the sea-air CO2 flux. Firstly, the magnitude and sign of the sea-air CO2 flux depends on

solubility, gas transfer velocity, sea ice, and the difference between oceanic and atmospheric pCO2. A

Taylor decomposition of the sea-air CO2 flux anomalies during marine heatwaves reveals oceanic pCO2 to

be the dominating factor. Oceanic pCO2 depends on the interaction of several factors such as sea surface

temperatures, dissolve inorganic carbon, salinity, and alkalinity. Decomposing the change in oceanic

pCO2 during marine heatwaves, reveals oceanic pCO2 anomalies are mainly a net result of changes in

temperature (thermal effect) and DIC (non-thermal effect). During marine heatwaves, the thermal and

non-thermal effects on pCO2 counteract each other: warmer sea surface temperatures increase oceanic

pCO2 (thermal effect) while lower DIC decreases pCO2 (non-thermal effect). Depending on the oceanic

region, either the thermal or non-thermal DIC effect emerges as the dominating mechanism behind the

pCO2 anomalies and thus the sea-air CO2 flux anomalies during MHWs. In general, the thermal effect

dominates in the tropics and the DIC effect dominates in the low to mid latitude regions. Greater

variation and areas of mismatch arise in the high latitude regions and between the observation-based and

model results. However on average, the DIC effect dominates the high latitudes in the observation-based

data.

This thesis presents the ability of ESM data to replicate observation-based flux anomalies and their

drivers during MHWs, thus the next step in this research could be to investigate the physical and

biogeochemical processes leading to negative DIC and and positive temperature anomalies during MHWs

using carbon and temperature tendency terms. The DIC anomalies can be caused by many different

processes such as, vertical diffusion, vertical advection, freshwater anomalies, and biological activities

(Mignot et al., 2021). It would be interesting to uncover which is causing the changes in DIC and

compare results between regions. Likewise, the temperature change at the ocean surface is caused by

several processes such as the net sea-air heat exchange (net incoming longwave and shortwave radiation,

and net latent and sensible heat fluxes), vertical diffusion, and mixing (Vogt et al., 2022). Comparing the

drivers of temperature anomalies between regions would also be of interest. In looking at the underlying

drivers of the DIC and temperature anomalies, it would also be of interest to conduct an analysis with

a seasonal component. This thesis considers all seasons at once but the dominating effect (thermal or

non-thermal) on oceanic pCO2 can vary depending on the season. Additionally, since the focus of this

research is to understand how MHW events impact the sea-air CO2 flux, and with MHWs becoming more

intense, frequent, and longer in duration over the last few decades (Oliver et al., 2018; Frölicher et al.,

2018; Laufkötter et al., 2020) it would be logical to extend the study into the future to assess impacts and

drivers under different global warming levels. This would offer insights on whether the driving processes

of sea-air CO2 flux anomalies during MHWs depend on the background climate state.
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7 Supplementary Information

Supplementary Figure 1: Map of fraction of months from 1990 to 2019 with coverage available for each of the six observation-based
pCO2 data products. Yellow areas show regions with no reported pCO2 values for any month of the time series. Figure from: Fay et al.
(2021)
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(a) CSIR ML6 (b) CMEMS FFNN (c) JMA MLR

(d) JENA MLS (e) MPI SOMFFN (f) NIES FNN

Supplementary Figure 2: The raw pCO2 data for 1990-2019 for each of the six observation-based pCO2 products (CSIR-ML6, CMEMS-
FFNN, JMA-MLR, JENA-MLS, MPI-SOMFFN, NIES-FNN).

(a) CSIR ML6 (b) CMEMS FFNN (c) JMA MLR

(d) JENA MLS (e) MPI SOMFFN (f) NIES FNN

Supplementary Figure 3: The pCO2 anomaly during MHWs (1990-2019) for each of the six observation-based pCO2 products (CSIR-
ML6, CMEMS-FFNN, JMA-MLR, JENA-MLS, MPI-SOMFFN, NIES-FNN).
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(a)

(b)

Supplementary Figure 4: Global map of ESM2M ensemble average wind speed (in m/s) at mean state and anomaly during MHWs, for
1990-2019.
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(a) Seaflux-CSIR anomaly

(b) Decomposition sum

(c) SeaFlux-CSIR flux anomaly - decomposition sum

(d)

(e)

(f)

(g)

(h)

Supplementary Figure 5: Global depiction of the flux decomposition for observation-based data using the CSIR pCO2 product and
average wind product for the time-period 1990-2019. The right hand column shows the Taylor decomposition contributions of each flux
component to the overall sea-air CO2 flux anomaly during MHWs (kw, solubility, pCO2atm , pCO2oc , ice. The left column shows the
SeaFlux sea-air CO2 flux anomaly during MHWs (a), the sum of the flux decomposition contributions (b), and the difference between
the two (a - b). The data is masked to include only the regions where all six products have data.
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(a) Seaflux-CMEMS anomaly

(b) Decomposition sum

(c) SeaFlux-CMEMS flux anomaly - decomposition sum

(d)

(e)

(f)

(g)

(h)

Supplementary Figure 6: Global depiction of the flux decomposition for observation-based data using the CMEMS pCO2 product and
average wind product for the time-period 1990-2019. The right hand column shows the Taylor decomposition contributions of each flux
component to the overall sea-air CO2 flux anomaly during MHWs (kw, solubility, pCO2atm , pCO2oc , ice. The left column shows the
SeaFlux sea-air CO2 flux anomaly during MHWs (a), the sum of the flux decomposition contributions (b), and the difference between
the two (a - b). The data is masked to include only the regions where all six products have data.
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(a) Seaflux-JENA anomaly

(b) Decomposition sum

(c) SeaFlux-JENA flux anomaly - decomposition sum

(d)

(e)

(f)

(g)
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Supplementary Figure 7: Global depiction of the flux decomposition for observation-based data using the JENA pCO2 product and
average wind product for the time-period 1990-2019. The right hand column shows the Taylor decomposition contributions of each flux
component to the overall sea-air CO2 flux anomaly during MHWs (kw, solubility, pCO2atm , pCO2oc , ice. The left column shows the
SeaFlux sea-air CO2 flux anomaly during MHWs (a), the sum of the flux decomposition contributions (b), and the difference between
the two (a - b). The data is masked to include only the regions where all six products have data.
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(a) Seaflux-JMA anomaly

(b) Decomposition sumt

(c) SeaFlux-JMA flux anomaly - decomposition sum

(d)
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Supplementary Figure 8: Global depiction of the flux decomposition for observation-based data using the JMA pCO2 product and
average wind product for the time-period 1990-2019. The right hand column shows the Taylor decomposition contributions of each flux
component to the overall sea-air CO2 flux anomaly during MHWs (kw, solubility, pCO2atm , pCO2oc , ice. The left column shows the
SeaFlux sea-air CO2 flux anomaly during MHWs (a), the sum of the flux decomposition contributions (b), and the difference between
the two (a - b). The data is masked to include only the regions where all six products have data.
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(a) Seaflux-MPI anomaly

(b) Decomposition sum

(c) SeaFlux-MPI flux anomaly - decomposition sum

(d)

(e)

(f)

(g)

(h)

Supplementary Figure 9: Global depiction of the flux decomposition for observation-based data using the MPI pCO2 product and
average wind product for the time-period 1990-2019. The right hand column shows the Taylor decomposition contributions of each flux
component to the overall sea-air CO2 flux anomaly during MHWs (kw, solubility, pCO2atm , pCO2oc , ice. The left column shows the
SeaFlux sea-air CO2 flux anomaly during MHWs (a), the sum of the flux decomposition contributions (b), and the difference between
the two (a - b). The data is masked to include only the regions where all six products have data.
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(a) Seaflux-NIES anomaly

(b) Decomposition sum

(c) SeaFlux-NIES flux anomaly - decomposition sum

(d)

(e)

(f)

(g)
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Supplementary Figure 10: Global depiction of the flux decomposition for observation-based data using the NIES pCO2 product and
average wind product for the time-period 1990-2019. The right hand column shows the Taylor decomposition contributions of each flux
component to the overall sea-air CO2 flux anomaly during MHWs (kw, solubility, pCO2atm , pCO2oc , ice. The left column shows the
SeaFlux sea-air CO2 flux anomaly during MHWs (a), the sum of the flux decomposition contributions (b), and the difference between
the two (a - b). The data is masked to include only the regions where all six products have data.
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(a)

(b)

(c)

Supplementary Figure 11: For each ESM2M ensemble member the flux decomposition results: (a) the recalculated monthly flux anomaly
during MHWs, (b) the sum of the flux decomposition contributions, and (c) and the difference between the two.
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(a)

(b)

(c)

Supplementary Figure 12: For each ESM2M ensemble member the contribution of the gas transfer velocity (a), solubility (b), and
atmospheric pCO2 (c) to flux anomalies during MHWs.
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(d)

(e)

The contribution of oceanic pCO2 (d) and ice (e) to flux anomalies during MHWs.
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(a) Seaflux-CSIR pCO2oc anomaly

(b)

(c)

(d)

(e)

(f)
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Supplementary Figure 13: Global maps of the oceanic pCO2 decomposition for observation-based data using the CSIR DIC product
for the time-period 1990-2019. The right hand column shows the Taylor decomposition contributions of each pCO2 component to the
overall pCO2oc anomaly during MHWs (alkalinity, salinity, dissolved inorganic carbon, and sea surface temperature). The left column
shows SeaFlux-CSIR pCO2 flux anomaly during MHWs (a), the sum of the pCO2oc decomposition contributions (b), and the difference
between the two (a - b).
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(a) Seaflux-CMEMS pCO2oc anomaly

(b)

(c)

(d)

(e)

(f)

(g)

Supplementary Figure 14: Global maps of the oceanic pCO2 decomposition for observation-based data using the CMEMS DIC product
for the time-period 1990-2019. The right hand column shows the Taylor decomposition contributions of each pCO2 component to
the overall pCO2oc anomaly during MHWs (alkalinity, salinity, dissolved inorganic carbon, and sea surface temperature). The left
column shows SeaFlux-cmems pCO2 flux anomaly during MHWs (a), the sum of the pCO2oc decomposition contributions (b), and the
difference between the two (a - b).

67



(a) Seaflux-JMA pCO2oc anomaly

(b)

(c)

(d)

(e)

(f)

(g)

Supplementary Figure 15: Global maps of the oceanic pCO2 decomposition for observation-based data using the JMA DIC product
for the time-period 1990-2019. The right hand column shows the Taylor decomposition contributions of each pCO2 component to the
overall pCO2oc anomaly during MHWs (alkalinity, salinity, dissolved inorganic carbon, and sea surface temperature). The left column
shows SeaFlux-jma pCO2 flux anomaly during MHWs (a), the sum of the pCO2oc decomposition contributions (b), and the difference
between the two (a - b).
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(a) Seaflux-JENA pCO2oc anomaly
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Supplementary Figure 16: Global maps of the oceanic pCO2 decomposition for observation-based data using the JENA DIC product
for the time-period 1990-2019. The right hand column shows the Taylor decomposition contributions of each pCO2 component to the
overall pCO2oc anomaly during MHWs (alkalinity, salinity, dissolved inorganic carbon, and sea surface temperature). The left column
shows SeaFlux-jena pCO2 flux anomaly during MHWs (a), the sum of the pCO2oc decomposition contributions (b), and the difference
between the two (a - b).
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(a) Seaflux-MPI pCO2oc anomaly

(b)
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Supplementary Figure 17: Global maps of the oceanic pCO2 decomposition for observation-based data using the MPI DIC product
for the time-period 1990-2019. The right hand column shows the Taylor decomposition contributions of each pCO2 component to the
overall pCO2oc anomaly during MHWs (alkalinity, salinity, dissolved inorganic carbon, and sea surface temperature). The left column
shows SeaFlux-mpi pCO2 flux anomaly during MHWs (a), the sum of the pCO2oc decomposition contributions (b), and the difference
between the two (a - b).
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(a) Seaflux-NIES pCO2oc anomaly
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Supplementary Figure 18: Global maps of the oceanic pCO2 decomposition for observation-based data using the NIES DIC product
for the time-period 1990-2019. The right hand column shows the Taylor decomposition contributions of each pCO2 component to the
overall pCO2oc anomaly during MHWs (alkalinity, salinity, dissolved inorganic carbon, and sea surface temperature). The left column
shows SeaFlux-nies pCO2 flux anomaly during MHWs (a), the sum of the pCO2oc decomposition contributions (b), and the difference
between the two (a - b).
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(a)

(b)

(c)

Supplementary Figure 19: For each ESM2M ensemble member the ocean pco2 decomposition results: (a) the pCO2 anomaly, (b) sum
of pCO2 decomposition terms, and (c) the difference between the anomaly and decomposition sum.
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(a)

(b)

Supplementary Figure 20: For each ESM2M ensemble member the contribution of alkalinity (a), salinity (b) on oceanic pCO2 anomalies
during MHWs.
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(c)

(d)

The contribution of dissolved inorganic carbon (c), and sea surface temperature (d) on oceanic pCO2 anomalies during MHWs.
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