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Abstract

Land cover change (LCC) affects biogeochemical and biogeophysical processes, leading to changes

in surface temperature. The effect of LCC has not only a local (i.e., at the immediate area of

change) surface temperature effect but also nonlocal effects on surface temperature in neighbor-

ing or remote areas. To understand the local and nonlocal effects, we must separate the total

effect into local and nonlocal effects. The two signal separation methods we investigated are

the checkerboard method and the moving window (MW) method. Before the LAMACLIMA1

project began, the small amount of dedicated checkerboard experiments limited comparisons

between the checkerboard and MW methods. Our objective is to compare the results of the

checkerboard and MW methods in the same dedicated LAMACLIMA experiments to find an

agreement or middle ground between the two methodologies while highlighting the circumstances

that indicate difficulties and disagreement. By highlighting the benefits and limitations of the

two methods, our second aim is to make recommendations under which scenarios each method

should be chosen. Focusing on local effects, we show that both methods generally agree well

for deforestation. For afforestation, the local effects calculated by the two methods show more

deviations. When looking at individual grid cells, some clear differences occur. We found that

the checkerboard method presents spurious artefacts in areas with nearly absent LCC. In the

MW method, the choice of the MW size notably influences local effects: larger MW sizes can

include more diverse LCCs, increasing linear regression robustness, while reducing spatial vari-

ability. Our research takes a step toward a more comprehensive analysis of two signal separation

methods while providing insights into the relative performance of the checkerboard and MW

methods.

1LAMACLIMA - LAnd MAnagement for CLImate Mitigation and Adaptation. The LAMACLIMA project led
by Climate Analytics aims to increase public and scientific understanding of the interactions between LCLM and
climate to inform the development of effective land-based adaptation and mitigation strategies.
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1 Introduction

The rise in temperature and hydrological extremes brought on by climate change is of great concern

to society as it poses a risk to human health and ecosystem functioning (IPCC AR6 SPM, 2021).

Therefore, developing strategies for global climate mitigation and local adaptation is of utmost

importance, and land-based strategies are expected to play a key role in this (IPCC SRCCL, 2019).

Besides their potential mitigation effect, land management practices such as forest restoration and

management, no-tillage, cover crops, and crop albedo management have been shown to affect tem-

perature locally in particular during heatwaves (Davin et al., 2014; Hirsch et al., 2017; Seneviratne

et al., 2018; Hirsch et al., 2018; Schwaab et al., 2020). Through land cover change (LCC), e.g. the

substitution of forests for croplands for agricultural purposes, humans have significantly altered

the land’s surface (Pongratz et al., 2008). Historical land cover changes has been shown to affect

the past climate (Pitman et al., 2009; Boisier et al., 2012; De Noblet-Ducoudré et al., 2012), with

regional climate effects being similar in magnitude to the concomitant rise of emissions throughout

the period from 1850 - 2010 (De Noblet-Ducoudré et al., 2012).

This thesis focuses on the effects of tree cover change (TCC) as part of LCC. More specifically, we

focus on deforestation and afforestation, including reforestation within afforestation. Afforestation

and reforestation are commonly grouped under the term forestation. However, we use afforestation

throughout this thesis to remain consistent with the terminology used by De Hertog et al. (2023).

Since we use the same simulation setup as in (De Hertog et al., 2023).

Despite a reduction in the annual tree cover loss over recent years, the World Resources Institute

indicates a substantial loss of 22.4 Mha of tree cover globally in 2022 (Figure 1). Furthermore,

459 Mha of tree cover have been lost since the beginning of the new millennium, showing the

large scale of TCC in the past. Aside from significant tree cover losses, large tree cover increases

are visible. With the Paris Agreement in 2016, 196 nations signed an agreement to undertake

mitigation strategies to limit the mean global surface temperature increase, with respect to pre-

industrial levels, to below 2 Kelvin. Regarding land management, afforestation has one of the

largest mitigation potentials in terms of carbon dioxide removal, as graphically depicted in Figure

1. The mitigation potential has driven multiple organizations (e.g., Ecosia, One Tree Planted, 1t)

to declare their participation in extensive tree-planting initiatives, committed to further amplifying

their efforts in the forthcoming years. The large-scale deforestation and afforestation occurring

underline the importance of comprehending the effects of TCC on the climate system.
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Figure 1: The left side shows the gross tree cover loss by ecozone (adapted Figure from World Resources Institute
and the Global Forest Watch). The right side highlights the mitigation potential of afforestation/reforestation in
2020–2050 regarding carbon dioxide removal (Adapted Figure from IPCC SRCCL, 2019). For the right side only
research that provides estimates of how much CO2 equivalent per year could be reduced by 2050 is included. The
mitigation potential is calculated by studies from 2010 - 2017 that represent technical, economic, or sustainable
potential.

As indicated by the IPCC special report “Climate Change and Land” (2019), LCC not only affects

biogeochemical (BGC) processes but also the energy and hydrological balance of the land surface,

referred to as biogeophysical (BGP) effects (IPCC, 2019). In other words, the BGP effect reflect

the impact of physical land surface changes, such as the changes in albedo, evapotranspiration, or

surface roughness, while the BGC effect reflect changes in emissions of compounds, such as changes

in the CO2 emission (Pongratz et al., 2010; Davin and de Noblet-Ducoudré, 2010; Bright, 2015).

In this thesis, we focus on the BGP effects of TCC. More specifically, we analyze the BGP effect

of TCC on surface temperature2. So, from now on, unless specified otherwise, when we refer to

the effect of TCC, we refer to the BGP effect of TCC on surface temperature. The effects of TCC

extend beyond local areas of change, affecting the surface temperature in neighboring and remote

regions as well (Spracklen et al., 2018; Cohn et al., 2019; Davin et al., 2020). Therefore, when

investigating the effect of TCC on surface temperature, it is essential to be aware of both the local

and nonlocal effects.

The BGP effects of TCC have been analyzed through observational studies, particularly with paired

in-situ and remote sensing measurements. These studies predominantly utilize a space-for-time

strategy. Thereby, it compares two spatially distinct areas, in close proximity, assuming similar

atmospheric forcing. By analyzing the same time period, the differences in surface temperature

between these areas can be attributed to tree cover variations. Additionally, the space-for-time

approach can be applied to areas wherein one area experiences TCC while the other remains un-

changed (no-TCC) (Duveiller et al., 2018; Meier, 2021). Such observational studies encounter

challenges. One challenge arises from the assumption of identical atmospheric forcing in both ar-

eas, which cannot be assured and introduces measurement noise. Furthermore, these observational

studies inherently measure either local or nonlocal BGP effects but cannot simultaneously measure

2also called “skin” temperature in the IPCC Standard Output from Coupled Ocean-Atmosphere GCMs (Meehl
et al., 2007)
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the local and nonlocal effects. This inability highlights the need for good signal separation meth-

ods that can be applied to model simulations to disentangle the total effect into local and nonlocal

effects. In this thesis, we will analyze and compare two existing signal separation methods applied

to Earth System Model (ESM) simulation experiments.

The checkerboard method is one of the two signal separation methods we investigate in this the-

sis. The checkerboard method, originally described by Winckler et al. (2017), uses the design

choice where TCC is altered only in every other grid cell3 following a checkerboard pattern. This

alternating TCC design choice must be implemented before running the simulation. Therefore

implementing the checkerboard approach requires a dedicated ESM experiment, making it compu-

tationally expensive. In contrast, the moving window (MW) method is more flexible. The MW

method is the second signal separation method investigated in this thesis. It can technically be

applied to several existing LCC experiments since it does not depend on a regular spatial patterned

LCC. Therefore, the MW method does not rely on dedicated ESM simulations, resulting in higher

computational efficiency and flexibility (Lejeune et al., 2018; De Hertog et al., 2023).

Due to the lack of dedicated checkerboard experiments, there is a constrained capacity for comparing

the checkerboard and the MW methods. The LAMACLIMA project created dedicated checker-

board experiments that offer the opportunity to compare the checkerboard to the MW method

in-depth. Thus, our objective is to compare the results of the checkerboard and MW methods in

the same dedicated LAMACLIMA experiments to find an agreement or middle ground between the

two methodologies while highlighting the circumstances that indicate difficulties and disagreement.

The following steps are taken in order to accomplish the objective of this thesis. First, we compare

the results of the checkerboard and the MW methods in the LAMACLIMA experiments for two

scenarios: deforestation and afforestation relative to the 2015 “present-day” control levels. This

comparison will be made through a spatial comparison, the analysis of 2-D histograms showing

the Pearson correlation coefficient of both methods and a focus on the local effects sign agreement

and disagreement of both methods. Secondly, we will investigate possible reasons explaining the

comparison differences. Thereby we will investigate, among others, possible spurious artefacts from

the checkerboard method and the influence and the added values of different MW sizes in the MW

approach.

3Grid cells are equally-sized rectangular (2D) or cubic (3D) spatial locations that collectively form a spatial
coverage of a large area.

3



2 Methods & Data

2.1 Earth System Models

Earth System Models (ESMs) consist of multiple submodels that describe, among others, the at-

mosphere, ocean, land, runoff, and sea ice and how their processes react upon change. To do so,

the submodels calculate interactive processes and feedback within three-dimensional grid cells with

a certain resolution, thereby modeling the Earth’s climate (Collins et al., 2011). Linking these sub-

models together gives a fully-coupled ESM, which enables a comprehensive understanding of global

climate effects based on anthropogenic forcings. Figure 2 presents the submodels employed in the

ESMs used in this thesis. We are especially interested in understanding the climate effects based

on changes in the land surface submodels. More precisely in changes in land cover, specifically

tree cover. Within the land surface submodels, each grid cell consists of smaller tiles representing

distinct vegetation types. Depending on the model, the vegetation types may differ. These vege-

tation types are typically categorized into two main groups: Plant Functional Types (PFT) and

Crop Functional Types (CFT). Each of these groups further incorporates subgroups representing,

e.g., different PFTs such as deciduous and extra-tropical evergreen trees.

Figure 2: Visualization of the submodels within the fully-coupled MPI-ESM on the left and the submodels within
the fully-coupled CESM2 on the right. Adapted Figure from Mauritsen et al. (2019); Danabasoglu et al. (2020).

The data used in this study are ESM simulations specifically designed to isolate the effects of TCC

and separate their local and nonlocal components using the checkerboard method. The simula-

tion experiments employed in this thesis have been generated through the LAMACLIMA project

(De Hertog et al., 2023) and utilize the following two ESMs:

MPI-ESM: Stands for Max Planck Institute Earth System Model.

This fully-coupled ESM, illustrated in the left part of Figure 2, makes use of the land component

JSBACH3.2 and the atmospheric component ECHAM6.3, which are connected to the ocean dy-

namic and biogeochemistry models (MPIOMI1.6 and HAMOCC6) via OASIS3-MCT. The land

cover in MPI-ESM is represented through a total of 12 different PFTs, including 2 CFTs and 4 tree

PFTs (extra-tropical evergreen and deciduous trees as well as tropical broadleaf evergreen trees)

(Mauritsen et al., 2019).

CESM2: Stands for Community Earth System Model 2.

This open source, fully-coupled model illustrated on the right side of Figure 2, described by Dan-
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abasoglu et al. (2020), includes submodels for the ocean, atmosphere, land ice, sea ice, river runoff,

and land. The CESM2 includes 8 CFTs, which can grow on rainfed or irrigated patches, and 14

natural PFTs (Danabasoglu et al., 2020).

It is important to recognize that CESM2 and MPI-ESM have differing interpretations of identi-

cal input land cover maps, given that each model incorporates distinct PFTs. Consequently, we

anticipate slight disparities in the surface temperature effects of these two models due to the dis-

similarities in the TCC maps. Davin et al. (2020) describe how to construct idealized land cover

maps.

In this research, if not mentioned differently, we use the native grid cell resolution of the CESM2

and the MPI-ESM (lat × lon; CESM2: 0.90° × 1.25° and MPI-ESM: 1.88° × 1.88°). MPI-ESM

has a lower resolution than CESM2, resulting in spatially larger grid cells and, thus, fewer data

points. It is important to consider this grid cell resolution difference and its potential influence

when comparing the TCC effects of both models. We expect the pattern of the TCC effect from

MPI-ESM to have less spatial variability than from CESM2 due to spatially larger grid cells. Figure

3 visualizes the MW for 5x5, 7x7, 9x9 and 11x11 grid cells. We added the 11x11 MW to visually

show why we believe that we lose the “locality” aspect if the MW is spatially so large. Further,

we did not include the 3x3 MW since we assumed it would not have enough data points for a sta-

tistically robust response. We analyze the 5x5, 7x7, and 9x9 MW sizes based on these assumptions.

Figure 3: Visualization of the spatial dimension of different MW sizes. The central point corresponds to the initial
MW centered grid cell. The first window visible is the 5x5 MW, then 7x7, 9x9 and 11x11.

2.2 Signal separation of local and nonlocal effects

2.2.1 Definition of local and nonlocal effects

As indicated in Section 2.1, ESMs consist of three-dimensional grid cells, modeling the Earth’s

climate. For grid cells on land, we distinguish between grid cells that undergo TCC and grid cells

that do not undergo TCC. We will refer to them as TCC grid cells and no-TCC grid cells. A total

or “net” effect of TCC, consisting of local and nonlocal effects, is visualized in Figure 4. We define

local effects as those effects that exclusively result from changes in the surface properties of the

grid cell “A” itself and which occur on “A”. The nonlocal effect is the emerging effect received on

“A” due to TCC of nearby or remote grid cell “D”. A grid cell that does not undergo TCC can

have a nonlocal effect even though its surface properties have not changed. Grid cells “B” and “C”
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experience no local TCC. Thus, as a consequence, the nonlocal effect is equal to the total BGP

effect for no-TCC grid cells.

Figure 4: Schematic to visualize how TCC generates local and nonlocal effects. TE stands for total effect, and BGP
for biogeophysical. No-TCC grid cells stand for grid cells that do not undergo TCC. The gray arrows depict the BGP
circulation change brought on by TCC, which impacts remote grid cells.

2.2.2 Signal separation methods

The checkerboard method is a systematic method created by Winckler et al. (2017) that requires

dedicated ESM simulations. In the checkerboard method, only every second grid cell undergoes

TCC, resulting in a checkerboard pattern, visible in Figure 5b). Grid cells without TCC represent

a nonlocal effect, capturing climatic changes due to neighboring TCC. Since there is no local effect

in grid cells with no-TCC, their nonlocal effect equals the total effect. The nonlocal effects of these

grid cells are illustrated in Figure 5b). The grid cells that undergo TCC are masked-out in gray,

resulting in a checkerboard pattern of nonlocal effects. To differentiate the total effect at TCC grid

cells into local and nonlocal effects, the nonlocal effects from no-TCC grid cells in Figure 5b) are

linearly interpolated onto the TCC grid cells. Therewith, the nonlocal effect is known for every

grid cell, illustrated in Figure 5c). By subtracting the calculated nonlocal effect from the total

effect at the TCC grid cells, the local effect, visible in 5d), can be generated. Then the local effects

are interpolated to the grid cells without TCC, receiving a global map of local effects presented in

Figure 5e). In order to receive the total effect if every grid cell would undergo TCC, the Sub-figures

5c) and 5e) have to be added up. The MW method will be applied to these total effects (based

on Figure 5c & 5e). The initial total effect map from the simulation experiment, visible in Figure

5a), consists of grid cells without TCC (nonlocal effect in Figure 5b) and the grid cells with TCC

(combining the nonlocal effect in Figure 5c and the local effect in Figure 5d).

Based on Winckler et al. (2017), the checkerboard pattern where every second grid cell undergoes

TCC was used, as it is the most robust. An advantage of the checkerboard method is that it

provides a clear understanding of the origin of nonlocal effects. It enables comprehensive isolation

of all components (i.e., local, nonlocal, and total effects)(Meier, 2021). However, the requirement

of a simulation setup where only every second grid cell undergoes TCC poses a constraint on the

potential application of the checkerboard method on other existing simulation experiments.
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As the checkerboard method depends on interpolation, the results can differ based on the TCC

pattern applied. A linear interpolation on a setup where every second grid cell undergoes TCC has

been suggested and applied (Winckler et al., 2017; De Hertog et al., 2023). Winckler et al. (2017)

calculated an interpolation bias of approximately 0.25 K, which agrees with our findings (Appendix

A). Thus, this bias can be considered as negligible.

Figure 5: Schematic of the signal separation of the checkerboard method. (a) The signal from the dedicated checker-
board simulation. Showing a simulation total effect based on a checkerboard patterned TCC map. (b) The nonlocal
effects at no-TCC grid cells. (c) The nonlocal effects of (b) interpolated to the TCC grid cells. (d) The local effect
at TCC grid cell. Calculated by subtracting (c) from (a). (e) The local effects of (d) interpolated to the TCC grid
cells. The gray grid cells are grid cells where no information is needed. This is an adapted Figure from Winckler
et al. (2017).

The moving window (MW) method used in this research follows the methodology outlined

by Lejeune et al. (2018). To extract the TCC effects, a factorial approach has been applied. The

factorial approach compares the surface temperature of TCC grid cells versus grid cells without

TCC. However, such a factorial approach can not be applied to all-forcing experiments, i.e., ex-

periments where every grid cell undergoes TCC. Therefore, Kumar et al. (2013) developed a MW

methodology that differentiates between low TCC and high TCC and can calculate the TCC effect

of all-forcings experiments. To be able to apply the Kumar et al. (2013) methodology, the grid

cells within the MW are assumed to be affected similarly by external forcings. This assumption is

also essential within the MW method we apply in this thesis. We used a MW method that was

extended by Lejeune et al. (2017) and outlined by Lejeune et al. (2018). Both Kumar et al. (2013)

and Lejeune et al. (2018) demonstrated that the TCC effect can be captured, to some extent, by

this MW method. To disentangle the local and nonlocal effects in one specific grid cell, we calculate

a linear regression between the simulated total surface temperature changes and the imposed TCC

within a MW, i.e., a quadratic window consisting of several grid cells centered around grid cell i,j:
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∆Ti,j = β ∗ TCCi,j + c (1)

The regression coefficient β represents the slope of the linear regression, capturing the relationship

between the change in tree cover (TCCi,j) and the resulting total effect (∆Ti,j) for grid cell i,j.

The intercept c has no direct relationship to the TCCi,j considered and corresponds, thus, to the

nonlocal effect. The MW method is illustrated in Figure 6.

Figure 6: Schematic illustrating the signal separation of the MW method. A 5x5 MW is illustrated on the right side,
which is used to calculate the signal separation of the MW centered grid cell. On the left side, the linear regression,
which is calculated for each MW, is presented. The black points represent signals for each grid cell within the MW.
The red line shows the slope, and the blue dotted lines help to see the TCC and its corresponding total effect of the
MW centered grid cell i,j.

It is important to note that the choice of the MW size influences the calculated effects, as the linear

regression is performed using the grid cells within the MW. We analyze three different MW sizes

to explore the impact of different MW sizes. We focus on the 5x5, 7x7, and 9x9 MW as we assume

they have a good balance between capturing the influence of the neighboring grid cells (without a

too large spatial extent) and ensuring enough grid cells for a robust linear regression calculation.

These assumptions, as well as possible guidelines when selecting the MW sizes, will be analyzed in

the course of this thesis. Note that our analysis, if nothing else is mentioned, is conducted at the

native resolution of the ESMs, meaning that the spatial extent of a 5x5 MW varies across different

ESMs.

2.3 Simulation setup

In this thesis the LAMACLIMA simulations described by De Hertog et al. (2023) are used. Thereby

the focus is on the BGP effects of TCC. To achieve idealized TCCs in comparison to the known

tree cover data of the year 2015 (control), the following three sensitivity experiments have been

analyzed on the ESM-specific native resolution:

• Control (CTL): Land cover maps and other external forcings are kept constant at 2015 levels.

• Forest (FRST): Complete expansion of tree cover to a fully afforested world in relation to 2015

levels while holding all external forcings constant. Thereby, non-forest PFTs are removed,
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and forest PFTs increased to 100 %, while bare soil is preserved in order to not plant forests

in unrealistic areas, e.g., desert. The latitudinal mean forest distribution is taken for grid

cells where no forest PFT fraction existed in the control year.

• Crop (CROP): Complete expansion of crop cover in relation to 2015 levels while holding all

external forcings constant. Thereby natural PFTs are removed, and cropland CFTs increased

to 100 %, while bare soil is preserved in order to not plant crops in unrealistic areas, e.g.,

deserts.

The difference between FRST and CTL simulations will be used to identify the afforestation effect.

The difference between CROP and CTL simulations can technically not directly be interpreted as

a deforestation effect, since all PFTs, including non-forest PFTs such as shrubs and grass, have

been replaced by crops. Therefore, CROP - CTL is more precisely referred to as LCC towards

complete crop expansion. However, for simplicity, we continue to refer to the LCC crop expansion

experiment used for the checkerboard method as deforestation. For the MW method, we only use

the deforestation TCC map. This creates a slight difference between the LCC (respectively TCC)

maps used by the two methods (Appendix B) and consequently their interpretation. The reasoning

behind this distinction of considering only tree-PFTs for the MW method is due to the heterogene-

ity of the LCC. For example, there could be grid cells where mostly grasses or shrubs are removed,

while other grid cells mainly remove tree PFTs. This heterogeneity of the LCC would make the

analysis more difficult, as different vegetation types have different local effects. Thus, within the

MW size, respectively for the linear regression, it would become more complex to calculate the re-

lationship (slope) between the LCC and the total effect. The TCC maps used are visible in Figure

7, while the LCC maps used for the checkerboard can be seen in Appendix B.

Further, it is important to note that we use a simulation setup that was created to optimize the

checkerboard method. The FRST and CROP simulation setup is implemented in a checkerboard

pattern since we know from Section 2.2.2 that a dedicated simulation setup is needed to apply the

checkerboard method. This means that during the 160-year simulation period investigated, only

every second grid cell undergoes TCC.

In the LAMACLIMA simulations, the same present-day (2015) CO2 level and other climate forc-

ings remain constant during the entire time frame. The CMIP6 historical simulations from 2015

serve as the initial conditions. These initial conditions are then applied to both ESMs to run model

simulations over 160 years to average out internal variability. To ensure that stratospheric aerosol

concentrations in the LAMACLIMA simulations are representative, the first 10 years (from 2015

- 2025) function as BGP spin-up based on the Scenario Model Intercomparison Project (Scenari-

oMIP) data. For the remaining 150 years of simulations, the stratospheric aerosol concentrations

were used constantly at the spin-up level. For CESM2, the atmospheric aerosol concentration of

2025 was directly used from the simulation start because of technological limitations. Furthermore,

for CESM2, the solar forcing has been kept constant at the average rate for the full simulation

period. For MPI-ESM, the solar forcing has been kept at the natural oscillation. The reasoning

behind these choices is to find the future BGP effects of a TCC in the 2015 “present-day” setup,
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where every other factor is held constant and equal to the 2015 levels (De Hertog et al., 2023).

Figure 7: Overview of the tree cover change maps used in the MW method for each scenario investigated. The tree
cover changes are relative to the present-day 2015 levels. Note that CESM2 has a higher resolution than MPI-ESM.

2.4 Analysis setup

2.4.1 Seasonal analysis

In our analysis, we focus on seasonal effects. Instead of considering the annual mean, we focus on

the boreal summer mean (June, July, August) and the boreal winter mean (December, January,

February). Considering the seasonal mean instead of the annual mean enables us to explain better

the TCC effects in terms of the different BGP drivers since BGP drivers can vary between seasons

(Bonan, 2008; Boisier et al., 2012; Davin et al., 2020).

2.4.2 Surface temperature vs. 2-meter air surface temperature

The MW and the checkerboard method could be used to investigate the signal separation of several

variables. Be it surface temperature, 2-meter air temperature, or precipitation. Our study will

only focus on the effect on surface temperature. Winckler et al. (2019b) demonstrated that for

MPI-ESM, the deforestation nonlocal effect of surface temperature and 2-meter air temperature

are rather similar. However, in the case of the local effect, they demonstrated that for MPI-ESM,

the annual mean surface temperature response is nearly twice as strong compared to that of the

10



2-meter air temperature, except for northern high- to mid-latitudes. The different temperature

definitions can explain the difference between the effects of the two temperature variables. For

MPI-ESM, for example, the 2-meter air temperature is defined by a linear regression between the

surface temperature and the lowest atmospheric layer. In this case, the 2-meter air temperature is

also influenced by atmospheric changes, in contrast to surface temperature, which is mainly influ-

enced by changes in surface variables such as albedo (Winckler et al., 2017). Furthermore, Winckler

et al. (2019b) highlighted that different models define 2-meter air temperature differently, indicat-

ing that the comparison of surface temperature is more consistent, also in comparison with satellite

observations. Knowing these temperature differences, we have to keep in mind that our results

will be surface temperature specific and consequently show mostly higher magnitudes compared to

local effects on 2-meter air temperature. For more details on when to use surface temperature or

2-meter air temperature, see Winckler et al. (2019b).
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3 Results

3.1 Comparison of the results of the checkerboard and moving window methods

in the LAMACLIMA experiments

In this section, we compare the local effects calculated with the two methods (checkerboard and

MW) for the deforestation and afforestation scenarios. We calculate the local effect using a 5x5

MW size for the MW method unless specified otherwise.

3.1.1 Deforestation (CROP - CTL)

Investigating Figure 8, we see areas where both methods show similar TCC effects, while in other

areas, the methods show opposite TCC effects. During the winter months in northern latitudes,

both methods show a strong cooling effect as a result of deforestation. The snow-masking effect

enhances the albedo effect, which can explain the cooling effect observed during winter (Qu and

Hall, 2007; Abe et al., 2017). For summer, the methods show less agreement on the TCC effect in

boreal and temperate regions. Another example of an area where both methods show similar TCC

effects is in the tropics for CESM2. Both methods show a clear warming effect for CESM2 in the

rainforest regions. For MPI-ESM, the TCC effect of both methods in the tropics is less clear. While

the checkerboard method shows a slight warming effect, the MW method shows cooling effects over

certain tropical regions. According to Chen and Dirmeyer (2016, 2020), a decrease in evapotran-

spiration can explain the warming in the tropics resulting from deforestation. Additionally, the

change in surface roughness mainly drives the warming over boreal and temperate regions.

Figure 8: Spatial visualization of the local effect for the deforestation scenario. The columns represent the local effect
for deforestation of a specific signal separation method. We differentiate between summer (representing the mean of
June, July, August) and winter (representing the mean of December, January, February). A 5x5 MW size has been
used.

Overall, using both methods, we can calculate the local effects of deforestation. Whereby the agree-

ment on TCC impacts are higher in some areas than others. Another way of comparing the two

methods is with a 2-D histogram. Figure 9 makes it easier to compare individual grid cells and

enables us to calculate the Pearson correlation coefficient. By investigating the Pearson correlation
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coefficients, we can verify the findings from the spatial world map. Generally, we see a relatively

high correlation between the methods (checkerboard and MW), with 0.69 and 0.77 for CESM2.

Thus, for deforestation, CESM2, both methods show similar TCC local effects. For MPI-ESM,

the correlation is slightly lower, with 0.51 for the winter mean. We see no correlation between

the methods regarding the summer mean of MPI-ESM. This zero correlation links to the global

warming in MPI-ESM summer, which looks quite different from the TCC effect patterns from

CESM2 and, most importantly, highlights that the checkerboard method identifies effects of TCC

(especially warming in summer for MPI-ESM) that the MW method does not show.

Comparing both model outputs, it becomes evident that CESM2 shows larger TCC effects than

MPI-ESM. The higher magnitudes of the local effect for CESM2 agree with the annual mean

findings by De Hertog et al. (2023). Further, we recognize seasonal differences if we compare the

patterns between the seasons. We see that data points show opposite TCC effects between the

methods. To further investigate these disagreements on the sign of the TCC effects, we investigate

Figure 10, showing the number of grid cells where both methods agree or disagree on the sign of

the local effect.

Figure 9: Illustrates 2-D histograms of the deforestation local effects from both methods for both models and seasons.
The x-axis corresponds to the local effect of the checkerboard method, while the y-axis represents the local effect of the
MW method. A 2.5° × 2.5 ° model grid cell resolution has been used here. The r-values represent the corresponding
Pearson correlation coefficient. A 5x5 MW size has been used.
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Figure 10 presents on the left side the spatial distribution of the grid cells where both methods agree

(light-grey) or disagree (dark-grey) on the sign of the TCC effect for deforestation. Additionally,

on the right side, a bar plot visualizes the cumulative count of grid cells that agree or disagree

on the sign. Since we want to focus on the local effects based on TCC, we exclude the grid cells

with a TCC lower than 2.5 % as these are areas with mostly bare soil, i.e., not representing a

TCC-based local effect. We can observe that the agreement or disagreement grid cells are widely

spread without a clear pattern for both ESMs, on the left side of Figure 10. The right side of

Figure 10 shows relatively good agreement on the sign of the local effects calculated between the

two methods, with an agreement between 63 % and 78.5 % for both seasons and models. However,

this also highlights that there are many areas where the methods show the opposite TCC effect.

Around 21.5 % up to 37 % of the total amount of grid cells show disagreement on the TCC effect

sign between the two methods, which is a non-negligible amount. Looking at the bar plot on the

right side in Figure 10, we can verify our findings of Figure 8 and Figure 9 of higher agreement

between the methods for winter mean compared to summer mean.

Figure 10: Illustrates the disagreement and agreement on the sign of deforestation local effects from both methods
for both seasons and models. On the left side, the disagreement and the agreement on the sign of the local effect are
shown spatially, whereby white grid cells correspond to masked-out grid cells with a TCC < 2.5 % or grid cells with
the exact same local effect. The number of disagreement/agreement grid cells has been added up on the right side
in a bar plot. The percentage values correspond to the disagreement/agreement relative to the total number of grid
cells within the model. A 5x5 MW size has been used.

3.1.2 Afforestation (FRST - CTL)

From a visual inspection, the local effects of both methods visualized in Figure 11 agree pretty well.

For example, in winter in the northern latitudes, we observe a strong agreement on the warming

effect, which finds an explanation in the reverse of the snow-masking albedo effect mentioned for

deforestation. However, we see clear and substantial differences between the two methods when

focusing on certain areas. For the area around Botswana or Australia in CESM2, we see that the

MW method presents very prominent warming effects, while the checkerboard method shows a very

prominent cooling effect. Thus, in these areas, they not only show different TCC effects, they also

have substantial magnitudes.
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Further, looking at CESM2 in summer, for Europe, the Middle East, or North Siberia, we notice

much stronger magnitudes for the local effect calculated by the MW method than for the checker-

board. MPI-ESM shows such differences too. However, it is more difficult to compare for MPI-ESM

since the local effects calculated by the checkerboard method for summer MPI-ESM show nearly

global cooling.

Figure 11: Spatial visualization of the local effect for the afforestation scenario. The columns represent the local
effect for afforestation of a specific signal separation method. We differentiate between summer (representing the
mean of June, July, August) and winter (representing the mean of December, January, February). A 5x5 MW size
has been used.

Therefore, when investigating the 2-D histograms and the correlation between the local effects of

both methods in Figure 12, it is not surprising that we see low correlations. For CESM2, we notice

a correlation of 0.24 (in summer) and 0.29 (in winter). Thus, for afforestation the methods show

a lot lower correlation than for deforestation. However, the correlation between both methods

has remained very similar for MPI-ESM. For winter MPI-ESM, the correlation only decreased by

0.06 and slightly improved by 0.07 for winter. As noticed in the comparison within Figure 12

for CESM2 summer, we see that most data points lie above the diagonal line, highlighting that

the MW method overestimates the local effects compared to the checkerboard method. Thus, it

shows strong methodological differences. Similar to deforestation, we also see afforestation grid

cells where both methods do not agree on the sign of the local effect. We investigate the agreement

and disagreement on the sign of the local effects in Figure 13.
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Figure 12: Illustrates 2-D histograms of the afforestation local effects from both methods for both models and seasons.
The x-axis corresponds to the local effect of the checkerboard method, while the y-axis represents the local effect of the
MW method. A 2.5° × 2.5 ° model grid cell resolution has been used here. The r-values represent the corresponding
Pearson correlation coefficient. A 5x5 MW size has been used.

Even though we have a lower correlation for CESM2 for afforestation compared to deforestation,

the agreement (percentage-wise) of the two methods on the local effects sign is very similar. It

ranges from 60.2 % to 74.5 %. Thus, also for afforestation, there are a non-negligible amount of

grid cells where both methods do not agree on the local effects sign. Further, as for deforestation,

we see that also for afforestation, the agreement in winter is higher compared to the summer mean.

Looking at the spatial distribution of the grid cells where both methods disagree on the sign, we

do not see a clear pattern.
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Figure 13: Illustrates the disagreement and agreement on the sign of afforestation local effects from both methods
for both seasons and models. On the left side, the disagreement and the agreement on the sign of the local effect are
shown spatially, whereby white grid cells correspond to masked-out grid cells with a TCC < 2.5 % or grid cells with
the exact same local effect. The number of disagreement/agreement grid cells has been added up on the right side
in a bar plot. The percentage values correspond to the disagreement/agreement relative to the total number of grid
cells within the model. A 5x5 MW size has been used.

3.2 Investigation of possible reasons explaining differences

There are multiple reasons which potentially explain the differences between both methods. Be it

the calculation bias within the method, the different assumptions needed to apply the methods, the

different definitions of the local and nonlocal effect of the method, or the simulation experiments

the methods are applied on. In the first section, we will investigate what happens when both

methods are applied on very low TCC grid cells. Secondly, we will investigate the added values of

choosing a larger MW size and lastly, we will have a closer look at the impacts of different MW

sizes on the local effect.

3.2.1 Possible artefacts in areas with low TCC

In Section 2.2.1, we defined the local effect to be exclusively from changes in surface properties of

the grid cell itself. Consequently, we expect a very low effect on surface temperature for grid cells

with very low TCC.

Per definiton, the MW method calculates the local effect as the slope (corresponding to the rela-

tionship between the TCC and the resulting total effect) times the TCC of the MW-centered grid

cell. Thus, if the TCC of the MW-centered grid cell is nearly zero, the slope gets multiplied by a

near-zero value, resulting in low surface temperature changes. On the other hand, the checkerboard

method has no constraint for very low TCC in its calculation. Its local effect is determined by sub-

tracting the nonlocal effect from the total effect. In conclusion, the two methods might produce

different results because they rely on slightly different definitions.

In Figure 14, for deforestation, the grid cells with less than 2.5 % TCC (very low TCC) have been

isolated (masked out in gray) from the other grid cells. As expected, we see very low (or even
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absent) local effects for the MW method. On the other hand, we see strong local effects for the

checkerboard method. These strong local effects make limited sense, showing a strong local TCC

effect based on nearly absent TCC. We assume these effects could be spurious artefacts from the

checkerboard method.

Figure 14: Spatial visualization of the local effects of grid cells with TCC < 2.5 % for the deforestation scenario.
The grid cells in gray are masked-out grid cells with TCC larger than 2.5 %. The columns represent the local effect
for deforestation of a specific signal separation method. We differentiate between summer mean and winter mean. A
5x5 MW size has been used.

3.2.2 Added values of choosing a larger MW size

In the comparison of both methods in Section 3.1, we have been comparing a 5x5 MW method to

the checkerboard method. However, as mentioned in Section 2.1, the MW size can be increased.

We will now investigate the differences between the 5x5, 7x7, and 9x9 MW size local effects. Note

that for larger MW sizes, the linear regression includes a larger sample size to separate the local

and nonlocal effects. Figure 15 compares the disagreement on the sign between both methods of

deforestation for all three MW sizes. The differences between the local effects of different MW sizes

for afforestation can be seen in Appendix C. Analyzing Figure 15, we see higher agreement on the

sign between the methods for larger MW sizes. Thus, although the improvements are small, the

9x9 MW size shows the highest agreement between the MW and checkerboard methods. The most

significant improvement from a 5x5 to a 9x9 MW size in terms of agreement increase is 4 % for

winter CESM2.
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Figure 15: Only considering grid cells with TCC > 2.5 %, for deforestation, the bar plots show the disagreement
and agreement on the sign of local effects from the checkerboard and MW methods for both seasons and models.
The disagreement and the agreement grid cells have been added up. The percentage values correspond to the
disagreement/agreement relative to the total number of grid cells within the model. Each bar plot uses a different
MW size for the MW method: starting from the left with a 5x5, 7x7 to a 9x9.

Knowing that both methods have some methodological uncertainties, a disagreement on the sign

could still be seen as a similar local effect, as long as the magnitude difference is minimal, respec-

tively, within the uncertainty bar. Therefore we calculate the magnitude difference of the grid cells

with opposite local effects. The magnitude differences are distinguished into four intervals. The

number of grid cells within the intervals relative to the total number of grid cells with opposite local

effects is visible in Figure 16. Comparing the orange bars of all three MW sizes, shown in Figure

16, we note that for larger MW sizes, the number of sign disagreeing grid cells with a magnitude

difference of more than 2.5 K between the methods decreases. This highlights, that not only the

disagreement on the sign between both methods slightly decreases with a larger MW size, but also

the extreme magnitude differences.

Figure 16: Only considering grid cells with TCC > 2.5 %, for deforestation, the bar plots show the magnitude
differences between the checkerboard and MW methods for grid cells which disagree on the sign of local effects from
both methods for both seasons and models. |∆Tlocal, i | represents the magnitude difference of the local effect for grid
cell i. The percentage values visible in the bar plots correspond to the number of grid cells within the magnitude
interval relative to the total number of grid cells within the model. Each bar plot uses a different MW size for the
MW method: starting from the left with a 5x5, 7x7 to a 9x9.
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Increasing the MW size also improves the signal-to-noise ratio in the global median (Appendix D).

The signal corresponds to the local effect, while the noise corresponds to the standard error of the

corresponding slope. The decrease in standard error of the corresponding slope for larger MW sizes

explains the increase in signal-to-noise ratio (Appendix E). A possible hypothesis could be that the

larger the MW size, the more data points can be used for the linear regression calculation, thereby

reducing the slope’s standard error.

3.2.3 Impact of moving window size on local effect and signal separation

In this section, we do not examine the differences of the MW sizes relative to the checkerboard

results, as investigated in Section 3.2.2, but we examine the local effect difference directly between

the MW sizes. We calculate for each grid cell the standard deviation of the local effect across all

three MW sizes. Figure 17 displays the standard deviations (on the y-axis) with the correspond-

ing TCC values (on the x-axis) of all grid cells. Focusing on full deforestation (CROP - FRST)

in Figure 17, we note huge standard deviations for TCC values higher than approximately 90 %.

Such grid cells with very large TCCs show standard deviations across MW sizes that sometimes

reach more than 3K. We conclude, that the choice of the MW size can significantly impact the local

effect’s magnitude and, thus, the signal separation.

For deforestation and afforestation (in Figure 17), such extreme standard deviations between the

local effects of the three MW sizes are more rare compared to the full deforestation (CROP - FRST)

scenario. Deforestation seems to show the least amount of strong standard deviations of the local

effects between the MW sizes. This could be linked to the good agreement with the checkerboard

method visible in Section 3.1.1. Further, it seems as if for deforestation and, more prominently, for

afforestation, there is a linear increase in the standard deviation for increasing TCC under 80 %. A

possible explanation could be the increase in TCC itself. Within the MW local effect calculation,

the slope gets multiplied by a linearly increasing TCC if we move along the x-axis to higher TCC.

This multiplication possibly explains the linear increase in standard deviation with higher TCC and

why standard deviations for very low TCC are close to zero. Knowing the local effect calculation

formula, it also becomes clear that the difference between the local effects of the three MW sizes

comes from a difference in the slope.
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Figure 17: The scatter plots illustrate the standard deviations of the local effects of the MW sizes for each grid cell
in relation to the tree cover change of each grid cell for all three scenarios. From the left, deforestation, afforestation,
and full deforestation are shown for the annual mean on CESM2.

Examining the spatial distributions of grid cells with huge standard deviations of the MW local

effect, visible in the (bottom row of Figure 18), we can identify the areas where the MW size should

be carefully chosen. Comparing in Figure 18 the standard deviation maps (bottom row) to the

corresponding TCC maps (top row), we note that large differences occur mostly in areas with large

homogeneous TCCs. These large homogeneous TCCs can be seen most prominently for full de-

forestation in South America, Sub-Saharan region, or in Europe. For deforestation, high standard

deviations are visible in the rainforest, where multiple grid cells close to each other show very large

deforestation rates. For afforestation high standard deviations are visible in the same areas, such

as Australia, the Sub-Saharan region, or Botswana, where the MW showed a higher warming effect

for CESM2 than the checkerboard in Section 3.1.2.

It seems that if there is a lack of heterogeneity (i.e. different representations) of TCC in the MW,

the MW method cannot calculate a reliable linear regression for certain grid cells and therefore the

goodness of fit is poor.

Figure 18: In the bottom row, the spatial distribution of the standard deviation of the local effects of the MW sizes
can be seen for all three scenarios. From the left, deforestation, afforestation, and full deforestation are shown for
the annual mean on CESM2. The tree cover change for each grid cell, used for the MW method, is shown in the top
row for all three scenarios.
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4 Discussion

In this study, we discovered that the two signal separation methods, the checkerboard and MW

methods, show more similarity during winter than in summer. Thus, they agree more on showing

the same TCC effect sign and presenting higher correlation coefficients during winter than summer.

By investigating models of the Land-Use and Climate, Identification of Robust Impacts (LUCID)

Lejeune et al. (2017) showed that out of the six different LUCID models studied, changes in albedo

are strongest in the winter mean and changes in the latent heat are strongest in the summer mean.

This seasonal variation agrees with our finding of good alignment between the signal separation

methods regarding the snow-masking albedo effect in northern latitudes in winter. However, the

concordance is less pronounced for summer latent heat change in tropical regions (Appendix H). By

analyzing the reconstruction method (which is similar to the MW method), Lejeune et al. (2017)

showed good agreement with the factorial method regarding albedo change and latent heat change.

In our results, the agreement between the MW and the checkerboard method on latent heat change

(summer mean) seems less good than for albedo (winter mean).

By comparing the factorial method to the reconstruction method, Lejeune et al. (2017) further

found that the reconstruction method underestimates the TCC impacts compared to the factorial

method. This underestimation is not visible if we look at the comparison between the MW method

and the checkerboard method in this thesis. Best visible for CESM2 in summer (Figure 12), we see

that the MW overestimates the TCC impact compared to the checkerboard method. The observed

discrepancy in the MW method’s tendencies relative to the checkerboard effect could stem from its

limited capacity to robustly calculate the local effect for too similar TCCs within the MW, leading

to a higher slope calculation.

Analyzing our model differences, we recognize, in accordance with De Hertog et al. (2023), strong

disparity in the magnitude of the TCC local effects from the models. CESM2 and MPI-ESM have

different submodels and thus different TCC maps, however, different partitioning of the available

energy could also play a role. De Noblet-Ducoudré et al. (2012) and Lejeune et al. (2017) indicated

that models partition the available energy differently between latent heat and sensible heat. The

disparity between the TCC effects of different models highlights that precaution should be taken

when comparing results from different models, as the resulting local effects are inherently model

dependent.

Checkerboard method

In our findings, the local effects calculated by the checkerboard method for the summer mean of

MPI-ESM showed a nearly global warming for deforestation and a nearly global cooling for af-

forestation. As this global warming and cooling are not visible for the local effect calculated by

the MW method, this nearly zero correlation cannot be linked to the model’s partitioning of the

sensible and latent heat. Therefore, the difference must come within the underlying mechanism of

the signal separation methods. Possible explanations could be that other (not tree-related) LCCs

might be at the source of this discrepancy, leading to a miscalculation of the local effect from TCC

22



and, consequently, a difference in signal separation output.

According to the definition of the local effect, surface temperature change should solely result from

local TCC. However, in some regions the calculations with the checkerboard method indicate strong

local effects even with nearly absent TCC, contradicting the local effect’s definition and suggesting

potential spurious artefacts. Considering that the checkerboard method directly computes the non-

local effect and derives the local effect by subtracting the nonlocal effect from the total effect, it is

possible that some factors overlooked in the nonlocal effect calculation might have been mistakenly

incorporated into the local effect. Thus, a deeper investigation of the nonlocal effects might be

helpful in understanding these spurious artefacts.

Given the spurious artefacts identified in the local effects from the checkerboard and the predom-

inantly warming (for deforestation) and cooling effect (for afforestation) for MPI-ESM summer,

it is evident that obtaining a “clean” local effect from the checkerboard method might be more

challenging than initially expected. We expected a clean and robust local effect since the dedi-

cated ESM simulation setup was created to optimize the checkerboard signal separation. Further,

De Hertog et al. (2023) have demonstrated that the annual mean local effect of the checkerboard

method agrees with observational studies. However, seeing these predominantly strong responses

for summer MPI-ESM in multiple scenarios and the spurious artefacts for very low TCC raises

questions about the checkerboard’s robustness.

MW method

Regarding the MW method, we have seen that if the MW contains mostly grid cells of very similar

TCC, the standard deviation of the local effect calculated by different MW sizes becomes very

large. This suggests that the MW method is unsuitable for robustly calculating the local effect if

different TCCs are not represented well enough within the MW. This finding supports the require-

ment made by Lejeune et al. (2017), who required a minimum of three grid cells with low TCC and

a minimum of three grid cells with high TCC for their reconstruction method to calculate the local

effect. Further, if the ratio of high and low TCC grid cells was not around 0.5, Lejeune et al. (2017)

increased the MW size, which shows the importance of a good representation of different TCCs.

However, we found that even by increasing the MW size to 9x9, the ratio of around 0.5 between

high and low TCC is often not given (Appendix F). This makes it difficult to find a high-to-low

ratio-based rule from which the “best” corresponding MW size for each grid cell can be chosen.

When the high-to-low ratio is not around 0.5, the local effect calculated by the MW method needs

to be considered cautiously. Calculating the local effect across multiple MW sizes can be benefi-

cial to grasp the local effect for such grid cells. It would offer insight into the standard deviation

among the three MW size local effects, providing a sense of result stability. Nevertheless, when

the conditions of a good representation of different TCCs within the MW were given, we were able

to calculate a local effect similar to the one of the checkerboard method with the MW method.

Examples of areas with a good representation of different TCCs are Alaska and South Siberia. For

further research, it would be interesting to calculate the Pearson correlation coefficients for certain
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areas to validate the importance of representing different TCCs within the MW size.

We used linear regression to calculate the relationship between the TCC and the BGP effect using

the MW method. Thereby assuming, as in Lejeune et al. (2018), that the effect of TCC on surface

temperature is linear. De Noblet-Ducoudré et al. (2012) also concluded that the amount of defor-

estation is almost linear to the effect of Land Use and Land Cover Change (LULCC). In Section

3.2.3, we observed a rather exponential behavior for the standard deviation of the local effects of

the three MW sizes. This raises the question if the assumption of a linear relationship between the

TCC and the BGP effect is the right choice. A possible alternative would be to use a polynomial

regression, allowing for larger BGP effects for larger TCCs. Although a possible downside of this

option might be the underestimation of the effect of low TCCs. Further, the MW approach is

limited by the low amount of data points within the MW to fit on, making it more challenging to

fit the relationship between TCC and BGP effects correctly.

The signal separation of the MW method includes the assumption of a homogeneous background

climate. Chen and Dirmeyer (2020) highlight that this space-for-time assumption, where paired

sites or grid cells within the MW have the same background climate, may not be applicable at

broader scales due to significant differences in incoming radiation and cloud cover linked with

deforestation. They further highlight differences between observations and model simulations in

terms of atmospheric feedback for deforestation. Having seen in section 2.1 that the MW sizes

(grid cell resolution) can be spatially large, we question how well the assumption of a homogeneous

background climate holds and, because of that, how precisely the local effects can be calculated. As

this assumption is key to a successful MW signal separation of the TCC effect, it must be carefully

investigated whether the assumption holds or not.

Lastly, it has to be taken into consideration that Malyshev et al. (2015) and Winckler et al. (2019a)

showed that the nonlocal effects dominate the global mean surface temperature response for BGP

effects of deforestation. Thus, it is important to keep in mind that in this thesis, we only focused

on the local effect, which can be overwhelmed by the atmospheric feedback (nonlocal effects) (Chen

and Dirmeyer, 2020). To explore the magnitude of nonlocal effects in the context of deforestation

and afforestation, the calculation of these effects can be found in Appendix G. Initially, the aim

of this study was also to increase the understanding of the still rather uncertain behavior of the

nonlocal effect. However, we investigated and compared only the local effect since the local effect

can be easier compared to observations and cross-checked with results from other studies (Winckler

et al., 2017; Lejeune et al., 2017, 2018; Duveiller et al., 2018; Chen and Dirmeyer, 2020; De Hertog

et al., 2023). Technically, the nonlocal effect can be seen as the difference between the total and the

local effect, and therefore, if we increase the confidence level of the local effect, we theoretically also

increase the confidence level of the nonlocal effect. Nevertheless, future studies could and should

further investigate the nonlocal effect.

Generally, as simplified methods, the signal separations underlie some assumptions and are subject
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to limitations and uncertainties. For example, we assume that all external forcings are not affecting

the total effect (showing a homogeneous background climate) and that the total effect on surface

temperature is only due to local and nonlocal TCC. However, from other studies (Lejeune et al.,

2018; Thiery et al., 2020), we know that geographical variables, such as elevation, affect the surface

temperature. In other words, non-TCC components might be involved, which, if not considered,

can wrongly attribute TCC to surface temperature change. Another example is the choice of a

linear interpolation in the checkerboard method or the assumption in the MW method that the

relationship between TCC and surface temperature change is linear.

All in all, investigating the assumptions and understanding their impact on the results are im-

mensely important for trustworthy signal separation. We gain confidence in the methods when

we gain confidence in the underlying assumptions used within the methods. Therefore, for future

studies, the focus should not only lie in comparing the nonlocal and local effects to observations

but also in investigating and understanding the method (and the assumptions) itself.
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5 Conclusion

This study compared the TCC effects, calculated by the checkerboard and the MW method. This

comparison was applied to the same dedicated LAMACLIMA experiments (using CESM2 and MPI-

ESM) to find an agreement or middle ground between the two methodologies. This further enabled

us to highlight circumstances where the methodologies indicate difficulties and disagreement. We

compared the results of the signal separation methods (checkerboard and MW) for two seasonal

means (summer and winter) and three scenarios (afforestation, deforestation, and full deforesta-

tion). The signal separation methods were selected as they can signal separate the total effect into

the local and the nonlocal effect.

We discovered that the local effects calculated using the checkerboard and MW methods generally

match well for deforestation. However, there is an exception during summer for the MPI-ESM

model. For afforestation the correlation between the methods is lower compared to deforestation.

Additionally, we discovered that there are seasonal variations, with higher correlation between sig-

nal separation methods during winter compared to summer.

Table 1 highlights the main findings of the two signal separation methods.

Table 1: Summary of the findings for both signal separation methods.

Regarding the MW method, we found that the representation of different TCCs within the MW is

key for a trustworthy calculation of the local effect. Based on this finding, a diverse representation

of different TCCs within the MW is a crucial requirement to apply the MW method in future

studies. Secondly, by increasing the MW size, we found that the likelihood of more diverse TCC

within the MW increases and that it reduces the standard error of the slope. However, increasing

the MW size comes with the risk of smoothing out spatial variations.

Regarding the checkerboard method, we encountered difficulties calculating the local effects in

areas with nearly absent TCC. As we have not found clear explanations for these strong local ef-

fects in areas with nearly absent TCC, we assume that the visible effects could be spurious artefacts.

Based on these main findings, we can make a recommendation under which scenarios the specific

signal separations should be used. These recommendations are highlighted in Table 2.

26



Table 2: Recommendations under which scenarios the signal separation methods should be chosen.

The MW method should be chosen when the focus lies on areas with low TCC. The reasoning

behind this recommendation comes from the spurious artefacts found for the checkerboard method

and the more trustworthy calculation for low TCC with the MW method. Secondly, the MW

method should be chosen when there is only limited computational capacity. The MW method

can directly be applied on data sets containing irregular information on TCC and its total effect,

while for the checkerboard method, a computationally more expensive dedicated ESM experiment

is needed. Thus, a third benefit of the MW method is that it can be used to get a quick first

estimate of the local and nonlocal effects.

The checkerboard method should be preferred when investigating areas with homogeneous TCC,

as the MW cannot calculate a robust linear regression in these areas. Further, the checkerboard

method should be chosen, due to its setup, if the interest lies in a good understanding of the non-

local effect.

In conclusion, this study represents a detailed comparison between the MW and checkerboard

methods on the same data set, providing a foundational understanding of their comparability. We

showed that both methods agree relatively well on the signal separation under certain conditions.

Therefore, the choice of which method to choose for future projects should be based on the research

question and the available computational capacity. Further research can build upon our findings

and provide deeper insights into how these methods perform across diverse data sets. For example,

it would be helpful to understand why the methods agree best in winter and especially in CESM2

and less in summer and MPI-ESM. Such investigations would contribute valuable information to

guide the selection of the most suitable method for future projects.

Looking ahead, our findings open the door to promising future research and exploration areas. Be

it a more in-depth comparison of the nonlocal effects, analyzing the underlying assumptions, or,

more generally, applying the signal separation methods on other simulation experiments.

27



6 Appendix

A) Visualization of the interpolation bias for both models

In Section 2.2.2 we saw that the checkerboard method linearly interpolates every second grid cell

to receive a signal for the full world map (i.e. every grid cell). Here, we investigate how large

this interpolation bias can be. Therefore, we started with the original total surface temperature

effect of CESM2 for full deforestation (CROP - FRST), whereby we only used every second grid

cell. This gave us the world map in the top left of Figure 19. As in the checkerboard method, we

linearly interpolated to have a world map with signals in every grid cell (top right of Figure 19).

Subtracting from the original total effect map (bottom left of Figure 19) the interpolated world

map (top right of Figure 19), we can see the interpolation bias in every second grid cell (bottom

right of Figure 19). On the right-hand side, we calculated the latitudinal mean of the interpolation

bias, showing that interpolation bias lies within ± 0.25 K.

Figure 19: Visualization of the interpolation bias embedded within the checkerboard method. In this Figure, the
interpolation bias is calculated for CESM2, annual mean, CROP - FRST, total TCC effect on surface temperature.

Figure 20: Visualization of the interpolation bias embedded within the checkerboard method. In this Figure, the
interpolation bias is calculated for MPI-ESM, annual mean, CROP - FRST, total TCC effect on surface temperature.
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B) TCC maps used for the MWmethod and LCC maps used for the checkerboard method. Adapted

Figures from De Hertog et al. (2023).

Figure 21: In the top row the two TCC maps used within the MW method are visible for both methods. In the
bottom row the two LCC maps used within the checkerboard method are visible for both methods. For FRST-CTL.

Figure 22: In the top row the two TCC maps used within the MW method are visible for both methods. In the
bottom row the two LCC maps used within the checkerboard method are visible for both methods. For CROP-CTL.

Figure 23: In the top row the two TCC maps used within the MW method are visible for both methods. In the
bottom row the two LCC maps used within the checkerboard method are visible for both methods. For CROP-FRST.
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C) Barplots for FRST - CTL focusing on the grid cells where both methods show opposite local

effects

In Section 3.2.2 we analyzed the benefits of choosing a larger window size for the deforestation

scenario. Here the same has been done but for the afforestation and full deforestation scenario

Figure 24: For FRST - CTL. In the bottom row the relative disagreement between the methods can be shown for all
three MW sizes. Top row shows the magnitude difference intervals of the grid cells with opposite local effect.

Figure 25: For CROP - FRST. In the bottom row the relative disagreement between the methods can be shown for
all three MW sizes. Top row shows the magnitude difference intervals of the grid cells with opposite local effect.
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D) Signal-to-noise ratio calculated for both models

Visualization of the in Section 3.2.2 mentioned increase in signal-to-noise ratio for higher MW sizes.

Figure 26: Calculation of the signal-to-noise ratio for CESM2. Whereby the Signal corresponds to the slope and the
noise to the standard error of the slope. Here the absolute value of the signal-to-noise value is shown.

Figure 27: Calculation of the signal-to-noise ratio for MPI-ESM. Whereby the Signal corresponds to the slope and
the noise to the standard error of the slope. Here the absolute value of the signal-to-noise value is shown.
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E) Standard error of the corresponding slope (noise) calculated for both models

Visualization of the in Section 3.2.2 mentioned decrease in standard error of the corresponding

slope for higher MW sizes.

Figure 28: Calculation of the signal-to-noise ratio for CESM2. Whereby the Signal corresponds to the slope and the
noise to the standard error of the slope. Here the absolute value of the signal-to-noise value is shown.

Figure 29: Calculation of the signal-to-noise ratio for MPI-ESM. Whereby the Signal corresponds to the slope and
the noise to the standard error of the slope. Here the absolute value of the signal-to-noise value is shown.
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F) Analysis of the TCC ratio within the MW

By analyzing the different results from Figure 30 and 31 we can see, that also for the 9x9 MW size

the TCC ratio is not around 0.5. This, is something that should be kept in mind, when choosing a

MW size based on the TCC ratio within the MW. For future investigation it would be interesting

to see if the grid cells where the TCC ratio of around 0.5 can been achieved with a maximum of a

9x9 MW size, show higher agreement with the checkerboard effects than the remaining grid cells.

If yes, this could potentially be a way to find out where the MW can be applied best.

Figure 30: Based on a rule, which is explained in the top left, we choose the smallest grid cell which still fulfills
the rule. This should help insure locality and the diverse representation of TCC within the MW. On the right two
examples are illustrated, how the rule works. In the gray box in the bottom left, the results are shown. If the
Threshold TCC is negative, the automatic selection has been applied on the deforestation scenario. The positive
Threshold TCC show the results for afforestation. This calculation has been applied on a 2.5 ° x 2.5 ° resolution for
both models.
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Figure 31: Based on a rule, which is explained in the top left, we choose the smallest grid cell which still fulfills
the rule. This should help insure locality and the diverse representation of TCC within the MW. On the right two
examples are illustrated, how the rule works. In the gray box in the bottom left, the results are shown. If the
Threshold TCC is negative, the automatic selection has been applied on the deforestation scenario. The positive
Threshold TCC show the results for afforestation. This calculation has been applied on a 2.5 ° x 2.5 ° resolution for
both models.

G) Nonlocal effects on surface temperature for afforestation and deforestation

Figure 32: In this Figure, the nonlocal effects on surface temperature are shown for afforestation (FRST-CTL), for
both methods, models, and seasonal means
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Figure 33: In this Figure, the nonlocal effects on surface temperature are shown for deforestation (CROP-CTL), for
both methods, models, and seasonal means

H) Comparison of the MW size local effects to the checkerboard effect for latitude bands

Here, the local effects on surface temperature have been visualized in boxplots within the latitude

band. On the left side of the Figures the deforestation effects (corresponding TCC visualized on

x-axis) are visualized. On the right side of the Figures the afforestation effects (corresponding

TCC visualized on x-axis) are visualized. These plots highlight that for a latitude band average,

the 9x9 MW size does not always show the most similar effect than the checkerboard method.

Further we see increased method differences (dotted lines) for higher TCC changes. These were

first insights of the standard deviations between the local effects of the three MW sizes and their

possible underlying reasons. Note that for MPI-ESM summer, the checkerboard method shows a

global warming for deforestation and a global cooling for afforestation, this seems to be different

to what we expect due to other studies. Thus, MPI-ESM summer should be considered carefully.
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Figure 34: On the right side, we see the local effect of deforestation for four latitude bands. On the left side, we see
the local effect of afforestation for four latitude bands. The different colored boxplots show the locla effects of the
different MW sizes and the checkerboard method. The dotted lines highlight the difference of the MW size to the
checkerboard response. The calculations are made for CESM2, summer.

Figure 35: On the right side, we see the local effect of deforestation for four latitude bands. On the left side, we see
the local effect of afforestation for four latitude bands. The different colored boxplots show the locla effects of the
different MW sizes and the checkerboard method. The dotted lines highlight the difference of the MW size to the
checkerboard response. The calculations are made for CESM2, winter.
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Figure 36: On the right side, we see the local effect of deforestation for four latitude bands. On the left side, we see
the local effect of afforestation for four latitude bands. The different colored boxplots show the locla effects of the
different MW sizes and the checkerboard method. The dotted lines highlight the difference of the MW size to the
checkerboard response. The calculations are made for MPI-ESM, summer.

Figure 37: On the right side, we see the local effect of deforestation for four latitude bands. On the left side, we see
the local effect of afforestation for four latitude bands. The different colored boxplots show the locla effects of the
different MW sizes and the checkerboard method. The dotted lines highlight the difference of the MW size to the
checkerboard response. The calculations are made for MPI-ESM, winter.
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I) Spatial visualization of the local effects of grid cells with TCC < 2.5 % for the afforestation

scenario, showing possible spurious artefacts of the checkerboard method.

Figure 38: Spatial visualization of the local effects of grid cells with TCC < 2.5 % for the afforestation scenario. The
grid cells in gray are masked-out grid cells with TCC larger than 2.5 %. The columns represent the local effect for
deforestation of a specific signal separation method. We differentiate between summer mean and winter mean. A 5x5
MW size has been used.
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Figure reference
Figure 1 (right side): World Resources Institute and Global Forest Watch; 2023; Gross tree cover

loss by ecozone; Viewed at 16.08.2023; <https://research.wri.org/gfr/forest-extent-indicators/forest-

loss>

Data and code availability
We created a function which allows to apply the MW method on data with following input: total

effect data, variable change (e.g., TCC) data. This function, along with the other scripts created

for this thesis, is accessible on the Wyss Academy for Nature GitHub page. For the data please

contact Rafael Stähli, Steven De Hertog, Shruti Nath, Édouard Davin or Quentin Lejeune.

39



Acknowledgement

I want to say a big thank you to some really important people who helped me a lot with my
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Boisier J. , de Noblet-Ducoudré N. , Pitman A. , Cruz F. , Delire C. , Van den Hurk B. , Van der

Molen M. , Müller C. and Voldoire A. (2012). Attributing the impacts of land-cover changes in

temperate regions on surface temperature and heat fluxes to specific causes: Results from the

first lucid set of simulations. Journal of Geophysical Research: Atmospheres, 117 (D12).

Bonan G. B. (2008). Forests and climate change: forcings, feedbacks, and the climate benefits of

forests. science, 320 (5882), 1444–1449.

Bright R. M. (2015). Metrics for biogeophysical climate forcings from land use and land cover

changes and their inclusion in life cycle assessment: a critical review. Environmental Science &

Technology, 49 (6), 3291–3303.

Chen L. and Dirmeyer P. A. (2016). Adapting observationally based metrics of biogeophysical

feedbacks from land cover/land use change to climate modeling. Environmental Research Letters,

11 (3), 034 002.

Chen L. and Dirmeyer P. A. (2020). Reconciling the disagreement between observed and simulated

temperature responses to deforestation. Nature communications, 11 (1), 1–10.

Cohn A. S. , Bhattarai N. , Campolo J. , Crompton O. , Dralle D. , Duncan J. and Thompson

S. (2019). Forest loss in brazil increases maximum temperatures within 50 km. Environmental

Research Letters, 14 (8), 084 047.

Collins W. , Bellouin N. , Doutriaux-Boucher M. , Gedney N. , Halloran P. , Hinton T. , Hughes

J. , Jones C. , Joshi M. , Liddicoat S. and others (2011). Development and evaluation of an

earth-system model–hadgem2. Geoscientific Model Development, 4 (4), 1051–1075.

Danabasoglu G. , Lamarque J.-F. , Bacmeister J. , Bailey D. , DuVivier A. , Edwards J. , Emmons

L. , Fasullo J. , Garcia R. , Gettelman A. and others (2020). The community earth system model

version 2 (cesm2). Journal of Advances in Modeling Earth Systems, 12 (2), e2019MS001 916.
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De Noblet-Ducoudré N. , Boisier J.-P. , Pitman A. , Bonan G. , Brovkin V. , Cruz F. , Delire C. ,

Gayler V. , Van den Hurk B. , Lawrence P. and others (2012). Determining robust impacts of

land-use-induced land cover changes on surface climate over north america and eurasia: results

from the first set of lucid experiments. Journal of Climate, 25 (9), 3261–3281.

Duveiller G. , Hooker J. and Cescatti A. (2018). The mark of vegetation change on earth’s surface

energy balance. Nature communications, 9 (1), 1–12.

Hirsch A. L. , Prestele R. , Davin E. L. , Seneviratne S. I. , Thiery W. and Verburg P. H. (2018).

Modelled biophysical impacts of conservation agriculture on local climates. Global change biology,

24 (10), 4758–4774.

Hirsch A. L. , Wilhelm M. , Davin E. L. , Thiery W. and Seneviratne S. I. (2017). Can climate-

effective land management reduce regional warming? Journal of Geophysical Research: Atmo-

spheres, 122 (4), 2269–2288.

IPCC AR6 SPM V. , Masson-Delmotte, Zhai P. , Pirani A. , Connors S. , Péan C. , Berger S. ,
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