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Abstract

Land ecosystems take up about one third of anthropogenic CO2 emissions and

slow down the accumulation of carbon in the atmosphere. The atmospheric CO2

growth rate exhibits large interannual variability, mainly caused by fluctuations in

the carbon sequestration of terrestrial ecosystems. Biomass burning contributes

substantially to these fluctuations. However, the quantification of fire CO2 emis-

sions presents a challenge. Here I show that the potential of space-borne CO2 and

CO observations for the study of fires and their impact on the carbon cycle is re-

stricted by insufficient data availability. The carbon data is tested for a fire signal

on global to local scales. The carbon and other variables’ behaviour over time in

relation to fires is studied with time series and event compositing. Furthermore, a

novel approach is applied to correct CO2 data for emissions from other sources, in

order to enhance the fire signal in burned area-carbon correlations. A fire signal

is detectable in all carbon data; it is dependent on the analysis method, the size

of the area inspected, and the vegetation class burned. These controls affect CO2

and CO data differently. My results emphasise the need for more precise and tem-

porally higher resolved satellite CO2 observations to further investigate fire CO2

emissions and foster our understanding of fire-carbon cycle interactions.
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Introduction

1 Introduction

In recent years, fires have emerged as a central element of global carbon budget vari-

ability. Though an integral component for function and biodiversity of many natural

habitats, fires adversely impact the Earth system including the climate in a number

of ways. They modify vegetation occurrence, type, and species, and thus land sur-

face properties, such as albedo and evapotranspiration (Randerson et al. 2006). Fires

not only influence the climate directly through biogeophysical effects (Archibald et

al. 2018), but also indirectly via the carbon cycle. According to vegetation models,

combustion of biomass globally reduced the terrestrial carbon storage by 10% in the

period from 2001 to 2012, while regionally, the reduction could rise to 20%. Moreover,

fires lead to emissions of various trace gases and aerosols (Ward et al. 2012). For both

reasons—the reduction of the terrestrial carbon sink as well as the direct release of

greenhouse gases—fires are one of the primary causes of interannual variability (IAV)

in the atmospheric growth rates of, among others, CO2 and CH4 (Langenfelds et al.

2002). The IAV in atmospheric CO2 thus depends to a large degree on the IAV of the

terrestrial carbon sink, which is considerably less well-constrained than the ocean car-

bon sink (Ciais et al. 2013). The tight coupling of the carbon stock’s partitioning into

land and atmosphere is evident from Fig. 1.

Figure 1: CO2 sources and sinks (Ciais et al. 2013, IPCC AR5).

In the context of terrestrial and atmospheric carbon stocks, climate change mitigation

measures should not go unmentioned. Carbon storage in forests is a key component

in the mitigation strategy (Grassi et al. 2017), and it requires thorough understanding

of the interaction between fire, vegetation and the carbon cycle. Besides, it is precisely
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these interactions, specifically between fire, peatlands, and permafrost thaw, and their

response to further warming, which are not yet sufficiently included in climate and

Earth system models (Lasslop et al. 2019; IPCC 2021). Fires thus substantially influence

the partitioning of carbon into terrestrial and atmospheric pools, which is why it is so

important to assess their annual magnitude and impact. In the following subsections

the role of fires in the Earth system shall be considered in more detail.

1.1 Literature Review

1.1.1 Fire Ecology

There is an great diversity of fire regimes on Earth. Typical fire characteristics, such

as intensity, frequency, extent, and type, as well as their ecosystem impacts, vary con-

siderably over space and time (McLauchlan et al. 2020). The body of scientific liter-

ature on fire ecology reflects a paradigm shift from the concept of fire as destructive

force to the concept of fire as essential process shaping most ecosystems on land (e.g.

Archibald et al. 2018; Bond et al. 2004; He et al. 2018; Pausas et al. 2017; Werf et al.

2006). The net effect of fires on the atmospheric carbon pool depends on the balance

of emissions during biomass combustion and the uptake during the vegetation recov-

ery phase (Lasslop et al. 2019). Not all fires are wildfires; many are planned by humans

as a means to manage the land. These fires have the same impact on the carbon cycle,

however, it can be expected that the global area burned by prescribed fires does not

vary dramatically over the years.

The effects of fire on the vegetation depends on a number of factors, such as the fire

size, pre- and post-fire climate, plant life-history traits, and recent fire history (Davis

et al. 2018; Johnstone et al. 2016). The plant species composition can be perpetuated

when dominant species resprout from sheltered basal meristems (Keeley et al. 2005).

This applies for example to fires in grasslands, savannas, and many Mediterranean

shrublands. By contrast, the post-fire succession in forests is difficult to anticipate, as

not only fire severity and plant adaptations influence this process, but also landscape

fragmentation, herbivory, interacting disturbances and many more elements (Batllori

et al. 2018; Blackhall et al. 2017; Pausas 2015). Particularly in forests, there might be

long-term fire consequences. Forests may continue to be net carbon sources ten years

after a severe fire, and the transition to grass- or shrubland is possible (Hurteau et al.

2011). Fires do not only change above-ground biomass, but with it also the soil proper-

ties. Pyrolysis and combustion reactions destroy the uppermost organic horizon and

2
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the underlying mineral soil might be impacted by conductive and advective heating.

In addition to soil organic matter composition, fires can also change the soil structure,

composition and activity rates of soil biota, and carbon and nutrient pools and fluxes

(Adkins et al. 2019; Gutknecht et al. 2010; Miesel et al. 2015). Overall, individual fire

impacts on ecosystems can be almost as diverse as the Earth’s ecosystems themselves.

1.1.2 The Interplay of Weather, Climate, and Fire

Above the impacts of fires on the vegetation are described; yet vegetation is not only

affected by fires, but in its role as fuel it is also an important driver of fire activity. Fire

is the consequence of three co-occurring factors: a stock of fuel, fire weather condi-

tions, and an ignition source, which may be anthropogenic or natural (Bistinas et al.

2014; Forkel et al. 2017; Kelley et al. 2019). Fire weather is a term for meteorological

conditions conducive to the ignition and spread of wildfires (Jones et al. 2022). There

are numerous indices for fire weather which aim to quantify the flammability (i.e. the

dryness) of the vegetation (Jolly et al. 2015) due to combined effects of temperature,

precipitation, humidity, and wind (Field et al. 2015). Hot, dry, less humid, and windy

conditions prime vegetation to burn. According to the Intergovernmental Panel on Cli-

mate Change (IPCC), several climate trends might promote the increasing frequency

and intensity of fire weather (Fischer et al. 2021; Jia et al. 2019). Jones et al. (2022)

indeed found increases in the length of the fire weather season and the frequency of

extreme fire weather during 1979-2019 in most regions globally, which paves the way

for more frequent burning of the landscapes.

Climate change, in turn, is perpetuated by global fire activity. Harrison et al. (2018)

estimate that fires and related processes cause a rise in atmospheric CO2 levels of 6

ppm per degree warming of the global mean annual surface temperature. Additionally

to this positive feedback, fires are also involved in negative feedback loops. How ex-

actly fire-induced biophysical modifications affect the climate depends on the region

and on the time scale inspected (Liu et al. 2019). In high latitudes, forest fires initially

cause a warming due to reduced evaporative cooling. Five years after the fire, how-

ever, increases in the surface albedo start to predominate the Earth’s radiative budget

and lead to a net cooling effect. In tropical regions, fires have a slight warming effect

because of decreased evapotranspiration. On the global scale, the negative feedbacks

only partially offset the positive feedbacks (Jones et al. 2022). Moreover, Saha et al.

(2017) suggest that the post-fire surface brightening is responsible for reduced con-

vective precipitation. The interplay of weather, climate, and fire is manifold and highly
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complex, and it remains challenging to implement it in Earth system models.

1.1.3 Current Fire Emission Estimates

It is essential to determine the land-atmosphere carbon fluxes as accurately as possible

in order to gain a better understanding of the terrestrial carbon sinks. Regional and

global CO2 emissions from fires have been successfully estimated by harnessing the

relationship of fire radiative power to biomass burned and (landcover-specific) emis-

sion factors (e.g. Pereira et al. 2009; Kaiser et al. 2012). Prominent global fire emission

inventories are the Global Fire Emissions Database (GFED, Randerson et al. 2018)),

the Global Fire Assimilation System (GFAS, Kaiser et al. 2012)), the Fire Inventory from

the National Center for Atmospheric Research (FINN, Wiedinmyer et al. 2011), the

Quick Fire Emissions Dataset (QFED, Darmenov et al. 2013), and the Fire Energetics

and Emissions Research (FEER, Ichoku et al. 2014). While these data sets have made

great contributions in the field of wildfire emission research, they are all based on bio-

mass burning models or on other biogeochemical models, which require remote sens-

ing data input and empirically derived conversion factors (Liu et al. 2020). CO2 emis-

sion estimates strongly depend on such input parameters, each introducing additional

uncertainty. Liu et al. (2020) name five major sources of uncertainty in the inventor-

ies: 1) primary reliance on accurate active fire and burned area detection, 2) impaired

fire detection due to cloud/haze obscuring satellite measurements, 3) fragmentation

of burned area, 4) topography roughness, and 5) small fires, which remain undetected.

Consequently, model-based fire CO2 estimates can differ up to 60%, as Shiraishi et al.

(2021) show.

Constraining fire CO2 estimates by satellite observations offers a possible alternative

to model estimates. In 2015 and 2016, droughts associated with a pronounced El Niño

event occurred widely and contributed to intense fire periods across the globe (Burton

et al. 2020). This circumstance triggered the publication of various articles that address

the topic of local, regional, and global carbon cycle responses to such events using the

same remotely sensed CO2 product (OCO-2 XCO2). For example, Heymann et al. (2017)

found that the space-based estimate of Indonesian fire CO2 emissions was about 30%

lower than estimates provided by the emission inventories. Guo et al. (2019) identified

and characterised smoke plumes of four active wildfires which occurred in Siberia in

2015 using MODIS band 8, band 21 and Multi-angle Imaging Spectroradiometer data.

A linear regression model was applied to compute CO2 for each smoke plume pixel and

subsequently, emissions for each wildfire point were calculated. A broader perspect-
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ive on carbon cycle responses to the 2015-2016 El Niño event is provided by Crowell

et al. (2019), who employed CO2 data, a large ensemble of atmospheric inversion mod-

els, data assimilation methods, and prior flux distributions to confine the total and

terrestrial carbon sinks for the years 2015-2016: they found that in situ observations

and satellite retrievals constrained similar sinks at global scale, but this agreement de-

creased when individual regions were inspected. Liu et al. (2017) quantified the reac-

tions of tropical net biosphere carbon exchange, gross primary production, biomass

burning, and respiration by assimilating CO2, solar-induced chlorophyll fluorescence,

and carbon monoxide observations from multiple satellites. They conclude that there

is no single dominant process determining carbon cycle IAV. In general, previous re-

search on terrestrial carbon sources in relation to El Niño events demonstrates that

space-borne derivation of CO2 emissions on different spatial scales is possible.

A few more case studies have examined the suitability of remote sensing carbon data to

determine local or regional fire CO2 emissions. Guo et al. (2017) identified and charac-

terised smoke plumes of severe Russian wildfires in 2010 by inspecting Cloud and Aero-

sol Imager retrievals and thermal infrared data. CO2 changes were derived from short-

wave infrared measurements. The resulting CO2 emission estimate was only slightly

lower than the CO2 emission as estimated by a biomass burning model. Li et al. (2019)

inspected satellite monthly mean CO2 data for the region of California and came to the

conclusion that CO2 increased by 2 ppm after the wildfire in October 2017. Wang et al.

(2020) analysed CO2 data from the same satellite and found that the 2020 Australian

mega-bushfires enhanced CO2 at the outer fringe of smoke plumes by approximately

1.5 ppm. This result was validated using an atmospheric transport model forced by

GFED, version 4.1. They concluded that wildfire-induced maximum CO2 enhance-

ments are detectable to some extent; however, it remains a challenging task due to gaps

in the CO2 retrievals obscured by smoke. van der Velde et al. (2021) also recognised the

need for research on fire CO2 emissions in the case of the exceptional Australian wild-

fire event in 2019-2020, as prominent fire inventory estimates differ by up to a factor

of four for this incident. They constrained CO2 emission estimates with the help of

remotely sensed carbon monoxide, an analytical Bayesian inversion, and observed ra-

tios between CO2 and CO emissions. They consider CO observations more appropriate

for CO2 emission estimates, as CO values show a much larger relative deviation from

background concentrations upon fire events than CO2 values. The emission estimate

derived for November 2019 to January 2020 was verified using a bottom-up bootstrap

analysis. It was more than twice as large as the average of five fire inventories.
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1.2 Research Questions

Our understanding of wildfire-climate relationships on the large scale remains limited

(Tang et al. 2021). Global emission inventories exhibit large inconsistencies in their

estimates of fire-induced CO2 emissions. Instead of a model-derived bottom-up ap-

proach, it would thus be highly interesting to find an alternative top-down approach

based on satellite observations to generate and compare fire CO2 emission estimates.

Previous scientific work has proven that it is feasible to infer fire CO2 emission estim-

ates from space-based measurements on different spatial scales, but it involved con-

siderable effort, e.g. using elaborate data assimilation methods or atmospheric inver-

sion models. Few studies have been conducted on global fire CO2 emissions using

remote sensing techniques.

Several CO2 observing satellite missions with global coverage are currently operating.

It is their explicit purpose to collect CO2 measurements "with the precision, resolu-

tion, and coverage needed to improve our understanding of surface CO2 sources and

sinks (fluxes) on regional scales (≥ 1000km) and the processes controlling their variabil-

ity over the seasonal cycle" (NASA 2022). More precisely, NASA states that their carbon

observing mission contributes, among others, to studies on "the exchange of carbon

between the atmosphere and tropical ecosystems due to plant growth, respiration, and

fires. ESA formulates similar carbon mission objectives; they emphasise the import-

ance of atmospheric CO2 monitoring and the research of the global distribution and

temporal variation of greenhouse gases on a sub-continental scale (ESA 2022).

With this Master thesis I aim to test the suitability of such satellite-based atmospheric

CO2 and CO observations (summarised as "carbon" data or variables) for carbon cycle

studies on different spatial scales. Specifically, my project is intended to broaden the

understanding of interactions between fires and the carbon cycle, which is essential to

determining the carbon budget remaining to comply with the 2015 Paris Agreement

and limit global warming to well below 2°C. A further objective is to evaluate whether

these data can be used as a basis for estimating global fire emissions. Thus, the focus

of this work lies on analysing the carbon data sets in an exploratory fashion.
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The exploration is guided by the following research questions:

1. Is it possible to detect a fire signal in remote sensing carbon data?

2. What is the co-evolution of fire-related variables and burned area data? Could

any systematic behaviour of auxiliary variables help to infer CO2 and CO values

where they are missing?

In the context of carbon data, I define "fire signal" as a likely fire-induced enhancement

of atmospheric carbon concentrations. In the case of auxiliary variables, a "fire signal"

or "fire response" is deemed to exist if they demonstrate anomalies which might be

expected in connection with fires.

2 Data

In this and the following subsection I describe the data that build the base of this thesis

and the data pre-processing steps. For a quick overview of the data sets and their ori-

ginal properties see Table 1.

2.1 Data Sets

The central parameters for my work are satellite-based observations, most importantly

CO2 and CO data. Further important parameters include burned area (BA), aerosol

optical depth (AOD), and land surface temperature (LST). These are closely linked to

wildfires and are commonly used to identify fire locations (Csiszar et al. 2006; Wooster

et al. 2012; Reid et al. 2012, e.g.). I will henceforth call these primary auxiliary vari-

ables. The primary auxiliary variables are extended by secondary auxiliary variables,

which are likely to be influenced by fires—or themselves influence fires, e.g. in their

build-up—, but the interlinkage is less evident. Secondary auxiliary variables are ter-

restrial water storage (TWS) and normalised difference vegetation index (NDVI). An

additional vegetation index is introduced: the vegetation optical depth at L-band fre-

quency (L-VOD). Furthermore, output data from Dynamic Global Vegetation Models

(DGVM) are included in the second part of my analysis, more precisely the parameter

Net Biospheric Production (NBP). I preliminarily investigate the introduction of data

on anthropogenic carbon emissions. But since they cover only a short time span from

2019 to 2020, and in addition, this time period cannot be deemed representative in
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terms of anthropogenic CO2 emissions due to the COVID-19 pandemic, these data are

not considered for the final results.

Table 1: Overview of the data sets for the analyses, indicating the original properties of
the products.

Data set Variable Temp. cov. Temp. res. Spatial res.

Multi-Instrument Fused
bias-corrected XCO2

XCO2 2014-2020 daily 1°

AIRS3STM CO 2002-2022 monthly 1°

ESA FireCCI51 total BA 2001-2020 monthly 0.25°

ESA FireCCI51
BA in

vegetation class
2001-2020 monthly 0.25°

CERES SYN1deg AOD 2000-2021 monthly 1°

MYD11C1v006 LST 2002-2021 daily 0.05°

GRACE Tellus
JPL-RL06M.MSCNv02

TWS 2002-2022 monthly 0.5°

MOD13C2v061 NDVI 2000-2021 monthly 0.05°

SMOS-ICv2 L-VOD 2010-2021 daily 25 km

TRENDY NBP 1700-2020 monthly NA*

GRACED** anthr.
C emissions

2019-2020 daily 0.1°

* TRENDY data include a set of DGVM simulations over the historical period, where
the individual DGVM simulations differ in spatial resolution.

** GRACED data are experimentally used in the course of the correlation analysis, but
they are not part of the final analysis.

Carbon dioxide (CO2) data for this study are represented by the Multi-Instrument Fused

bias-corrected XCO2 Version 3 product in ppm. As the name says, this is a merged

product of column-averaged dry air mole fraction of CO2 (XCO2). It was created by

applying local kriging to daily aggregates of Orbiting Carbon Observatory (OCO-2) and

Greenhouse Gases Observing Satellite (GOSAT) bias-orrected data (Nguyen et al. 2022).

The product is gridded at a resolution of 1°×1° and covers a time span of September

2014 - July 2020. OCO-2 is a polar sun-synchronous orbit satellite with a return cycle of

16 days. It covers a 1.29×2.25 km footprint at nadir and has been operated by the US

National Aeronautics and Space Administration (NASA) since July 2014. The imaging

spectrometer aboard the OCO-2 measures radiances in the short-wavelength infrared

spectral region (0.765 µm, 1.61µ̃m, 2.06 µm) (Worden et al. 2017). Radiative transfer

and XCO2 retrieval algorithms, described e.g. by O’Dell et al. (2012) and Connor et al.
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(2008), yield estimations of column-averaged atmospheric CO2 concentrations. JAXA,

the Japan Aerospace Exploration Agency, launched GOSAT in January 2009 (Janard-

anan et al. 2016). It is also a sun-synchronous satellite, with a repeat cycle of three days

and a footprint of approximately 10 km. GOSAT carries the Thermal and Near-infrared

Sensor for Carbon Observation-Fourier Transform Spectrometer (TANSO-FTS), with

three bands in the short-wavelength infrared region (0.76 µm, 1.6 µm, 2.0 µm) and one

broad thermal infrared band between 5.6 and 14.3 µm (Inoue et al. 2013). Yoshida et al.

(2011) describe the retrieval algorithm applied to obtain GOSAT XCO2 estimates. For

my analysis, I choose the merged product to ensure the best possible spatial and tem-

poral data coverage. Yet there is a period of 50 days with missing data, from 31 July 2017

to 19 September 2017. For the sake of simplicity, XCO2 is henceforward only referred to

as CO2. CO2 enhancements are indicated in ppm, while CO2 emissions are converted

to Gt carbon using the conversion of Friedlingstein et al. (2021) where 1 Gt carbon =

3.664 Gt CO2.

Carbon monoxide (CO) data are retrieved as mixing ratios from the Atmospheric In-

fraRed Sounder (AIRS) on the European Space Agency’s (ESA’s) satellite Aqua. The CO

spectral feature is centred around 4.7 µm (Pagano et al. 2022). CO data are available at

24 atmospheric standard pressure levels from 1000 to 1 hPa (Tian et al. 2020). Sensit-

ivity to variations in CO peaks in the mid-troposphere, around 500 hPa (Pagano et al.

2022). The data sets have 1° spatial and monthly temporal resolution and span a period

from 2002 to 2022 (AIRS project 2019).

The Burned Area (BA) data I use were developed in the ESA Climate Change Initiat-

ive programme on the global monitoring of Essential Climate Variables (ECV), since

fire disturbance is deemed one of these ECVs (Pettinari et al. 2020). The data set (v5.1)

contains 14 variables of which I use two, namely total burned area and burned area in

vegetation class, both given in units of m2. The data set is available as grid product at

0.25° spatial resolution and at a monthly temporal resolution, and covers a period from

2001 to 2020. It is derived from the Moderate Resolution Imaging Spectroradiometer

(MODIS) onboard the TERRA satellite. The detection algorithm is based on a hybrid

approach, using both thermal anomalies information and near-infrared reflectance

values of MODIS (Lizundia-Loiola et al. 2020). 18 vegetation classes are extracted from

the Land Cover Climate Change Initiative (LC-CCI) product to assess BA per vegetation

class. This product offers annual land cover files covering the period 1992 to 2020. For

each year, previous year information was used, except for 2017 to 2020, where the last

available year (2015) was used (ESA 2017, LC_CCI v2.0.7). Here I use 17 of the 18 ve-

getation classes, as there is no occurrence of BA in vegetation class 140 ("lichens and
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mosses") in the inspected regions. For details on the vegetation classes, see Pettinari

et al. (2020, p. 22).

Biomass burning is an important source of aerosols, it releases primarily black and

brown carbon as well as organic aerosols into the atmosphere (Cheng et al. 2013).

Aerosol Optical Depth (AOD) is a common satellite-based measure to estimate at-

mospheric aerosol loading; it is a dimensionless measure of the extinction of light

(Shinozuka et al. 2007). In this study, the synoptic 1° (SYN1deg) AOD product is used,

which was developed in the Clouds and Earth’s Radiant Energy System (CERES) project

from NASA. AOD is derived from observations of MODIS (on the Aqua and Terra satel-

lites) and its successor (on the Suomi National Polar-orbiting Partnership satellite), the

Visible Infrared Imager Radiometer Suite, at the spectral region around 0.55 µm. It is

assimilated by an aerosol transport model and covers a period from 2000 to 2021 (Fill-

more et al. 2022). The spatial resolution is 1° and the temporal resolution is monthly.

A MODIS Land Surface Temperature (LST) product is used, specifically the MYD11C1v006

product from the Aqua satellite. It is created applying a generalised split-window al-

gorithm described by Li et al. (2020a), with MODIS surface emissivity bands 31 (around

11.03 µm) and 32 (12.02 µm). LST data in Kelvin are available at daily time steps with a

spatial resolution of 0.05° for the period 2002 - 2021.

Terrestrial Water Storage (TWS), including groundwater, soil moisture, surface wa-

ters, snow, and water stored in the biosphere, can be retrieved from microwave meas-

urements. The Gravity Recovery and Climate Experiment (GRACE) mission was estab-

lished in the early 2000s, as a joint venture between NASA and the Deutsches Zentrum

für Luft- und Raumfahrt. The mission consisted of two identical satellites in identical

orbits, approximately 220 km apart (Humphrey et al. 2018). The satellites continu-

ously monitor their exact separation distance and its rate versus time, which varies as

the satellites pass through changing gravity (Ramillien et al. 2008). The separation dis-

tance is determined with the help of a K-Band microwave ranging system. Moreover,

the satellites carry Global Positioning System (GPS) receivers and high precision accel-

erometers, the latter to ensure that only accelerations caused by gravity are considered

(Tapley et al. 2004). In combination, these observations allow to derive the changes in

water masses on Earth. GRACE yielded TWS data for a period spanning 2002 - 2017,

a successor, the GRACE Follow-On (GRACE-FO) was launched in 2018. Together, they

cover the period from 2002 to 2022, for which approximately monthly TWS data with

0.5° spatial resolution are available. The data were processed at NASA’s Jet Propulsion

Laboratory (JPL) to liquid water equivalent height anomalies in cm (Wiese et al. 2016;
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Landerer et al. 2020), relative to a time-mean baseline from 2004 to 2009 (Moghim

2020). I use the GRACE Tellus product from release 6, version 2 (Wiese et al. 2019, JPL-

RL06M.MSCNv02), which was produced applying the mass concentration (mascon)

solution approach. For a detailed description of this approach please refer to Watkins

et al. (2015). There are quite a few gaps in the GRACE data set for the relevant time

period. On the one hand, single monthly values are missing (Dec 2014, May, June, Oct,

and Nov 2015, Apr, Sept, and Oct 2016, Feb 2017, Aug and Sept 2018), on the other

hand, there is an entire year of missing data from June 2017 to June 2018.

Normalised Difference Vegetation Index (NDVI) data were collected from MODIS on

Terra and used as proxy for vegetation productivity, or plant health. The NDVI is often

used to monitor live green vegetation and can be derived from the red to near-infrared

reflectance ratio. NDVI values range from -1 to +1, where negative values indicate the

absence of vegetation (Pettorelli et al. 2005). The MOD13Cv061 product I use is avail-

able at monthly temporal and 0.05° spatial resolution. It covers the period from 2000

to 2021.

As additional vegetation index, I introduce Vegetation Optical Depth at L-band fre-

quency (L-VOD) in my analysis as proxy for above-ground biomass. L-VOD is related

to the intensity of microwave extinction within the canopy layer and can be derived

from active or passive microwave systems. It is only marginally impacted by adverse

atmospheric effects, and thus increasingly applied for large-scale ecological studies

(Li et al. 2021). The data for this thesis is collected by passive microwave instruments

on ESA’s Soil Moisture and Ocean Salinity (SMOS) mission, and processed with an al-

gorithm developed by the French Institut National de la Recherche Agronomique and

Centre d’Études Spatiales de la Biosphère (Fernandez-Moran et al. 2017; Li et al. 2020a;

Li et al. 2020b). I use version 2 of the resulting product, called SMOS-IC v2. Wigneron et

al. (2021) have found L-VOD to be a key index to evaluate the inter-annual variations in

the above-ground biomass stocks. L-VOD data are in 25 km spatial resolution at daily

time steps, and they cover a time span from 2010 to 2021. Values range between 0 and

2, and are of dimensionless unit. There is one day of missing data for the relevant time

span, namely 15 March 2016.

Net Biospheric Production (NBP) data is collected from the TRENDY project and serves

as estimate of the terrestrial carbon sink. A consortium of DGVM groups set up this

project to investigate the spatial trends in NBP and agreed to perform DGVM simula-

tions over the historical period every year since 2010 (Sitch et al. 2015). TRENDY data

support the the Global Carbon Project’s annual global carbon budget assessments, the
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most recent TRENDYv10 data used here are available online for spin-off studies. A total

of 17 DGVMs participate in TRENDYv10, the single models and related sources for a de-

tailed description of them can be found in Friedlingstein et al. (2021). In summary, the

DGVMs’ forcing data include time-dependent gridded climate forcing, global atmo-

spheric CO2, gridded land cover changes, and some also gridded nitrogen deposition

and fertilisers. Four simulations (S0, S1, S2, S3) are performed with each DGVM. Here I

use output from S3, which is deemed the most realistic of the four. It applies historical

changes in atmospheric CO2 concentrations, nitrogen inputs, climate, land cover dis-

tribution, and wood harvest rates. NBP is the difference of the modelled parameters

Net Primary Production (NPP) minus heterotrophic Respiration (Rh). NBP values are

in units of kgC m−2 s−1 at monthly time steps and cover the period 1700 - 2020. The

individual DGVMs have different spatial resolution.

A new data set on anthropogenic CO2 emissions, the Global Gridded Daily CO2 Emis-

sions Dataset (GRACED) was published in November 2021 (Dou et al. 2021). It con-

tains anthropogenic fossil fuel and cement CO2 emissions in units of KgC d−1 for the

years 2019 - 2021. It is provided with a spatial resolution of 0.1° and daily temporal

resolution. However, the data set I gained access to upon request was in hourly res-

olution, representing mean hourly values for one day. The emissions are computed

based on the national CO2 emissions data set (Carbon Monitor), the spatial patterns

of a point source emission data set (Global Energy Infrastructure Emissions Database),

the emission database for global atmospheric research, and spatio-temporal patterns

of satellite NO2 retrievals.

2.2 Data Selection and Preprocessing

There are certain requirements that all data sets must meet. In this Master thesis, data

is investigated at different spatial scales, ranging from global to regional. Global data

coverage is thus one necessary condition that all data sets must fulfil. Another com-

pelling requirement arises from the temporal extent of the carbon data on which the

analyses are based. The period covered by both, CO2 and CO data, is September 2014 -

(and including) July 2020. Accordingly, this is the relevant period that must be covered

by all data sets. Furthermore, there is a lower bound for the temporal resolution; data

must be available at least once per month. For the spatial resolution there is an upper

bound; the spatial resolution can only be moderate to avoid excessive computational

costs. Finally, each value needs to be related to three coordinates: latitude, longitude,

and time.
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2.2.1 The Behaviour of Carbon and Auxiliary Variables in Relation to Fires

There is a number of data preparation steps for this first analysis, some of which ap-

ply for all data sets, others are specific to individual data sets. The format I choose for

adequate data representation is network common data form (netCDF). Most data sets

are available in netCDF, four data sets (CO2, LST, NDVI, CO) are converted from hier-

archical data format to netCDF. The time information is extracted from the file name

and added to the data set as coordinate for LST, NDVI, L-VOD, and CO. I sum CO values

across all standard pressure levels instead of focusing on CO at one specific altitude, in

order to avoid non-observance of CO variation caused by fires, and to make them com-

parable to CO2 data, which are also column-averaged. L-VOD also requires additional

preparation steps: quality control is executed according to the developers’ advice (per-

sonal mail correspondence, 13 Jan 2022). Firstly, scene flag values are used to remove

L-VOD values impacted by strong topography, frozen, and polluted scenes. Secondly,

root mean squared error values between measured and modelled brightness temper-

ature are used to remove L-VOD values strongly impacted by radio frequency interfer-

ence. Lastly, negative L-VOD values are set to zero, as they are not physically possible.

Monthly means are calculated for CO2, LST, and L-VOD. All data sets are regridded to

match the spatial resolution of the BA data set (0.25°). Data exhibiting a noticeable

trend are detrended (CO2, LST, TWS, CO) and seasonality is removed for all data sets

by subtracting the mean seasonal cycle. Finally, a land mask is applied for CO2, AOD,

TWS, NDVI, L-VOD, and CO data.

2.2.2 Vegetation-dependent Fire Imprint in different Carbon Data

For the correlation analysis, the relevant parameters are CO2, CO, BA in vegetation

class, and the collection of NBP variables from TRENDY. Here I include TRENDY DGVM

runs without active fire modules, as the fire signal is what we would like to emphasise

in the carbon data. For one DGVM (DLEM), output data is available only with annual

resolution, whereas the temporal resolution for my analysis should be monthly. This

yields a set of seven suitable DGVMs (IBIS, ISAM, ORCHIDEEv3, CABLE-POP, OCN,

JULES-ES-1.1, YIBs). I convert NBP in kgC m−2 s−1 to an absolute value in GtC per

month. As mentioned above, anthropogenic carbon emissions (GRACED) are intro-

duced tentatively. GRACED data are also converted from mean kgC h−1 to GtC per

month. For the inspection of BA in vegetation class, I group the 17 land cover categor-

ies into seven superordinate vegetation classes (see Table 2).
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Table 2: Overview of the grouped vegetation classes.

Vegetation class Original land cover category (LC-CCI product)

Sparse vegetation Sparse vegetation (tree, shrub, herbaceous cover)(<15%);

Grass Grassland;

Crop

Cropland, rainfed;

Cropland, irrigated or post-flooding;

Mosaic cropland (>50%) /
natural vegetation (tree, shrub, herbaceous cover) (<50%);

Mosaic natural vegetation (tree, shrub, herbaceous cover) (>50%) /
cropland (<50%);

Shrub

Shrubland;

Mosaic tree and shrub (>50%) / herbaceous cover (<50%);

Mosaic herbaceous cover (>50%) / tree and shrub (<50%);

Tree deciduous

Tree cover, broadleaved, deciduous, closed to open (>15%);

Tree cover, needleleaved, deciduous, closed to open (>15%);

Tree cover, mixed leaf type (broadleaved and needleleaved);

Tree evergreen
Tree cover, broadleaved, evergreen, closed to open (>15%);

Tree cover, needleleaved, evergreen, closed to open (>15%);

Vegetation flooded

Tree cover, flooded, fresh or brackish water;

Tree cover, flooded, saline water;

Shrub or herbaceous cover, flooded, fresh/saline/brackish water

3 Methods

I use two complementing approaches to explore the carbon data sets from different

angles. In the first part the covariation of carbon and auxiliary variables with burned

area is compared on various spatial scales. Firstly, event compositing is used for the

analysis on the global scale. Secondly, anomaly time series of carbon data and the

auxiliary parameters are compared on the local scale for selected wildfire cases which

are scientifically well-documented (see Table 3). Thirdly, the same time series are in-

spected for four intermediate spatial scales: the Southern Hemisphere, (SH, 0−60° S,
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180° W - 180° E), the larger Australian region including the Southern hemispheric part

of Southeast Asia (larger AU region, 0− 50° S, 98− 180° E), Australia (AU, 11− 48° S,

110−160° E), and Southeast Australia (SE-AU, 30−40° S, 145−154° E). In the second

part the correlation between carbon and BA data is analysed on these intermediate

spatial scales, with the aim to determine the fire signal in different carbon data sets.

In analysing the intermediate spatial scales we want to account for the atmospheric

transport of the fire signal in the atmospheric observations (CO2, CO, AOD) which can

take place within one month. This loosens the tight spatial coupling of immediate fire

site and fire signal. It is the best available strategy that can be implemented without the

application of complex trajectory simulations. We focus on Australia for several reas-

ons. The Southeast Australian Bushfires are among the most extreme wildfire events

in recent years, and the CO2 data coverage allows us to study this event. Additionally,

CO2 levels in the Southern Hemisphere have the advantage of being less influenced by

anthropogenic point sources and vegetation (Ciais et al. 2019).

3.1 The Behaviour of Carbon and Auxiliary Variables in Relation to

Fires

These analyses investigate the relationship between atmospheric carbon and the aux-

iliary variables during fire events on the global, local, and intermediate scales. We ex-

pect to reveal a correlation in time for these parameters. Systematic behaviour could

be used to detect enhanced fire carbon emissions and fill gaps in the carbon data sets,

which would be particularly convenient for CO2 data.

3.1.1 Fire Event Composite Anomalies

Event compositing, or superposed epoch analysis, is a tried and tested statistical method

to determine the response of one or multiple variables to a particular event (Fischer et

al. 2007; Lesk et al. 2016; Nicolai-Shaw et al. 2017; Suji et al. 2018). I apply event com-

positing to assess global covariation of CO2, CO, LST, AOD, TWS, NDVI, and L-VOD

anomalies during extreme fire events. In the following paragraphs I describe the single

steps of computing fire event composite anomalies (FCAs). For a visual abstract of the

workflow, see Figure 2.
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Figure 2: For each grid cell of the BA data set, the mean seasonal cycle is defined and the three months
with the highest values defined as fire season (step 1). The most extreme fire month (in terms of BA) over
the entire time series is then identified (step 2), as well as the month before and the month after (step 3).
Finally, the anomaly at the time of the fire peak is calculated for all auxiliary variables (step 4). Shown
here are the CO2 fire composite anomalies.

1. Define the fire season. In the first step, a fire season mask is created for later anomaly

calculations. This is done as it is of interest how extraordinary the parameter values are

in respect to the fire season, and not to the entire time series. To this end, I calculate the

monthly climatology of original (not deseasonalised) BA data for each grid cell, using

the period from September 2014 to July 2020. Subsequently, the climatology values

exceeding the 75th percentile threshold are identified, which results in a Boolean mask

marking the three months with the highest BA values. This mask is then extended to

cover the complete time series.

2. Determine the fire peak. The single most extreme fire event for the entire period

is identified according to the maximum value in the original (not deseasonalised) BA
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data set. The time of the peak BA value, henceforth called "fire peak", is defined as key

time for each grid cell. Then a Boolean mask is created, containing true values when

the fire peak occurs, and false values at all other time steps.

3. Determine the month before and the month after the fire peak. In a similar fashion,

a pre-fire-peak and a post-fire-peak mask are established, marking the month before

and the month after the fire peak occurrence, respectively. With this I intend to char-

acterise the auxiliary parameters‘ temporal evolution and to examine their role during

the build-up and recovery phase of extreme fire events.

4. Compute FCAs. With the help of the mask, FCAs during the extreme fire event are

calculated for carbon data and the auxiliary parameters. Since seasonality is removed

for all variables as described in section 2.2 Data Selection and Preprocessing, FCAs are

computed with the anomalies as follows:

FC A = X f i r e peak −mean X f i r e season (1)

where X f i r e peak is the parameter anomaly value at the time of the fire peak and mean X f i r e season

is the parameter anomaly mean during the fire season. Equivalently, the FCAs one

month prior to and one month after the fire peak are computed.

3.1.2 Time Series Analysis

For the local covariability assessment of carbon data and auxiliary parameters I in-

spect eight regions where exceptional wildfires occurred during the period September

2014 - July 2020. Seven of the eight wildfire incidents are selected based on scientific

publications (see Table 3). Additionally, I examine a fire incident in Angola to have a

representative case for the African continent. The Angolan wildfire event is, however,

not exceptional in terms of frequency, as fires of the same magnitude occur every year

in the Angolan savanna. The regions examined differ in their spatial extent. For each

region, the time series of carbon data anomalies and auxiliary parameter anomalies

are compared. Any repeating patterns in the time series may allow us to distinguish

large fires from other sources of carbon variability and could pave the way for an CO2

gap filling approach.
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Table 3: Selection of large wildfire occurrences and estimated carbon emissions. Asterisks link emission
estimates and sources where necessary. Emission estimates are in GtC if not indicated otherwise.

Time Region Source Emission Estimate [GtC] Method

2015 Indonesia Heymann et al. (2017) 0.204±0.057 obs. (OCO-2)

2015 Siberia Guo et al. (2019) 3∗10∗∗-8∗10∗∗−5 obs. (OCO-2)

2016
Brazilian

Amazonia
Withey et al. (2018), 0.008

obs.
(bottom-up/top-down)

2017-10 California
Li et al. (2019)*,

Garcia et al. (2017)**
max. ∆CO2: 2 ppm*,

0.003**
obs.s (OCO-2)*,

obs. (LiDAR & OLI)**

2017-7/8
British

Columbia
Mao et al. (2021) max. ∆CO2: 4 ppm obs. (LiDAR)

2018 California Rooney et al. (2020) - -

2019-11/12 Australia Byrne et al. (2021) 0.031-0.064 obs. (OCO-2)

2020-1 Australia Wang et al. (2020) max. ∆CO2: 1.5 ppm obs. (OCO-2)

3.2 Vegetation-dependent Fire Imprint in different Carbon Data

For further insight into the interplay of fires and CO2 emissions, the correlation of car-

bon data and BA is examined. This analysis is inspired by Wang et al. (2020), who

studied the correlation of wildfire-induced CO2 enhancements as observed by OCO-2

and modeled wildfire carbon emissions based on the Global Fire Emissions Database,

Version 4.1 (GFED4.1) for the Australian mega-bushfires in November and December

2019. Here I inspect the carbon-BA relationship for seven vegetation classes and at the

four different intermediate spatial scales mentioned above.

For these areas, the data is processed as follows: I compute the sum of the monthly BA

values per vegetation class and monthly means are created for CO2. With the monthly

values for both carbon data sets, spatially weighted area means are calculated and sub-

sequently, the trend is removed. In addition to these two carbon data sets, I introduce

a further data set, i.e. corrected CO2 (CO2 corr), representing atmospheric carbon.

With this data set, we try to enhance the carbon-BA correlation by carving out the

fire signal in the CO2 data. We assume that the most relevant fluctuations in atmo-

spheric CO2 on a relatively short time scale of months to a few years are caused by the

following sources and/or sinks: fires, anthropogenic emissions (from fossil fuel com-

bustion and cement production), land use and land cover change (LULCC), volcanic

emissions, and the seasonal cycle of the vegetation. To focus on enhancements caused

by fires, all other sources and sinks of atmospheric carbon should be removed from
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the CO2 data. NBP data from the selected DGVMs serve as proxy for the vegetation

signal. Spatial sums of the monthly NBP data are calculated and the mean of the seven

DGVMs is computed. This multi-model mean of NBP data is then subtracted from

the CO2 data, and the trend is removed from the result. In an attempt to further en-

hance the fire signal, global anthropogenic emission data (GRACED) is prepared for

subtraction. However, the time series of GRACED starts in 2019, leading to an overlap

of GRACED and CO2 data of only 19 months (Jan 2019 - July 2020). Moreover, the years

2019 and 2020 are—due to the COVID-19 pandemic—not representative with regard to

anthropogenic emissions, so that any extrapolation could not be considered realistic.

For these reasons, we refrain from further pursuing the subtraction of the anthropo-

genic signal. Yet removing the trend comes close to a correction of the anthropogenic

emissions, as they are responsible for the trend to a very large degree. For LULCC and

volcanic emissions, data that meet the necessary requirements could not be obtained.

However, the LULCC signal is implicitly simulated in NBP data. For a visualisation of

the corrected data described in this section, see Figure 3.

Figure 3: For each spatial scale, the CO2 data is corrected for the vegetation signal represented by the
mean NBP of the seven DGVMs. Anthropogenic emissions are excluded from further analysis due to
their short time series. The trend is removed later from the corrected CO2 data. The CO2 baseline is
removed in this plot and carbon in gigatonnes (left y-axis) is converted to CO2 in ppm (right y-axis)
using a conversion factor of 2.124, following the approach of Ballantyne et al. (2012).

19



Results

4 Results

Figure 4: The fire composite anomalies show covariations of BA, carbon, and auxiliary variables in re-
sponse to an extreme fire event on the 0.25°grid map. Anomalies one month before the fire peak (left
column), at the time of the fire peak (central column), and one month after the peak (right column) are
depicted. Brown colours indicate anomalies which might be expected in relation to fire, e.g. higher CO2,
or lower NDVI.
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Figure 4 demonstrates the global covariation of atmospheric carbon and auxiliary para-

meters during extreme fire events on the 0.25°grid according to the fire composite ana-

lysis. CO2 does not reveal clear positive anomalies at the maximum fire event. On

the global scale, an unambiguous signal cannot be identified. CO2 anomalies hardly

change over the time span depicted, with the exception that CO2 values are enhanced

in South America one month after the fire peak. The pattern of positive CO anomalies

correlates rather well with the BA pattern during the fire peak, except that the Western

Russian and Central Asian regions do not show any CO increase. Above 60° N, in Alaska,

Canada and Northeast Siberia, values are enhanced during the fire peak, but also in the

month before. In South America and Southern Africa there is a noticeable increase in

CO during and after the fire peak. In Australia, there are more positive CO anomalies

during the peak too, but the differences before, during, and after the peak are small. On

the African continent, there is no very clear distinction between subtropics and trop-

ics during the peak—as opposed to in BA anomalies—even if there are strong positive

CO anomalies, particularly in the Northern subtropics. For AOD, positive anomalies

are discernible in the Canadian, South American, Western subsahara African, Indian,

Southeast Asian, Northeast Siberian, and Southeast Australian regions. However, most

of these patterns can be seen already one month prior to the fire peak. Interestingly,

fires in Northern Australia do not seem to enhance AOD noticeably, contrary to fires

in Southeast Australia. Among all auxiliary variables, LST show positive anomalies in

relation to fire most consistently over the globe, particularly during the fire peak and

the month before. An exception to this pattern is Northwestern Australia, where posit-

ive anomalies are apparently stronger after the fire peak. The negative TWS anomalies

in general agree with the maximum BA during the fire peak. However, Australia again

takes on a special role, as there are many positive anomalies there. The NDVI patterns

are closely related to those of LST. Negative NDVI anomalies may occur after the max-

imum fire event, as the example of Australia shows. Yet over all, there is remarkably

little temporal evolution in NDVI over the three months. L-VOD anomalies convey no

clear pattern and hardly any temporal evolution. The anomalies cannot be related to

fire events. In summary, CO and LST exhibit the strongest covariations with fire. There

are mixed signals for CO2 values, which cannot be clearly related to fires. TWS, AOD

and the vegetation indices only convey a weak and inconsistent signal in response to

fire, particularly L-VOD.
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Figure 5: The fire composite anomalies show covariations of BA, carbon, and auxiliary variables in re-
sponse to an extreme fire event, aggregated across IPCC WGI reference regions. Anomalies one month
before the fire peak (left column), at the time of the fire peak (central column), and one month after the
peak (right column) are depicted.
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In Figure 5, the same data are depicted as in Figure 4, but spatially averaged for IPCC

WG1 reference regions, version 4 (Iturbide et al. 2020). These maps help to identify

which variables change remarkably over time: LST, the TWS, and the NDVI. On the

other hand, CO, AOD, and L-VOD hardly vary over time. Neither does CO2, with the ex-

ception of slightly increased positive anomalies after the fires in South America and the

Russian Arctic. Across all variables there are some misleading anomalies, as certain re-

gions (Greenland/Iceland, Northern Europe, Sahara, Arabian Peninsula, West-Central

Asia, East-Central Asia, Tibetan Plateau) contain very few data points.

(a) (b)

Figure 6: Time series of BA, carbon, and auxiliary parameters’ anomalies during an extreme wildfire
event in Southeast Australia (6a) and California (6b). Grey lines indicate the parameters’ climatology,
based on the period from September 2014 to July 2020. The vertical grey bar marks the month of max-
imum BA, used here as indicator for the fire peak. Note that the y-axes are not of the same scale.

Figure 6 reveals the local behaviour of atmospheric carbon and auxiliary parameters

during two selected extreme wildfire events in more detail regarding the temporal evol-

ution. The two cases, illustrating the results of the time series analysis in exemplary

fashion, are the 2019-2020 Southeast Australian bushfires (6a) and the 2018 California

wildfires (6b). The time series of six more specific events (2015 Indonesia, 2015 Siberia,

2016 Brazilian Amazonia, 2017 California, 2017 British Columbia, 2016 Angola) can be

found in the appendix. In the case of the 2019-2020 Southeastern Australian bushfires,

a positive or negative peak is visible for nearly every parameter. The exception is CO2,

which does not reveal any particular behaviour upon the wildfire occurrence. CO, by
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contrast, exhibits a clear maximum during the fire peak, as does AOD. For LST, the

maximum occurs in December 2019, the month before the fire peak, and generally in-

creases since May 2019. TWS is very low during the fire and in the months before, but

recovers afterwards. The two vegetation indices convey a very similar pattern: they

start to decrease approximately six months prior to the fire event, and reach their low

at the fire peak (NDVI) or shortly before (L-VOD). In the case of the 2018 California

wildfires, the parameters’ covariation is more ambiguous. Only CO and AOD demon-

strate a clear peak at the fire maximum. For CO2, no particular reaction to the wildfire

is visible. There is a positive CO2 anomaly in the month before the fire maximum, yet it

is not much more pronounced than the other positive anomalies in 2018. The remain-

ing parameters do not show any specific behaviour related to fire. Unfortunately, there

are considerable gaps in the data of 2018 in California for NDVI and TWS. The other

six cases examined reveal mixed results. CO2 does not show extraordinarily high levels

upon the fire in any of the cases. CO and AOD demonstrate a clear reaction in four

out of the six cases, it might occur one month before, one month after, or during the

fire peak. Also in four cases, LST is enhanced during the fire peak. For all cases TWS

data does not cover the entire year, so that it is difficult to make a statement about

covariability. NDVI decreases during the fire peak or one month later in three out of

the six events. L-VOD does not exhibit any systematic fire response. For the eight in-

spected cases, CO2 does not demonstrate consistent covariability with the fire event,

CO and AOD generally peak around the fire maximum, LST are enhanced during and

before the fire in five out of eight cases, TWS data do not allow any conclusion, and the

vegetation indices drop in some cases, but not consistently.

Time series of BA, carbon, and the auxiliary parameters on the intermediate spatial

scales are depicted in Figure 7. It is difficult to identify interlinked behavioural pat-

terns in the Southern Hemisphere (7a). For the larger Australian region (7b), such

faint interconnections become apparent. At the end of 2019—i.e. at the time of the

extreme Southeast Australian bushfires—positive CO, AOD, and LST anomalies occur,

while TWS, NDVI, and L-VOD exhibit negative anomalies. CO2 anomalies are weakly

positive, but lie just on the threshold of one standard deviation. The same pattern

emerges more clearly when the spatial extent is decreased to Australia (7c), with CO2

anomalies just above the one standard deviation threshold. For the still smaller spatial

excerpt of Southeast Australia (7c), there is a strong fire signal in all variables but CO2.
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(a) (b)

(c) (d)

Figure 7: Time series of BA, carbon, and auxiliary parameters’ anomalies from September 2014 to July
2020 on the Southern Hemisphere (7a), in the larger Australian region (7b), Australia (7c), and Southeast
Australia (7d). Grey lines indicate the parameters’ climatology based on the depicted period. The hori-
zontal grey band represents the range from minus to plus one standard deviation. Note that the y-axes
are not of the same scale.
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Figure 8 shows the statistical distribution of significant correlation values of carbon

and BA per vegetation class. Significance implies a p-value lower than 0.05 through-

out the thesis whenever significance is mentioned. In this overview, it is apparent that

the correlations are highest for the largest spatial scale and become weaker with de-

creasing spatial scale. For the Southern Hemisphere, the median values are high (CO2:

0.683, CO2 corr: 0.758, CO: 0.461), as are the number of significant correlations (CO2:

6, CO2 corr: 6, CO: 7 out of 7). For the larger Australian region there are only two sig-

nificant values for each CO2 and CO2 corrected, while all seven correlation values are

significant for CO. Concerning CO, there is no change in significant values between the

larger Australian region and Australia, where also all correlation values are significant.

The significant correlation values for CO2 and CO2 corrected, however, increase from

two to six at this decrease in spatial scale. The median values per carbon class are in a

very similar range for both regions (CO2: 0.288, CO2 corr: 0.311, CO: 0.472 for the larger

Australian region, CO2: 0.310, CO2 corr: 0.322, CO: 0.460 for Australia). For Australia,

the spread in Pearson r values is large for all carbon species, as indicated by the outliers.

For the smallest region, Southeast Australia, there again is a drop in significant values

for all carbon classes to only one value for both CO2 and CO2 corrected, and three for

CO. The Pearson r value for CO2 and CO2 corrected are 0.259 and 0.261, respectively,

and with a value of -0.246, the median for CO is negative. In general, median correl-

ation values are high for the Southern Hemisphere and decay with decreasing spatial

scales. Median correlation values are higher with CO2 and CO2 corrected than with

CO for the Southern Hemisphere and Southeast Australia, but lower for the two me-

dium spatial scales. Correlations with CO2 corrected are slightly higher than with CO2

throughout all spatial scales.

Figure 8: Statistical distribution of significant (p < 0.05) Pearson r values for the correlation carbon-BA
per vegetation class. The numbers beneath the boxes indicate the number of significant correlations.
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A more detailed view of all correlation values per vegetation class is presented in Fig-

ure 9. We can infer from this figure which vegetation classes provide high, and which

provide low or insignificant correlations. For the Southern Hemisphere, CO2 and cor-

rected CO2 data demonstrate higher correlations for most vegetation classes but one

("tree evergreen"), whereas for the larger Australian and the Australian region, the cor-

relations with CO are higher. There are too few significant values for Southeast Aus-

tralia to draw a clear picture. Vegetation classes that systematically show higher cor-

relation values across all spatial scales and carbon classes do not exist. However, it

can be noted that "vegetation flooded" yields the most significant correlation values

(in terms of numbers) and they are generally comparatively high, with the exception of

CO in the Southern Hemisphere. "Sparse vegetation" is the class with the least signific-

ant values, as there are no significant values for CO2 and corrected CO2 on any spatial

scale. All carbon classes correlate negatively with BA in the vegetation class "crop" for

Australia. "Tree deciduous" and "tree evergreen" display comparatively high correla-

tion values for CO in the Southern Hemisphere and Southeast Australia, but in no other

case. In summary, this figure shows that the correlation of atmospheric carbon and BA

is a function of the spatial scale as well as the vegetation class.
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(a)

(b)

Figure 9: Pearson r values for the correlation carbon and BA in vegetation class (Figure 9a). Hatched bars
indicate insignificant (p ≥ 0.05) values. Below (Figure 9b) is the distribution of vegetation classes on the
Southern Hemisphere.
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(a) (b)

Figure 10: Correlation and linear regression model fit of BA per vegetation class and atmospheric carbon
anomalies exemplified by two specific cases for the Southern Hemisphere. The seasonal distribution is
mapped: green for austral spring (Sept, Oct, Nov), red for summer (Dec, Jan, Feb), orange for autumn
(Mar, Apr, May), and blue for winter (June, July, Aug).

Figure 10 illustrates what some of the better correlations of BA in vegetation class and

carbon would look like for the Southern Hemisphere. Figure 10a is the prime example

of a good linear correlation in this setting. It shows the correlation of BA in "vegetation

flooded" and corrected CO2. Figure 10b displays the correlation of BA in "shrub" and

CO, where the Pearson r value is lower and the linear component is less pronounced.

Instead, a cyclic component related to the seasons is apparent, with generally low BA

and CO values in summer and autumn, increasing BA and CO values in winter, and a

peak and subsequent decrease in BA and CO values in spring. This pattern is common

among correlations with CO in the Southern Hemisphere.
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(a)

(b)

Figure 11: Fire seasons on the Southern Hemisphere according to monthly sums of BA for the years 2019
and 2020 (Figure 11a) as well as 2017 and 2018 (Figure 11b). Depicted are fire seasons for tropical, sub-
tropical, and entire South America (tSAM, stSAM, SAM), tropical, subtropical, and entire Africa (tAFR,
stAFR, AFR), and tropical, subtropical, and entire Australia including the maritime continent (tAU, stAU,
AU).

The fire seasons as indicated by BA are presented in Figure 11 for the individual South-

ern hemispheric continental regions. Africa is the largest contributor to total BA on

the Southern Hemisphere, where BA peaks around 400’000 km2, while peaks of BA in

South America and Australia are of smaller magnitude of approximately 100’000 km2

each. The BA peak in tropical Africa in July is usually larger than the BA peak in sub-

tropical Africa, which occurs around September. The peak of the African fire season

clearly lies in the austral winter months. There is barely any BA in subtropical South

America, so that the peak in total South American BA in spring (Sept) is largely determ-

ined by the tropical BA. For the four years inspected, there is no single annual peak in

BA for the Australian and South Asian region. Maximum BA values are reached in late

spring or summer months (Oct/Nov/Dec), although values in late autumn (May/June)

may rise almost as high.

30



Discussion

5 Discussion

5.1 The Behaviour of Carbon and Auxiliary Variables in Relation to

Fires

5.1.1 The Global Scale

The fire composite analysis yields mixed results concerning systematic changes in be-

haviour of carbon and auxiliary parameters in connection to extreme fire events on the

global scale. Particularly, CO2 anomalies on the 0.25°×0.25.° grid maps do not convey

a spatial pattern related to BA. The fact that they hardly change over the three months

depicted makes it seem as if CO2 observations were generally fire-independent. Al-

though the regional anomaly aggregation grants some latitude as to the spatial distri-

bution of the fire signal in the CO2 data, the respective maps do not show clear patterns

corresponding or slightly shifted to BA patterns, which could have been explained by

transport via the general atmospheric circulation. CO and AOD data do not show a

pronounced fire signal either. LST demonstrates good accordance with BA patterns

on the high-resolution map during and prior to the fire peak, especially in the East-

ern European, Siberian, and Russian-Far-East regions. In addition, the region maps

indicate a fire-related temporal evolution, with most pronounced positive anomalies

during the fire month in all regions. This is not surprising, as this climatic variable

plays an important role in the fire build-up phase, which is often related to heat and

drought conditions (e.g. Brando et al. 2019; Jolly et al. 2015). Such co-occurring cli-

mate drivers and/or hazards are also described as "compound events" (Zscheischler

et al. 2018). TWS seems to be a little less involved in the build-up, and yet obviously

related to fires, since negative anomalies in the aggregated maps are increased dur-

ing and after the fire peak moth. Similarly, NDVI shows increased negative anomalies

during and after the fire peak. In L-VOD data a fire response is not discernible.

These results raise the question of what role the temporal evolution plays and what can

be concluded from it. Several parameters (CO2, CO, AOD, L-VOD) do not display a dis-

tinct change over time. The fundamental idea of the composite analysis is to identify

covariation based on spatial anomaly patterns which resemble the BA distribution dur-

ing the fire peak, and which strikingly differ from the anomaly patterns before and after

the peak. However, defining the fire peak at maximum BA does not imply that there are

no fires before and/or after the peak. For regions with long fire seasons, or in the case of

extraordinarily long-lasting fires, it cannot be inferred that constant patterns indicate
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fire-independence. Furthermore, there may be reasons why the anomaly peak occurs

in the month after or in the month before the fire peak, e.g. in the case of LST, as dis-

cussed in the previous paragraph. Therefore, covariation cannot be excluded based on

the temporal evolution of fire composite anomalies. Aggregating across IPCC WG1 v4

reference regions does not make fire signals in the atmospheric data more explicit, but

instead reveals clearer differences in the temporal evolution for LST, TWS, and NDVI,

which were difficult to discern in the 0.25°grid maps. In summary, a systematic beha-

viour of carbon and auxiliary variables in respect to fires is not evident from the grid

maps, while the region maps indicates a likely fire-dependent development over time

for LST, TWS, and NDVI.

5.1.2 The Local Scale

The analysis of the parameters’ temporal evolution for specific wildfire events reveals

that, on the local scale, more auxiliary parameters may covary with the fire indicator

BA. This applies perfectly to the case of the Southeastern Australian bushfires in 2019/2020.

The unambiguous fire signal in all but the CO2 variable suggests that signals might be

highly site-specific. The parameters can be distributed into two groups: TWS and the

vegetation indices show anomalously low values for several months prior to and dur-

ing the fire, and recover afterwards. Similarly, LST exhibits a gradual increase and peaks

one month before the fire maximum. This first group of parameters is apparently in-

volved in the initiation phase of fires. By contrast, AOD and CO reveal clear positive

anomalies during the fire peak month, which can be interpreted as instantaneous re-

actions to the fire. The site-specific character of fire-related behaviour in the auxiliary

parameters is further underlined by the case of the 2018 Californian fires, where CO

and AOD are the only parameters with an apparent fire response. These two para-

meters also show peaks for most of the other examined cases, though not necessarily

simultaneously with BA, but possibly one month before or one month later. Similarly,

LST is enhanced before and during the fire peak in most cases. The other parameters

do not exhibit a consistent fire response. According to the local time series analysis

CO, AOD, and LST are the variables that covary relatively reliably with fire on the local

scale.
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5.1.3 The Intermediate Scales

Striking differences emerge from the comparison of the parameters’ time series for

the intermediate spatial scales. While the variables’ behaviour cannot be associated

with fire events on the Southern hemispherical scale, this attribution is possible for

the smaller spatial scales. CO2 stands out in its behaviour from the other variables.

Most of them demonstrate an increasing fire response with decreasing spatial scale,

whereas the CO2 fire signal peaks for the Australian spatial excerpt and is not visible

at all for the smallest spatial section, Southeast Australia. Also, for CO2 the fire signal

is generally weaker than for the other variables, for which anomalies lie clearly out-

side the ±1 standard deviation range. CO2 differs from CO and AOD, the two other

atmospheric parameters, in the same ways. Their larger relative departure from back-

ground levels is likely responsible for this phenomenon. Overall, the spatial extent of

the area inspected plays a major role for the behaviour analysis of carbon and auxiliary

variables in relation to fires, particularly regarding CO2. It would be interesting to find

out if there is a generally applicable optimal scale for fire signal detection in CO2 data.

Our analyses suggest this might be the subcontinental scale, spanning a few thousand

kilometres in latitude and longitude.

Horizontal transport in the atmosphere is probably the primary cause for this depend-

ence on the spatial scale. Mesoscale atmospheric mixing typically occurs in spatial

scales of ten to a few hundred kilometres and within a few hours to a few days (Lin

2007). The synoptic scale includes mixing processes such as tropical and mid-latitude

cyclone systems that usually have an extent of a few thousand kilometres and a lifetime

of days to weeks (Rohli et al. 2015). Given that on these spatial scales horizontal atmo-

spheric transport takes place within a short time span, it does not come as a surprise

that fire signals in monthly resolved and regionally averaged CO2 data are difficult to

detect. In the case of the FCA analysis as well as the local time series and the time series

averaged across Southeast Australia, the signal may be transported away from the im-

mediate location of the fire. For larger areas it is more likely that the signal stays within

the prescribed borders, as planetary scale atmospheric mixing processes operate over

weeks to months (Rohli et al. 2015). Intra-hemispheric mixing may occur within a few

months (Seinfeld et al. 2016) and inter-hemispheric mixing within a bit more than a

year (Seinfeld et al. 2016; Patra et al. 2009). According to this hypothesis, fire signals

should increase for larger spatial scales. This is confirmed by the correlation analyses,

as discussed in section 5.2.1.
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5.1.4 Previous Work

There is a body of work investigating the relationship of climate anomalies and fires

using composite analysis on regional scales. However, these analyses focus on fire-

conducive conditions related to droughts (O’Donnell et al. 2011; Rao et al. 2019), and

to climatic teleconnections (Hessl et al. 2004; Skinner et al. 2008; Cardil et al. 2021). Ex-

cept for the computation of climatic teleconnections indices, none of the data sets in

these studies come from remote sensing. Rao et al. (2019) and O’Donnell et al. (2011)

find a link of fire occurrences to anomalously dry (and hot) conditions. Unfortunately,

this is not evident in the selected local time series of TWS data, as there are many gaps

in this data set. However, for five out of the eight cases inspected, the LST time series

support these findings. It is more challenging to establish this link between fires and

TWS/LST on the global scale by means of FCAs. For TWS, again, the gaps in the data

set obstruct a clear signal extraction. In the LST time series it is visible that often higher

than normal values extend to the months before and after the fire peak, which is also

mirrored in the FCA analysis, where the differences in anomalies before, during, and

after the peak are rather subtle. To the best of my knowledge, a fire composite study

including atmospheric CO2, CO, or aerosol observations, or vegetation indices does

not exist. Therefore, there is no reference point whether the FCAs are in a common

range, or whether the data could be refined with more elaborate methods to identify

covariations of these parameters with fires. Of the FCAs studied, CO is the most likely

to covary with BA on the global scale. Scientific literature suggests that TWS and LST

data also covary with BA, however, further data processing steps might be necessary

to confirm this for the small scale and establish it for the large scale using my meth-

ods. For the other parameters, the FCAs indicate weak or no fire-related behaviour. In

particular, the absence of a fire signal in the CO2 data not only in the FCAs, but also in

the local time series is remarkable. This complete absence on the large and small scale

makes it impossible to distinguish fire emissions from other sources of CO2 within the

data set. Moreover, CO2 data density must be sufficiently high and the covariance with

other parameters must be pronounced in order to successfully train a gap-filling al-

gorithm. Since both conditions are not fulfilled, developing a multivariate gap-filling

approach based on this work is not possible.

5.1.5 Limitations

A few limitations apply to these approaches which render the co-dependent behaviour

analysis difficult. A major hindrance affecting most data sets is the lack of data due to
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diverse restrictions, e.g. the sparse sampling density in time, cloud interference, in-

strument failure, or a gap between original and follow-on missions. Data quality of

any satellite observation is subject to sensor ageing and the skill of retrieval algorithms.

Moreover, the data sets differ in their spatial and temporal aggregation methods. A

meaningful comparison of eight variables, each with its own sources of uncertainty,

is thus not straightforward. As mentioned above, rapid atmospheric transport is very

likely a further factor hampering this type of analysis with regard to the atmospheric

variables. The carbon and AOD signals might be diluted rather quickly, depending on

the spatial scale inspected. Moreover, there are some limitations specific to the satellite

observations of CO2. Smoke plumes often obscure the measurements at wildfire loca-

tions, leading to a lack of data where atmospheric carbon enhancements are expected

to be highest (Wang et al. 2020; Mao et al. 2021). For OCO-2 CO2 observations, Con-

nor et al. (2016) report net variable errors usually < 1 ppm over the oceans and ranging

between 0.5 - 2.0 ppm over the land. Considering that enhancements expected from

large wildfires range between 1.3-2.0 ppm (Li et al. 2019; Wang et al. 2020), this error

is large and may additionally prevent reliable wildfire signal detection. Furthermore, it

is debatable whether the atmospheric column-average of CO2 values is an appropriate

variable for fire signal detection. It is possible that elevated values near the Earth’s sur-

face due to fires are masked in this way. Another source of uncertainty is rooted in the

spatial interpolation method applied to generate the multi-instrument CO2 product

used in this thesis.

5.2 Vegetation-dependent Fire Imprint in different Carbon Data

The characteristics of satellite carbon observations related to fires can be elaborated

using the box plot and the bar plot, which together present a summary of the BA-

carbon correlations. In general, the range of correlation values is large. Evidently, in

some cases the correlations reach very high values. However, if the spatial scale is too

small (with a longitudinal and latitudinal extent of a few hundred kilometres as in the

case of Southeast Australia), neither CO2 nor CO correlate well with BA. Another dis-

tinct feature emerges from the plots: corrected CO2 data produce higher correlation

values than original CO2 data. In the following paragraphs, the differences in the three

carbon data types are discussed in more detail.
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5.2.1 Characteristics of CO2 and corrected CO2

Correcting CO2 values for the vegetation signal is successful, as it enhances the BA-

CO2 correlation on every spatial scale and for all vegetation classes, with only one ex-

ception ("crop", AU). The greatest improvements are achieved for the Southern Hemi-

sphere. From the large to the smaller spatial scales the differences between CO2 and

corrected CO2 decrease. The spatial scale is generally more relevant than vegetation

classes regarding the quality of the BA-CO2 correlations, both for the original and the

corrected data. Correlation values are good for the Southern Hemisphere—noticeably

better than correlations with CO—, but disintegrate quickly towards the smaller spa-

tial scales. Atmospheric transport most likely plays a decisive role in this situation,

too, and is responsible for the fact that the location of monthly trace gas observation

and the location of trace gas origin are not necessarily the same. In the case of the

Amazonian region, for example, long-range transport, convergence into the Central

Basin, and the location of the ITCZ decisively shape the composition of the atmosphere

and consequently the biosphere-atmosphere interactions in this region (Andreae et al.

2012). Similar general and locally specific processes may influence the atmosphere

above Australia. Yet atmospheric transport alone cannot fully account for the differ-

ence in significant values between the larger Australian region including Southeast

Asia, and the smaller region of Australia only. Possibly, the special role of Southeast

Asia in the climate system is partly responsible for this discrepancy, e.g. its high sens-

itivity to changes in the El Niño Southern Oscillation. Fuller et al. (2006) published

strong correlations of fires in forested insular Southeast Asia with the Southern Oscil-

lation Index and the Niño 3.4 index. Similarly, Wooster et al. (2012) report strong pos-

itive statistical associations between the cumulative NINO3 anomaly and active fire

counts on Borneo, taking into consideration fire subseasons separated by monsoons.

These highly specific climatic processes in Southeast Asia differ from those in Australia,

which might cause conflicting correlation signals if the two regions are inspected as

one unit.

5.2.2 Characteristics of CO

The plots underline that the strength of the correlation depends heavily on the veget-

ation class for CO in the Southern Hemisphere, as can be interpreted from the large

spread. The median values for correlations with CO are of similar magnitude in all

spatial scales, except Southeast Australia. This indicates that the vegetation class con-

trols correlation scores for CO rather than the spatial scale. It suggests that fires in spe-
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cific vegetation classes—and ergo in specific regions in the Southern Hemisphere—

enhance CO values more than fires in other classes. BA in the vegetation class "tree

evergreen" has the highest correlation with CO in the Southern Hemisphere.

5.2.3 The Influence of Vegetation Classes on Carbon Observations

The vegetation classes seem to affect the carbon observations differently. In contrast to

the Southern Hemisphere maximum correlation CO-BA in "tree evergreen", the same

correlation ranges among the lowest on the two middle spatial scales. It is surpassed

by correlations with BA in "vegetation flooded", which also yields highest correlations

with CO2 and corrected CO2 throughout all spatial scales. This is interesting, as there

are no major areas of "vegetation flooded" in the Southern Hemisphere. There are

no noteworthy occurrences of "vegetation flooded" in Africa, which is a common fea-

ture of both vegetation classes with the highest correlations ("tree evergreen" and "veg.

flooded"). It suggests that biomass burning in Africa has a subordinate influence on

atmospheric carbon monoxide levels. This might be linked to Edwards et al. (2006)[’s]

findings, who analysed the interannual variability of CO on the Southern Hemisphere

using satellite observations. They demonstrate that southern Africa and South America

usually produce the largest share of CO, yet the most significant interannual variabil-

ity is caused by varying fire activity from the maritime continent and northern Aus-

tralia. The low Pearson r values of the vegetation classes "crop" and "shrub" might be

explained by the little biomass contained in these classes. In the case of crop, it can

furthermore be assumed that extended fire management measures are taken to avoid

large fires. However, low correlations for the tree vegetation classes on the largest spa-

tial scale do not support the hypothesis that low fuel vegetation classes generate low,

and fuel-rich vegetation classes generate high correlations. For the Southern Hemi-

sphere it becomes clear again that different vegetation classes achieve a very different

effect on correlations of BA with CO and on correlations with CO2, as BA in "tree de-

ciduous" reveal a strong correlation with CO2 and corrected CO2, while it represents

the minimal correlation with CO. On the other hand, BA in "tree evergreen" has min-

imal correlation with CO2 and corrected CO2, and maximal correlations with CO.

5.2.4 Seasonal Fluctuations in CO2 Levels

To understand the seasonality in the bivariate distribution of BA and carbon it is ne-

cessary to make a brief digression into the seasonal distribution of atmospheric CO2
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and CO. The main driver of seasonality in CO2 on the large scale is the net ecosystem

production (e.g. Pearman et al. 1980; Bacastow et al. 1985), which largely depends on

terrestrial vegetation. Accordingly, atmospheric CO2 values are high in winter, when

the vegetation uptake is at its minimum, and in summer they are low. The South-

ern hemispheric fire season augments this signal, as the maximum BA is reached in

winter. The reason why we have decided not to remove the seasonal signal from the

carbon data is that fires also have a seasonality, and thus contribute to this signal. For

the correlations with original CO2 data, it therefore remains unclear to what degree the

correlation is due to fires, and to what degree it is due to the seasonal vegetation signal.

This circumstance is taken into account with the correction of the CO2 values for the

vegetation signal. Expected and presented results for the seasonal CO2 distributions in

relation to seasonal BA distributions correspond well.

5.2.5 Seasonal Fluctuations in CO Levels

Like CO2 concentrations, CO concentrations are generally high in winter and lowest

in late summer (Khalil et al. 1990). This seasonal distribution is the result of the inter-

play between CO production, transport, and removal. Anthropogenic CO sources are

fossil fuel and biomass combustion, waste incineration, and industrial processes; nat-

ural CO sources are oceans, soils, plants, and forest fires. In addition, the oxidation of

CH4 and other hydrocarbons contributes a major part to atmospheric CO levels. CO is

mainly removed from the troposphere by reaction with the OH hydroxyl radical, a part

is transported and oxidised in the stratosphere, and a still smaller portion is taken up

by soils and oceans (Badr et al. 1995). The CO seasonal distribution is thus coupled to

the seasonality of OH. Reduced solar radiation, water vapour, and ozone during winter

cause OH levels to drop (Khalil et al. 1990), and subsequently, the utilisation of CO by

reaction with OH is lower, leading to the enhanced winter CO concentrations. Addi-

tionally, more stable atmospheric conditions in winter cause reduced transport to the

stratosphere through convective and turbulent processes (Seiler 1974). The seasonal

cycle of CO is also affected by the seasonality of sources (Khalil et al. 1990). This theor-

etical CO seasonal cycle is merely partly confirmed in the exemplary correlation plot.

Very low CO values indeed occur in summer and autumn, but they reach their max-

imum in spring, not in winter. This result agrees with the findings of Andreae et al.

(2012), who document strong influence of biomass burning emissions on atmospheric

CO levels over the Amazon Basin during the late dry season in austral spring, while

they report only low enhancements of CO mixing ratios during the late wet season in

austral autumn. This is in accordance with the fire season in spring for tropical South
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America. However, if biomass burning is the dominant driver of CO variability in the

Southern Hemisphere, how is it possible that maximum CO values do not occur simul-

taneously with maximum BA values in winter? Again, I hypothesize that fires in certain

regions (and vegetation classes) on the Southern Hemisphere may affect CO concen-

trations more strongly than fires in other regions (and vegetation classes). In the case

of the correlation in Figure 10b, this could mean that BA in vegetation class "shrub"

peaks in winter largely due to high values on the African continent, while "shrub" fires

do not release major amounts of CO into the atmosphere. Rather, CO values rise in

spring, when certain vegetation classes, e.g. "tree evergreen", burn in South America,

Southeast Asia, and Australia.

5.2.6 Limitations

Limited data availability confines the informative value of these analyses in general.

More specifically, the correction of CO2 data is restricted to the vegetation signal, since

suitable data records for anthropogenic, subaerial volcanic, and LULCC emissions are

not available. Nevertheless, the results demonstrate that it is worthwhile to undertake

the correction of the CO2 data in order to enhance the fire signal. While this curtailed

approach yields good results for the Southern Hemisphere, the noise in the BA-CO2

correlations on the smaller spatial scales must be further reduced by correcting for

other influences. Potentially, correlations with in this way corrected CO2 data could

equal or even exceed CO correlations. Anthropogenic point sources certainly skew

the correlations on the regional scale, as do volcanic emissions. (Schwandner et al.

2017), who investigated local CO2 sources with satellite data from OCO-2, find persist-

ent anthropogenic CO2 enhancements over the city of Los Angeles of 4 - 6 ppm, and

enhancements from the Yasur volcano (Vanuatu) eruption of 3.4 ppm. Both these sig-

nals are large compared to the maximum enhancements caused by wildfires ( 1.3-4.0

ppm) as reported by Li et al. (2019) and Mao et al. (2021). On the global scale, the CO2

flux from active crater fumaroles and plumes is estimated to be approximately 0.014 -

0.024 Gt carbon per year (53 - 88 Tg CO2 per year) as reported by Fischer et al. (2020),

yet the authors also point out that the less well described diffuse degassing via soils,

volcanic lakes and volcanic aquifers could mount to the same annual emissions. Still,

these emissions are rather low relative to recent global fire emission estimates of about

2 Gt carbon per year (Zheng et al. 2021; Wees et al. 2022). On the other hand, annual

anthropogenic emissions, including land use changes, currently exceed 10 Gt carbon

(Friedlingstein et al. 2020). Separating anthropogenic and natural land use change

emissions, as well as fire and land use change emissions is extremely difficult. Large
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uncertainties are related to CO2 flux estimates from LULCC, originating from uncer-

tainties in underlying LULCC maps, different complexity, assumptions, and set ups of

models, lack of observational constraints, and inconsistencies in common termino-

logy (Pongratz et al. 2021). Other data are also subject to great uncertainty, such as the

NBP estimates from the DGVMs, which may strongly differ from one another. A further

important constraint is that the BA-carbon correlation is a crudely simplified measure

for a highly complex interrelation. Various factors not considered in this thesis may

influence the correlation, which underlines the well-known fact that correlation does

not equal causality.

5.3 Synthesis

In combination, these results have a few implications for the estimation of fire CO2

emissions based on satellite observations. The correlation analysis underlines that

the vegetation classes play a crucial role in the determination of fire CO2 emissions.

The FCA analysis indicates that neither CO2 data nor CO data reveal a fire signal on

the global scale. According to time series and correlations, the fire response is more

pronounced in CO than in CO2 data on intermediate spatial scales. Focusing on CO

measurements can thus be an interesting alternative to estimate global annual CO2

emissions. van der Velde et al. (2021) demonstrated that CO data can be used to in-

fer CO2 emissions with the help of empirically derived vegetation-dependent CO2 and

CO fire emission factors and their ratios for the regional scale, and Zheng et al. (2021)

conducted a similar study for the global scale. However, emission factors may differ

considerably even within the same vegetation class (Wiggins et al. 2021). Furthermore,

CO to CO2 emission ratios cannot be readily extrapolated from small to large scales, as

our analyses suggest CO observations correlate better with BA on the medium scales,

yet on the large scale CO2-BA correlations perform much better. For these reasons I

would take the results of the studies mentioned above with caution. All the more im-

portant is the development of an approach to constrain fire CO2 emissions based on

observations.

The greatest challenge on the path to constraints on global fire CO2 emission estimates

using satellite CO2 observations is their low temporal sampling density. This poses a

problem also for other research purposes, which has been recognised in the scientific

community and subsequently, there have been some attempts to overcome this chal-

lenge. Indeed, one such attempt is the the Multi-Instrument Fused bias-corrected CO2

Version 3 data set that I use for my work. The two observational CO2 data sets from
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OCO-2 and GOSAT were combined, which is a gain in information. However, the gaps

in the individual data sets translate to the fused product, so that it is still not appro-

priate for medium scale studies. A similar approach was taken by Jing et al. (2014) and

Wang et al. (2014), who merged GOSAT and SCIAMACHY CO2 measurements. Various

other data fusion approaches exist that aim to further enhance the CO2 data dens-

ity for both the OCO-2 as well as the GOSAT data sets using geostatistical interpola-

tion (Liu et al. 2012; Hammerling et al. 2012; Tadić et al. 2015; Watanabe et al. 2015;

Zeng et al. 2017; Chevallier et al. 2017; Zammit-Mangion et al. 2018). Particularly note-

worthy is the work of Bhattacharjee et al. (2020), who combined land use and land

cover (LULC) information and two auxiliary emission estimates (the Open-source Data

Inventory for Anthropogenic CO2 and the Emissions Database for Global Atmospheric

Research) separately to regionally model missing CO2 values for the OCO-2 data set.

They quantified the terrestrial distribution of LULC and their impacts on local CO2 pat-

terns and inserted them with each of the auxiliary emission data sets into a co-kriging

approach. Prediction errors with this multivariate kriging method were lower than

for the baseline alternatives using univariate kriging. Another distinct advantage of

this approach is its ability to model high-emission hotspots outside the OCO-2 swath.

This study highlights the potential of multivariate co-kriging methods for CO2 predic-

tions. Recently, Jin et al. (2022) published a novel global ensemble CO2 data set with

3-hourly resolution, covering the period from 2003 to 2020. They smoothed GOSAT-1/-

2, SCIAMACHY, OCO-2/3, and TanSat data with a 30-day time window, filled missing

values according to the Total Carbon Column Observing Network (TCCON) data, and

merged the satellite data sets applying maximum likelihood estimation and optimal

interpolation methods. The validation resulted in high correlations with the TCCON

and the World Data Centre for Greenhouse Gases data sets (r=0.96, RMSE=2.62 ppm

and r=0.82, RMSE=6.75 ppm, respectively). This data set provides a great opportun-

ity for future carbon cycle studies, yet I consider the RMSE values still too high for

fire emission research. With the emergence of data sets that globally map CO2 val-

ues at a high temporal resolution, satellite-based fire emission estimates may become

more realistic. However, accurately and precisely estimating CO2 values where obser-

vations are missing remains a major issue. (Byrne et al. 2022, preprint, currently under

review), who tested the suitability of OCO-2 data for simulating country-specific ter-

restrial carbon stock changes, conclude that improvements to atmospheric CO2 inver-

sion systems—as well as ground-based and aircraft-based CO2 measurements—will

be crucial to ameliorate top-down CO2 budgets. In addition to inverse modelling, gap-

filling algorithms could play an important role in the future. Yet these approaches blur

the boundary between model estimates and measurement-based estimates, since part
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of the measurements will be derived based on a number of assumptions. Therefore,

the two methods may be complementing, but they cannot be clearly contrasted.

Previous case studies provide evidence that satellite-derived CO2 emissions can be

attributed to fires on the local scale with the support of sophisticated atmospheric

transport and inversion models. Similarly, global fire emission estimates exist, and

satellite-based CO2 observations reproduce the features of ground-based CO2 obser-

vations for the global scale very well, such as the positive trend and the seasonal fluc-

tuations (Crowell et al. 2019). Thus, CO2 emissions in relation to fires can be examined

on the local as well as the global level. However, for the intermediate scales in between,

ranging from the regional to the continental to the hemispheric scale, this does not ap-

ply. At the intermediate scales, data availability is insufficient and their accuracy is too

low for fire CO2 emission and attribution research. Closing this gap would greatly im-

prove the branch of research. To this end, ideally in the coming years or decades more

satellite missions will be launched, aiming to observe atmospheric carbon globally, es-

pecially CO2. Even though the temporal resolution would still be rather low, this would

improve data availability considerably, and broaden the basis for fused products, both

of which are highly necessary to promote fire emission research.

Finally, I would like to address some important points that have been raised recently

in the discussion about fires and associated greenhouse gas emissions. Stenzel et al.

(2019) argue that regional fire emission models grossly overestimate emissions from

US forest fires by about 60% - 80% compared to field observations, based on the mis-

conception that the majority of the trees are burned to the ground. They propose "real-

istic" parameterisation of biomass combustion completeness and underline the need

for accurate quantification of standing dead trees. For appropriate model results not

only biomass combustion should be represented as realistically as possible, but also

the area burned. As mentioned in the introduction, a substantial part of the uncer-

tainty in fire emission inventories is due to the underlying active fire detection data,

which includes fire radiative power and BA data. Unfortunately, this uncertainty can-

not be eliminated with an observation-based approach, as determining active fires is

also essential there. Brennan et al. (2019) estimated the theoretical uncertainties for

three global remotely sensed BA products, among which is the ESA FireCCI50 data set,

the predecessor of the FireCCI51 data used in this thesis. They found relative uncer-

tainties on mean global BA of 4% - 5.5%, and emphasised that these can be higher

regionally. They mount to 8% - 10% in Africa and Australia, and are larger in regions

with smaller annual BA. This deficit is compounded by the non-detection of small fires,

which burn only a fraction of a satellite pixel. Ramo et al. (2021) assessed the relevance
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of small fires for fire carbon emissions, comparing high-resolution (20 m) multispec-

tral instrument images from Sentinel-2 and moderate-resolution (500 m) images from

MODIS. They detected 80% more BA with Sentinel-2 than with MODIS images and at-

tribute this difference mainly to small fires. They conclude that current fire emission

estimates based on MODIS data underestimate emissions by 31% - 101%. Considering

that the BA product in this thesis has a coarse spatial resolution of 0.25° ( 28’000m at

the equator), this limitation becomes even more serious.

6 Conclusion & Outlook

The goal of my Master thesis was to fathom the potential of remotely sensed carbon

measurements for carbon cycle studies and CO2 emission attribution to fires on global

to local scales. This study illustrates that whether carbon data reveal a fire signal de-

pends on the analysis method as well as on the spatial scale, and vegetation class

burned, and that there are differences for CO and CO2 observations. On the one hand

there is a strong CO2 fire signal on the Southern Hemisphere scale according to the

correlation with BA, but it disintegrates with decreasing spatial scales. Time series ana-

lyses show a weak CO2 fire signal for the two continental scales, but not for the South-

ern Hemisphere, nor the regional and local scales. With the FCA analysis, a carbon fire

response on the global scale could not be identified. CO data reveal a strong fire sig-

nal on the local scale. In addition to CO, AOD and LST covary relatively reliably with

BA on the local scale, yet there is no unambiguous sign of co-evolution on the global

scale. The absence of a fire signal in the CO2 data on the global scale and the weak

evidence for fire-coupled behaviour in other parameters inhibits the development of

a multivariate gap-filling algorithm building on this work. Only if CO2 data density

can be enhanced, a global fire signal is then detectable, and co-evolutions of auxiliary

variables can be identified, the potential of a gap-filling approach could be tested.

The BA-carbon correlations allow for further differentiation between CO2, corrected

CO2, and CO data and the traces that fires leave in them. CO2 and corrected CO2 data

are, naturally, closely related and so are their correlations with BA. It is evident that

correcting for the vegetation signal is valuable as it increases the correlation in virtu-

ally every case. The CO2 and the CO data both demonstrate seasonal fluctuations. The

seasonal fluctuations in the CO2 data are generally consistent with the seasonal BA

distribution, i.e. the maximum values occur simultaneously. This is not necessarily

the case for seasonal CO fluctuations on the hemispherical scale, which indicates that
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fires in certain regions and vegetation classes have a greater impact on atmospheric

CO levels than fires in other regions. When comparing CO2 and CO data, it appears

that CO2-BA correlations are mainly a function of the spatial scale, while CO-BA cor-

relations seem to be driven primarily by BA per vegetation class, and only secondarily

by the spatial scale. They are higher than CO2-BA correlations for the two medium spa-

tial scales, i.e. the larger Australian region and Australia. CO2 and CO observations are

affected differently by BA in vegetation class, which is further illustrated by conflicting

maximum and minimum correlation values.

If my analyses were to be repeated I would suggest the following refinements. The ana-

lyses of fire-dependent variable behaviour would benefit greatly from higher temporal

resolution data, ideally with daily observations. If no measurements are available with

this resolution, temporal interpolation methods such as downsampling might be ap-

plied and the set of auxiliary parameters augmented. Experimenting with time-lagged

analyses could also prove successful, as peaks in CO, AOD, and LST did not always oc-

cur at the same time as the fire peak. Regarding the correlation analyses, a global scale

BA-carbon correlation could be interesting, to see if it yields similarly good results as

the hemispherical correlation. If there was a way to not only correct CO2 data for the

vegetation signal, but also in a reliable form for other influences, the fire signal in the

data might be further enhanced. Correction of the anthropogenic signal should take

priority, followed by corrections of the volcanic and lastly the LULCC signal. Moreover,

it would be interesting to see how the analyses of the Multi-Instrument Fused bias-

corrected XCO2 product compare to those of other products, e.g. to the one described

by Jin et al. (2022). As this product covers the period from January 2003 to August 2020,

it is moreover suitable for studying the IAV of CO2, which is a highly relevant topic, es-

pecially in relation to fire emissions. It would be exciting to compare the IAV of CO2

to that of BA and CO. Specifically, it would be interesting to find out if the patterns in

Southern Hemisphere IAV of CO as identified by Edwards et al. (2006) are also present

in the IAV of CO2.

Both, CO2 and CO satellite measurements feature different deficits. Constraining CO2

emissions from fire through remote sensing observations thus remains a challenge,

also for the intermediate spatial scales between the local and global scales. This is

particularly revealing because the remote sensing products were specifically designed

for observations at these scales. The biggest hurdle to overcome in the process to-

wards observational constraints on fire CO2 emissions is the lack of accurate global

CO2 observation estimates. However, there are ambitious aspirations for future devel-

opments in this direction. Most prominently, ESA and EUMETSAT are currently devel-

44



Conclusion & Outlook

oping six Sentinel expansion missions, one of which is the Copernicus Anthropogenic

Carbon Dioxide Monitoring (CO2M) mission. CO2M is planned as a two-satellite mis-

sion, with the option of a third satellite, and focuses on monitoring anthropogenic CO2

emissions. The three satellites are expected to supply global observations within two

to three days by 2026 (Janssens-Maenhout et al. 2020). An American nonprofit public-

private partnership called "Carbon Mapper" also pursues the goal of providing more

complete, timely, and precise CO2 satellite observation in launching a multi-satellite

constellation in 2025 (Schingler 2022). With such additional satellite missions and im-

proved retrieval algorithms the availability of accurate CO2 data will rise. This offers

a great opportunity for fire emission research and increases the chances for a solid

observation-based emission estimation on different spatial scales.
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7 Data Availability

Most data sets used in this thesis are freely available online. L-VOD (Wigneron et al.

2021) and GRACED data (Dou et al. 2021) were kindly made available by the authors

upon request. XCO2 data is distributed via the Goddard Earth Sciences Data and In-

formation Distribution Center (GES DISC, Nguyen et al. 2022). CO data is available

via the same platform (AIRS project 2019). BA data can be obtained e.g. via the UK

Centre for Environmental Data Analysis (CEDA, Chuvieco et al. 2018). NASA distrib-

utes AOD data and other CERES products online at https://ceres.larc.nasa.gov/data/.

LST is also provided by NASA via the Land Processes Distributed Active Archive Center

LP DAAC (Wan et al. 2015), and TWS data can be retrieved via Physical Oceanography

Distributed Active Archive Center (PO DAAC, Wiese et al. 2019). NDVI data can also

be obtained via NASA’s LP DAAC (Didan 2021). NBP data from the TRENDY project is

available at https://blogs.exeter.ac.uk/trendy/protocol/.
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Appendix

(e) (f)

Figure 12: Time series of BA, carbon, and auxiliary parameters anomalies during an extreme wildfire
event in California (12a), and British Columbia (12b), Santarém (Brazil, 12c), Indonesia (12d), Siberia
(12e), and Angola (12f). Grey lines indicate the parameters’ climatology, based on the period from
September 2014 to July 2020. The grey bars mark the month of maximum BA, used here as indicator
for the fire peak. Note that the y-axes are not of the same scale.
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