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Abstract

In this project, compound hot and dry summers over a region are defined as

summers where the average temperature exceed the 90th percentile and at the same

time the average precipitation fall below the 10th percentile of the 20th century sum-

mer climatology over the region. Such compound extremes pose disproportionate

and uncertain future risk to both society and the environment. The dependence

between the drivers of compound events, in this case the mean summer temperature

and precipitation, could significantly affect the future occurrence probability of such

hot and dry summers. We constrain the projections of the occurrence probability for

compound hot and dry summers, from 40 different CMIP5 global climate models,

by a dependence constraint between the inter-annual summer means of temperature

and precipitation. Statistical comparison of independent correlations and empiri-

cal copulas are employed for constraining the models. No significant difference is

observed for the mean probability projection of compound hot and dry summers

between the constrained model ensemble and the all model ensemble for the 21st

century projections under the RCP 8.5 scenario. Some significant difference is ob-

served for the 20th century. However, the regions where the difference is significant

also spatially correlate with regions of uncertain data due to lack of observation

stations for this period.
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1 Introduction

The 2018 growing season in Germany saw record breaking high temperatures and low

precipitation (Zscheischler and Fischer (2020)). This concurrent hot and dry growing

condition caused severe impacts to the country’s agriculture production and its forests

(Buras et al. (2020)). The disastrous event, part of many such events across northern

hemisphere mid-latitudes that occurred in 2018, manifested due to a hemisphere-wide

wave-7 circulation pattern (Kornhuber et al. (2019)). However, researchers have shown

that it is unlikely for such events to have occurred without human-induced climate change

(Vogel et al. (2019)). One may be tempted to think that such simultaneous occurrences of

record breaking hot conditions and record breaking dry conditions are a low probability

event. However, Manning et al. (2019) have shown that the probability of extremely

long-duration dry periods co-occurring with extremely high temperatures has significantly

increased for the present (1984–2013), compared to the reference period (1950–1979), for

most parts of Europe. When such extremes co-occur, they often transcend the capacity

of underlying systems to cope, leading to disasters (Zscheischler et al. (2020)). Therefore,

it is important to understand, analyse, and accurately predict the occurrences of such

concurrent extreme events, also referred to as compound events.

A weather or climate event can be categorised as a compound event, when there are

multiple climate drivers (such as cyclones, cold fronts, stationary high-pressure systems

etc.) and/or hazards (such as droughts, heat waves, floods etc.) contributing to the

associated potential risk. Here, the potential risk could be societal, environmental, or

both (Zscheischler et al. (2018)). Many studies have shown that the impacts associated

with compound events are often disproportionately higher than those associated with

individual climate/weather extremes (Martius et al. (2016); Zscheischler et al. (2014);

Leonard et al. (2014)). For example, the co-occurrence of a heatwave and a drought over

land, i.e. a compound hot and dry event, can potentially lead to increased tree mortality

in the affected region (Allen et al. (2010)), can cause increased propensity to wild fires

(Flannigan et al. (2009)) and adversely affect the vegetation health to a significant degree

(Ciais et al. (2005)). These make the compound hot and dry event an important factor

4



while considering the land carbon cycle. Being able to accurately project the probability

of a hot and dry event occurring in the future, therefore, is of great significance for the

environment, agriculture, human-habitability and the carbon budget.

Moreover, it has also been observed that in the warmest 3 months over land (”sum-

mer”), the average temperature and precipitation show a negative inter-annual correlation

pattern, over many regions of the planet (See Fig.1). This suggests that the occurrence

probability of compound hot and dry summers could be higher in these regions, than if

temperature and precipitation were independent of each other. This directly translate to

a higher future risk. Therefore, in this project, we aim to develop a constraint based on

the inter-annual dependence between average summer temperature and average summer

precipitation, based on the observational data. The constraint is computed over each

grid point on the entire land domain (except for Antartica). This ’dependence constraint

based on the observational data’ is then used to constrain an ensemble of single runs from

40 ‘Coupled Model Intercomparison Project - Phase 5’ (CMIP5) global climate models.

The subset of CMIP5 models, at each grid point, containing only those models that show

’comparable’ dependence between temperature and precipitation as in the observational

data, are referred to as the ensemble of constrained models, or simply ”good models”.

Subsequently, we analyse the mean likelihood of compound hot and dry summers occur-

ring, as projected by the ensemble of all CMIP5 models and the ensemble of ’good’ CMIP5

models at each grid. This comparison is carried out for the 20th century projections (with

historical forcing) and the 21st century projections (under the ’Representative Concen-

tration Pathway 8.5’ or ’RCP 8.5’ warming scenario). Such an analysis can provide a

global insight, into the association between how well the CMIP5 models capture the ob-

served dependence of temperature and precipitation, and their corresponding projections

for the frequency of compound hot and dry summer occurrences in the future. This, as

we observed, has important implications in terms of future risk reduction and planning.
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Figure 1: Inter-annual correlation between yearly averaged temperature and
precipitation over the warmest 3-month period (summer) based on the clima-
tology of each grid point
Figure shows average of the correlations based on the observational data sets CRU
(1901–2013), Princeton (1901–2012), and Delaware (1901–2012). Regions in grey indicate
Oceans and where correlations are insignificant at the 0.05 level in at least 2 data sets
(Plot from Zscheischler and Seneviratne (2017))

Conventional research on hot and dry extremes have often focused on univariate statis-

tics, i.e. either that of temperature or precipitation. For example, there have been studies

that analyse the spatial/temporal patterns of dry/wet weather while completely ignor-

ing the temperature component (Martin-Vide and Gomez (1999); Singh et al. (2014)),

and vice versa (Diffenbaugh and Ashfaq (2010); Salameh et al. (2019)). However, of

late, researchers have started looking into such extremes as compound events involving

concurrent extremes of multiple climatic variables, and using methods of multivariate

statistics to study them. There are many examples for such studies in the recent years

from across the globe such as, from the USA (Mazdiyasni and AghaKouchak (2015)), from

the Mediterranean (Vogel et al. (2021)), from Brazil (Geirinhas et al. (2021)) and from

India (Sharma and Mujumdar (2017)). While many such researches have only used obser-

vation data (or reanalysis data) to analyse past extremes, there are also studies present,

which made use of model projections into the future for computing risk associated with

compound extremes (Lemus-Canovas and Lopez-Bustins (2021), p.1).

This master thesis project is partly inspired by one such study conducted by Zscheis-
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chler and Seneviratne (2017). In their study, using copula analysis on CMIP5 projections

of temperature and precipitation, Zscheischler and Seneviratne (2017) showed that the

occurrence frequency projections of compound hot and dry summers increased substan-

tially, from the historical period to the 21st century, over many land regions of the world

(even up to 10 folds in some cases). Moreover, using simulated temperature data along

with observations and CMIP5 projections, Zscheischler and Seneviratne (2017) were also

able to demonstrate that the dependence between temperature and precipitation, marked

by negative correlation in most regions, contributed towards increasing the occurrence fre-

quency of compound hot and dry summers for the historical period as well as the future.

This implies that the failure to faithfully incorporate the dependence between tempera-

ture and precipitation could run the risk of underestimating the future risks associated

with hot and dry compound extremes (Zscheischler and Seneviratne (2017)). Following

this, in a recent study, Zscheischler and Fischer (2020) constrained CMIP5 models using

an observational constraint on the dependence between temperature and precipitation

over western Germany. The authors noted that the constrained CMIP5 models tend to

project a slightly lower return period for a compound hot and dry growing season such

as the one in 2018 (Zscheischler and Fischer (2020)).

Figure 2: Simplified representation of mechanisms determining summer cor-
relation between temperature and precipitation over land: cloud-atmosphere
interactions are represented by red and land–atmosphere feedbacks by blue
(from Berg et al. (2015))
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Berg et al. (2015) have suggested that a combination of atmospheric and surface pro-

cesses lead to the widely observed inter-annual anti-correlation between summer mean

temperature and precipitation over land (see Fig.2). The land - atmosphere feedback

happens locally, when a decrease in precipitation results in the reduction of moisture

content in soil, which increases the latent heat flux. This will result in enhanced sensi-

ble heating at the surface and therefore, causing higher near surface temperatures. Due

to the same reasons, high precipitation results in reduced near surface temperatures.

The cloud - atmosphere feedback stems from the simple association that lack of cloud

cover (or precipitation) results in increased incoming shortwave radiation, which leads to

higher surface temperatures. For this phenomenon too, the converse holds true as well

(Berg et al. (2015)). Based on the analysis of different models belonging to the ’Global

Land–Atmosphere Coupling Experiment of CMIP5’ (GLACE-CMIP5), Berg et al. (2015)

observed that the CMIP5 models show considerable differences with respect to one an-

other, in terms of incorporating the physical processes that govern the dependence be-

tween temperature and precipitation. Therefore, constraining the CMIP5 models based

on the observed dependence between temperature and precipitation is a meaningful ex-

ercise, in that we may potentially also be constraining the models, at each grid point, for

the underlying physical feedback mechanism/ processes that govern the dependence.

1.1 State of knowledge and research questions

Though not specifically referred to as compound events, the consequences of multiple

extreme events co-occurring have long been inferred by climate scientists. However, in the

context of the ’Intergovernmental Panel on Climate Change’ (IPCC), the chapter titled

’Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adap-

tation’ in SREX report (Field et al. (2012)) was the first to distinctly address compound

events as having great importance in risk assessment. The definition coined by Field

et al. (2012) for compound events was further generalised by Zscheischler et al. (2018)

into the now widely accepted definition, introduced earlier. The research into compound

events and their impacts today have grown exponentially, and exists in the intersection
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of many disciplines such as climate-impacts research, statistics, computer science etc.

(Zscheischler et al. (2020)). This is a testament to the breadth and complexity of the

umbrella subject. Although, despite being a thriving field today, many methodologies

employed in compound events research, can still considered to be in their developing

stages (Zscheischler et al. (2020)).

It is in such circumstances that, under the European Cooperation in Science and Tech-

nology (’COST’) action ’CA17109’, ’Understanding and modeling compound climate and

weather events’ (’COST-DAMOCLES’), was instituted in 2018. The key objective of

COST-DAMOCLES is to overcome the current limitations in climate and impact mod-

elling of compound events, which makes designing and implementation of appropriate

adaptation/mitigation strategies a complicated affair (DAMOCLES-MoU (2018)). Fol-

lowing the aims outlined by COST-DAMOCLES in achieving the key objective, climate

scientists have made huge strides in standardising the domain of compound events re-

search. A notable mention is the 2020 paper titled ’A typology of compound weather and

climate events’ (Zscheischler et al. (2020)). In this paper, the authors have categorised

compound events into the following four broad types;

• Multivariate compound events : Where multiple drivers and/or hazards co-

occur within the same geographical boundaries

• Temporally compounding events : Where hazards occurring in succession lead

to an impact

• Preconditioned compound events : Where existing preconditions of weather/climate

worsen the impacts of a novel hazard

• Spatially compounding events : Where impacts are worsened by co-occurrence

of hazards in multiple connected geographical regions

Following the classification, attempts are also being constantly made in exploring,

standardising and introducing novel methodologies for studying each type of compounding

events, as mentioned above. The workshop on ’Compound climate events and extremes
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in the midlatitudes’ conducted online from 7–9 September 2020 (Messori et al. (2021)) is

one such example among many.

In this project, we look at compound hot and dry summers as multivariate compound

events, over each grid point on land. Following Zscheischler and Fischer (2020), we define

a compound hot and dry summer as a summer where the average temperature exceed

the 90th percentile and at the same time the average precipitation is below the 10th

percentile, with respect to the 20th century summer climatology over the grid point. The

methodologies used in this study are motivated by Zscheischler and Seneviratne (2017)

and Zscheischler and Fischer (2020). The observation was made by Zscheischler and

Fischer (2020) that the ensemble of CMIP5 models which show ’comparable’ dependence

between temperature and precipitation, to that shown by observation data in the historical

period (i.e. ’good models’), tend to project lower mean return periods for a hot and dry

growing season such as the 2018 one, over Germany, compared to the all model ensemble.

This led us to the following research questions for this project.

• On a global scale over land, will ’good’ CMIP5 models project a higher occurrence

frequency for compound hot and dry summers on average, compared to an ensemble

of all the CMIP5 models?

• How will the difference between mean frequency projections of ’good’ CMIP5 models

and all the CMIP5 models vary in the historical period without warming (1901-2000)

compared to the future period under the warming scenario of RCP 8.5 (2001-2100)?

• Will the interpretations vary across geographical regions (in particular grid points),

depending on whether the corresponding dependence between mean summer tem-

perature and precipitation over the region is anti-correlation or not?

To address these questions, we generalise the observation made by Zscheischler and

Fischer (2020) over Germany, to arrive at the following hypothesis.

Hypothesis : In general, over land regions where the mean summer temperature and pre-

cipitation are anti-correlated, the good models will, on average, project higher occurrence

frequency for compound hot and dry summers compared to the all model ensemble. This
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difference will be more apparent in the 21st century, under RCP 8.5 warming, compared

to the historical period with no warming (1901-2000).

If shown to be valid, this hypothesis will have significant implications for future risk

assessment and planning, with respect to compound hot and dry events. Moreover, such

an analysis can be replicated for many other compound events. The insights could be

further incorporated into testing skills of CMIP models in predicting such events, by

taking dependence between the variables into account. This is an aspect, which often

gets overlooked while testing the skills of models. For e.g: (Ridder et al. (2021)).

2 Data

This project uses two primary climate variables for its analysis. One, the monthly

means of daily mean surface temperatures, which is measured/projected as the air tem-

perature from 2 metres above ground. This is referred to as ’2m air temperature’ or

simply as ’temperature’ in this thesis. Two, total hydrological precipitation (dry + wet)

recorded/projected per month. We refer to this as ’precipitation’.

The variables of both temperature and precipitation are utilised from observation

based dataset named the ’Climatic Research Unit gridded Time Series Version 4’ (”CRU

TS” or simply ”CRU” [1901-2019]). The variable of precipitation is also utilised from the

observation based data set named the ’Global Precipitation Climatology Centre Clima-

tology (CLIM) V2020’ (”GPCC CLIM” or ”GPCC” [1901-2019]). And the time series of

global mean surface temperature change is utilised from the observation based data set

named the ’Goddard Institute for Space Studies Surface Temperature Analysis version 4’

(”GISTEMP v4” or ”GISSTEMP” [1880-Present]).

Similarly, the variables of both temperature and precipitation are also utilised from

’The European Centre for Medium-Range Weather Forecasts twentieth century reanalysis’

(”ECMWF ERA 20C” or ”ERA 20C”[1901-2010]) dataset and from 40 different ’Coupled

Model Intercomparison Project Phase 5’ (”CMIP5” [1901-2100]) global climate models.

A short introduction to each of these datasets are provided below.
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2.1 Observation based datasets

2.1.1 CRU TS [1901-2019]

The ’Climatic Research Unit gridded Time Series Version 4’ (”CRU TS” or simply

”CRU”) is an observation based dataset that provide monthly data over all land domains,

barring Antarctica, for the period 1901-2019. The data is available for the following 7

variables; temperature (minimum, maximum and mean), volume of precipitation, vapour

pressure, number of wet days and cloud cover. The resolution of data is in 0.5° latitude by

0.5° longitude grid. CRU TS uses 7 principal sources to collect observation data and then

converts them into anomalies first. Later these anomalies are transformed into 3 primary

variables. The final data products are obtained through a process named angular-distance

weighting (ADW). However, it is cautioned that CRU TS may not be the best dataset

for exploring the global/regional climate (change) trends. This is so because CRU TS is

designed primarily with the overarching objective of providing data over all land domain.

This forces it to patch data in certain regions using various techniques. However CRU

TS ”can be used” for the said purpose, as extreme scientific accuracy and correction

methodologies are employed in the production of the data.

Reference for this section : Harris et al. (2020)

2.1.2 GPCC [1901-2019]

The ’Global Precipitation Climatology Centre Climatology (CLIM) V2020’ (”GPCC

CLIM” or ”GPCC”) is one of the four precipitation products from the the Global Precip-

itation Climatology Centre (GPCC). High resolution monthly global precipitation data,

for the period 1901-2019, obtained from ground based rain gauge measurements are made

publicly available since 1989. The resolution of data is in 0.5° latitude by 0.5° longitude

grid as well.

Reference for this section : Becker et al. (2013)
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2.1.3 GISSTEMP [1880-Present]

The ’Goddard Institute for Space Studies Surface Temperature Analysis version 4’

(”GISTEMP v4” or ”GISSTEMP”) provides anomalies in annual global mean surface

temperature from 1880-Present, with respect to the 1951-1980 annual mean global surface

temperature. They collect observation data from multiple sources around the planet and

process them to provide multiple temperature data sets.

References for this section : GISTEMP-Team (2021), Lenssen et al. (2019)

2.2 ERA 20C reanalysis datasets [1901-2010]

’The ECMWF twentieth century reanalysis’ (”ERA 20C”), is the primary outcome of

the ’European Reanalysis of Global Climate Observations Project’ (ERA-CLIM). ERA

20C relies on an ’Integrated Forecast System’ (IFS) of the ECMWF. The IFS consists

of two main components, i.e. an atmospheric general circulation model (AGCM) and

a variational analysis scheme. These two components, usually employed in short range

forecasts, are adapted accordingly for ERA 20C analysis spanning well over a century

(1901-2000). As observational input, ERA 20C directly assimilates only surface pressure

(over land and ocean) and wind velocity (only above the ocean). Also the surface tem-

perature observations are assimilated through forcing (over land and ocean). No other

observations are directly assimilated. The Final output of ERA 20C provide high res-

olution data for numerous variables, including temperature and precipitation, over all

domains (land and ocean). The data is made publicly available on monthly as well as

daily resolutions for the 20th century (1901-2010) (ECMWF (2021)).

Reference for this section : Poli et al. (2016)

2.3 CMIP5 global climate model datasets [1901-2100]

The ’Coupled Model Intercomparison Project Phase 5’ (”CMIP5”) refers to a set of co-

ordinated experiments in climate modelling, by 20 different modelling groups from around

the globe. The aims of CMIP5 was to better the understanding of climate processes and
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to facilitate improved climate projections for the future. And most importantly, to ad-

dress the pertinent scientific queries raised by IPCC AR4. CMIP5 was meant to provide a

framework for coordinating the efforts in global climate modelling from 2008-2013. There

are in total 40 different global climate models (GCMs) belonging to the CMIP5 project.

We utilised single runs of monthly mean temperatures and precipitation from all the 40

CMIP5 GCMs for this project. The names of all the GCMs in CMIP5 are summarised

in Table.1. These models provide high resolution projections of several variables for the

20th century, till 2005, with historical forcing. The future projections, from 2006-2100,

takes RCP 8.5 warming scenario into account. Presently, CMIP Phase-6 (CMIP6) has

succeeded CMIP5 in its role of coordinating the global climate modelling efforts.

Table 1: List of CMIP5 global climate models used in this project

Sr.No Model Name Sr.No Model Name Sr.No Model Name Sr.No Model Name

1 ACCESS1-0 11 CMCC-CM 21 GISS-E2-H 31 IPSL-CM5B-LR
2 ACCESS1-3 12 CMCC-CMS 22 GISS-E2-H-CC 32 MIROC-ESM
3 bcc-csm1-1 13 CNRM-CM5 23 GISS-E2-R 33 MIROC-ESM-CHEM
4 bcc-csm1-1-m 14 CSIRO-Mk3-6-0 24 GISS-E2-R-CC 34 MIROC5
5 BNU-ESM 15 EC-EARTH 25 HadGEM2-AO 35 MPI-ESM-LR
6 CanESM2 16 FGOALS-g2 26 HadGEM2-CC 36 MPI-ESM-MR
7 CCSM4 17 FIO-ESM 27 HadGEM2-ES 37 MRI-CGCM3
8 CESM1-BGC 18 GFDL-CM3 28 inmcm4 38 MRI-ESM1
9 CESM1-CAM5 19 GFDL-ESM2G 29 IPSL-CM5A-LR 39 NorESM1-M
10 CMCC-CESM 20 GFDL-ESM2M 30 IPSL-CM5A-MR 40 NorESM1-ME

Reference for this section : Taylor (2009)

3 Methods

The analysis part of this project involved three components. Namely, developing the

dependence constraint and constraining the CMIP5 models, comparing the mean fre-

quency projections of compound hot and dry summers between the constrained (’good’)

model ensemble and the all model ensemble, and exploring other factors such as sta-

tion number constraints, uncertainty in correlation measurements etc., which may have

influenced the observed results. The three stages are explained in three subsections below.
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3.1 Methods : Observation based dependence constraints

To begin with, there were global monthly data of temperature and precipitation avail-

able from observation based CRU (1901-2019), reanalysis based ERA-20C (1901-2010)

and projections from 40 different CMIP5 models (1901-2100). We also had monthly data

of precipitation from observation based GPCC (1901-2019)(See section.2). In the first

step, we homogenised the field of all data sets by re-gridding them to a 2.5° latitude

by 2.5° longitude reference grid, by using bilinear-interpolation method. The ’remapbil’

operator in command line ’Climate Data Operators’ (CDO) was employed to achieve this

(Schulzweida et al. (2006)). CRU and GPCC only provide data over land domain, except

for Antartica. Therefore, in the second step of homogenising data fields, we masked all

other grid points in ERA 20C and CMIP5 model datasets of temperature and precipita-

tion, where data was unavailable in CRU (this mainly include the Oceans and Antartica).

Since our analysis is focused only on land domain, this was convenient for the study.

The next step was to identify the warmest three months (summer) for each grid point

on land, where data is available, based on the 1901-2019 temperature climatology from

the CRU data. Once those 3 months were identified at each grid, the average ’summer

temperature’ and average ’summer precipitation’ were computed for each year, at each

point, using that information. For example, suppose Mar-Apr-May were found to be

the warmest 3 months over some grid point in Southern India, based on the 119 year

CRU climatology at that grid point. We would then retain only the average value of

temperature and precipitation over Mar-Apr-May, for each year from 1901-2019, over

that grid point. This was performed for all datasets of temperature and precipitation

(Note: Summer was determined by CRU climatology for the other datasets as well). In

the end, we were left with 119 year long time series of mean summer temperature and

mean summer precipitation, over each grid point, from the CRU (1901-2019), 110 year

time series from the ERA 20C (1901-2010) and 200 year time series for each of the 40

CMIP5 models (1901-2100). GPCC too produced a 119 year time series for precipitation

(1901-2019).

Then, we performed linear regression on both mean summer temperature and mean
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summer precipitation series, over all grid points, against global annual mean surface

temperature time series. This was done in order to eliminate any warming trends in the

data. We wanted to eliminate warming as it would influence the inter-annual dependence

between the variables. The annual global mean surface temperature data was used from

GISSTEMP to de-trend the CRU and the GPCC series of summer mean temperature

and precipitation. For ERA 20C and each of the CMIP5 models, annual global mean

temperatures were computed from the temperature data of the models themselves, as the

field mean. We employed ’fldmean’ operator from CDO to achieve this (Schulzweida et al.

(2006)). It was impossible to determine global mean temperature as field mean from the

CRU temperature data, as there were no data available over the Oceans or Antartica.

After regression, the residuals were retained for all the datasets.

In the next step, to explore the dependence between mean summer temperature and

precipitation, we computed correlation between the the two residual series of tempera-

ture and precipitation over each grid point. We were left with 43 sets of global data of

Pearson correlation coefficients between residual mean summer temperature and residual

mean summer precipitation over the land, i.e.;

a) correlation between 119 year residual mean summer temperature and precipitation

data from CRU (1901-2019)

b) correlation between 119 year residual mean summer temperature from CRU and resid-

ual mean summer precipitation from GPCC (1901-2019)

c) correlation between 119 year residual mean summer temperature and precipitation

from ERA 20C (1901-2010)

d) correlation between 105 year residual mean summer temperature and precipitation

from each of the 40 CMIP5 models (1901-2005).

For each of the CMIP5 models, only 105 years were considered while computing the cor-

relation for the historical period, because the CMIP5 models employ RCP 8.5 scenario

in their projections from 2006 onwards until 2100. Once we obtained correlation between

temperature and precipitation as the dependence parameter, our goal was then to con-

strain CMIP5 models based on the correlation value, at each grid point. In order to do
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this, we needed a statistical test that can compare two independent correlations over a

grid point, and provide a measure to determine whether they are comparable or not. We

employed two such tests; The Fisher-Z test and the Method of Zou.

3.1.1 Fisher-Z test

Let c1 and c2 be two correlation coefficients, computed from two independent discrete

bi-variate distributions P1 and P2 of marginal sizes n1 and n2 respectively. We want

to check whether the dependence between the two variables in P1 is comparable to the

dependence between the two variables in P2, by comparing their corresponding correlation

coefficients. Fisher-Z test achieves this by first transforming the correlation coefficients

to the approximately normally distributed z coefficients.

z1 =
1

2
· ln
(

1 + c1
1− c1

)
(1)

This is known as the Fisher-Z transformation. Then a significance test on the transformed

coefficients z1 and z2 are performed in the following way. We define,

Z =
z1 − z2√

1

n1 − 3
+

1

n2 − 3

(2)

The p-value of significance test is then obtained as, 2 · (1− the probability that a

standard normal variable x will be less than Z). If the p-value is less than 0.05, we can

reject the null hypothesis with 95% confidence and claim that the two correlations (there-

fore the underlying dependencies) are not comparable. However, if the p-value is greater

than 0.05, we cannot reject the null-hypothesis and therefore the correlations could be

comparable (but not necessarily). It only means that there is atleast 5% chance that the

correlations stem from the same true distribution.

However, in this analysis, we consider two correlation coefficients c1 and c2 to be compa-

rable, if the p-value obtained from their Fisher-Z analysis, as explained in this section, is

greater than 0.05.

Reference for this section : (Fisher (1921))
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3.1.2 Method of Zou

Again, Let c1 and c2 be two correlation coefficients, computed from two independent

discrete bi-variate distributions P1 and P2 of marginal sizes n1 and n2 respectively. The

modified asymptotic test developed by Zou (2007) determines the confidence interval for

the parameter c1 − c2, with α as the confidence level. We say that the correlations are

comparable, if the confidence interval for c1 − c2 contains zero, when α is 0.05. That is

to say, there is at least 5% chance that c1 − c2 = 0, i.e., c1 = c2.

Reference for this section : (Zou (2007))

Using the Fisher-Z test and the method of Zou, we compared the correlation coefficient

from each of the CMIP5 models, with observation based correlation coefficient from the

CRU data, over each grid point. If the correlations were found to be comparable, then

the model was categorised as ’good’ model at that grid point. This is what we mean

by ’constraining CMIP5 model by using an observational constraint on the dependence

between temperature and precipitation’.

Even though these methods were successful in constraining the models, the parameter

of correlation has certain limitations. For example, correlation is not a good parameter

to model the tail dependence. Therefore, we also performed a third test to constrain

the CMIP5 models, using an observational constraint on the dependence. This was the

comparison of empirical copulas.

3.1.3 Empirical copula test

For a bivariate discrete distribution P × Q with marginals P and Q, with sample

sizes of n each, the empirical copula associated with the distribution is a discrete function

φ : [0, 1]2 −→ [0, 1], which summarises the dependence between P and Q. The function

φ is defined using the order statistics of tuples (pi, qi) ∈ P ×Q, where i goes from 1 to n.

Rémillard and Scaillet (2009) proposed a statistical test to compare the empirical cop-

ulas between two such independent bivariate distributions. The test is implemented by

the authors themselves in the R-Package ’TwoCop’ (Rémillard and Scaillet (2009)). We

used this test to directly check if the dependence (captured by empirical copulas) between
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the marginals in the bivariate distributions of residual mean summer temperature and

residual mean summer precipitation obtained from each of the CMIP5 models, is compa-

rable with the dependence between the marginals of the bivariate distribution obtained

from the CRU data, at each grid. In this method, since we directly analyse dependence

without defining a parameter (such as correlation), and take order statistics into account,

this has the advantage of capturing tail dependence better than correlation. Again, if the

dependence between the marginals of the bivariate distribution from a CMIP5 model was

found to be comparable with that from CRU, the model was marked as ’good’ model at

that grid.

Reference for this section : (Rémillard and Scaillet (2009))

At the end of this part of the analysis, we were left with the information of which

CMIP5 models were ’good’ and which models were ’not good’ at each gridpoint, with

respect to three different tests. Namely, Fisher test of independent correlation comparison,

Method of Zou for independent correlation comparison and Rémillard and Scaillet (2009)’s

method of comparing empirical copulas.

3.2 Methods : Frequency projections

For this part of the analysis, following Zscheischler and Fischer (2020), we defined

compound hot and dry summers over each grid point as summers where average tem-

perature exceeded the 90th percentile of average summer temperature values in the 20th

century temperature climatology. And at the same time, average precipitation is less than

the 10th percentile in the 20th century precipitation climatology.

So in the first step, for each CMIP5 model over each grid point, we computed the 90th

percentile of average summer temperature values in the 100 years (1901-2000). Similarly,

we also computed the 10th percentile of average summer precipitation values in the same

period. Then we simply counted the number of years where the percentile thresholds

are simultaneously exceeded ( > for temperature and < for precipitation), in the 20th

century (1901-2000), and in the 21st century (2001-2100) separately. The same 20th

century percentile thresholds were used in both cases. The frequency of hot and dry
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summers was then simply calculated as the number of such summers divided by 100.

Hundred corresponded to the number of years in both periods, i.e. (1901-2000) and

(2001-2100). We chose the same number of years in both periods to give an equal footing

for the analysis.

Since we had the information of ’good’ models at each grid point available from con-

straining the models (See section.3.1), we then looked at the mean frequency of hot and

dry summers projected by the ensemble of ’good’ models and the ensemble of all mod-

els separately for the 20th century and the 21st century. We then checked to see if the

difference between the mean frequencies projected by the two ensembles were significant

or not. This was done by using a simple ’Student-t test’ to check whether the means of

two independent populations significantly differed from each other. Finally, we looked at

the relative difference between the mean frequencies projected by the two ensembles, for

both periods, only on the grid points where the differences were significant.

3.3 Methods : Other factors

In this stage of the analysis, we focused our attention on certain aspects, which could

be influencing our results. Our first concern was the uncertainty associated with the

observation data (CRU) due to the lack of stations providing data over the years. To

explore this, we looked at the number of observation stations providing monthly data

for CRU TS, for precipitation and temperature, averaged over the period 1901-2019 at

each grid. Since precipitation seemed like the more affected variable among the two, in

terms of station number constraints, we wanted to check whether this has any impact

on the correlation coefficients computed from the data. To analyse this, we compared

correlation values computed from CRU, against the average number of stations providing

precipitation data (1901-2019) for the grid point from where the correlation value was

obtained. We also wanted to check whether the deviation of observation based correlation

values from the model projections of correlation values at each grid was in any way

influenced by this station constraint. To see this, we also marked the points in the

histogram defined above as inliers or outliers, with respect to the model projections of
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correlations at those corresponding grid points.

Our next concern was the fundamental uncertainty associated with the parameter of

correlation itself, when the sample numbers are small, such as in our case. To explore

an aspect of this problem, we conducted a numerical experiment. Firstly, we defined a

theoretical bivariate normal distribution with a true correlation of -0.2 (which is com-

parable to the observed correlation between summer temperature and precipitation over

many grid points on land). We set the marginals to be standard normal as well (mean =

0, standard deviation = 1). Then we repeatedly sampled sets of 120 data points (which

is close to the 119 data points of temperature and precipitation series in CRU) from this

distribution. And correlation was computed each time. Finally we plotted 10000 such

correlation values from repeated sampling as a histogram.

4 Results

The results from this project are presented in three sub sections. In the first sub-

section, titled ’observational constraints’, the dependence between temperature and pre-

cipitation (as correlation) and the comparison of dependence (correlation and copula) be-

tween observation based data, reanalysis data and the CMIP5 model data are presented.

In the second subsection titled ’frequency projections’, the mean frequency projections

for hot and dry compound summer occurrence from the ensemble consisting of all the

CMIP5 models and the ensemble consisting of only the ’good’ CMIP5 models are sepa-

rately presented. The results for the 20th century data as well as the 21st century data are

shown separately for these two ensembles. In the final subsection, titled ’other factors’,

we introduce certain related results, which could potentially explain some of the main

results that are obtained from the study (See section 3).

4.1 Results : Observation based dependence constraints

The warmest 3 months at each grid point (summer) based on the 1901-2019 clima-

tology of CRU observational data is portrayed in Fig.3. Fig.3 shows the month in the
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middle of the summer for each grid point. It can be seen that there is a circular smooth

transition of summer months from the North to South. And the summer months are

nearly the same across same latitude, which is an obvious result.

Figure 3: The middle month of the warmest 3 months (summer) at each grid point based
on the CRU climatology (1901-2019). Note : 1 corresponds to January and so on.

The correlation coefficients computed between yearly summer residuals of temperature

and precipitation for the 20th century are presented in Fig.4. The coefficients are calcu-

lated separeately by using the observational dataset (CRU TS), the re-analysis dataset

(ERA 20C) and each of the 40 CMIP5 model datasets. The results for correlation coeffi-

cients were not significantly affected by regression with global mean temperature for any

datasets. However, the residuals were still used to compute correlation in order to remove

any warming signals, especially towards the end of the century. It can be observed from

Fig.4 that the mean summer temperature and precipitation are strongly negatively cor-

related over most land regions. However, there are also minimal exceptions such as some

parts of Egypt and the Arabian Peninsula for example. It is interesting to observe that

the correlation computed from the observation (Fig.4a) is generally less negative than the

mean correlation from 40 CMIP5 models (Fig.4c), i.e. models tend to project a stronger

anti-correlation compared to the observation. This was also noticed by Zscheischler and

Seneviratne (2017). However, comparing correlation from ERA 20C reanalysis (Fig.4c)

with the other two, shows that ERA 20C tend to project the strongest anti-correlation
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among the three, for most regions. In particular, the Southern hemisphere.

(a) (b)

(c)

Figure 4: Correlation between inter-annual summer mean residual temperature
and precipitation for the historical period
(a) Correlation computed from the CRU observational datasets of temperature and pre-
cipitation (1901-2019), (b) Correlation computed from the ERA20C reanalysis datasets
of temperature and precipitation (1901-2010), (c) Average of correlation values computed
from the 40 CMIP5 GCM datasets of temperature and precipitation (1901-2005)

Figure 5: The percentile to which the correlation computed from CRU data (1901-2019)
correspond to at each grid, with respect to a distribution of 40 correlation coefficients
computed from 40 CMIP5 models

23



(a) (b)

Figure 6: (a) The percentile to which the correlation computed from ERA 20C data
(1901-2010) correspond to at each grid, with respect to a distribution of 40 correlation
coefficients computed from 40 CMIP5 models, (b) Same as in (a) for correlation coeffi-
cients computed from EC-Earth model data (1901-2005)

Fig.5 shows how the correlation coefficients computed from the CRU observational

data compare with the distribution of correlation coefficients computed from the 40 mem-

ber CMIP5 ensemble at each grid. The same is shown for ERA 20C data in Fig.6a. The

plots show which percentile the correlation coefficients from CRU and ERA20C, respec-

tively, correspond to, with respect to the distribution of 40 correlation coefficients from

the CMIP5 ensemble. As observed from the correlation plots, we can see that the cor-

relation from CRU tend to be in the higher 70+ percentiles of CMIP5 distributions for

many regions, i.e. less negative. This is especially true for the global south. On the other

hand, for ERA 20C, the coefficients are in the lower (< 30) percentiles in the global south.

However, There are also regions in the global north where ERA 20C correlation is in the

higher 90 percentiles. Especially around northern Russia Fig.6a. By statistically compar-

ing the correlation coefficients obtained from ERA 20C with correlation coefficients from

each of the CMIP5 models (using Fisher-Z test), we found that the ’EC-Earth’ model

shows comparable correlation on most grid points than any other model, i.e. 79% of total

grid points where data is present (see Appendix. Table.2). Fig.6b shows percentiles that

the correlation coefficient computed from EC-Earth correspond to at each grid point. It

can be seen that they follow similar patterns as ERA 20C. However, there are strong

exceptions too. For example, the coefficients are in the higher percentiles for ERA 20C

around longitude 0° to 10° region in North Africa (Fig.6a). For EC-Earth however, the

percentiles are in the lower range for this region (Fig.6b).
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In the next step, we constrained each of the 40 CMIP5 models by using three tests,

i.e. Fisher-Z test for independent correlation comparison, method by Zou for independent

correlation comparison and Rémillard and Scaillet (2009)’s method for comparing two

empirical copulas (See section 3). Fig.7 shows the number of ’good’ models at each grid,

based on the Fisher-Z test, which compared the correlation coefficients from CRU TS

with that from CMIP5 models. Fig.8a and Fig.8b show the same results for Zou-method

and Rémillard and Scaillet (2009)’s method, respectively. We observed that the Fisher-Z

method and method of Zou provided identical results in constraining the models. No

significant difference was observed between the number of constrained models, on any

grid, between the Fisher method and the method of Zou. This was also further verified

by comparing the mean frequency of hot and dry summers projected by the models

constrained by the two methods separately, on each grid. This also showed no significant

difference. Similarly copula method too gave nearly identical results to the other two

methods. The copula method seemed to constrain slightly more number of models in

general. Although the difference between the three methods were found to be insignificant.

Moreover, copula method also had small patches were the test could not be performed,

i.e. around the Gobi desert and Sahara (Fig.8b). This was due to the presence of gaps in

the time series of temperature or precipitation at those points, which the test developed

by Rémillard and Scaillet (2009) could not accommodate.

Figure 7: Number of CMIP5 models that show comparable correlation values to the
correlation computed from CRU TS (i.e. number of ’good models’). Comparability is
statistically determined by Fisher - Z test for comparing independent correlations

25



(a) (b)

Figure 8: (a) Number of CMIP5 models that show comparable correlation values to the
correlation computed from CRU data (i.e. number of ’good models’). Comparability
is statistically determined by Zou method for comparing independent correlations, (b)
Number of CMIP5 models that have comparable dependence between temperature and
precipitation to the dependence exhibited by temperature and precipitation from the CRU
data (i.e. number of ’good models’). Comparability is statistically determined comparing
the empirical copulas using the method developed by Rémillard and Scaillet (2009). The
missing values over land are regions where the test could not be performed.

However, since all three methods performed similarly, and the copula test was at least

12 times more computationally expensive, we based rest of our analysis on the results of

Fisher-Z test for comparison of correlations.

4.2 Results : Frequency projections

Here, we present the results of comparing mean frequency of hot and dry compound

summer occurrences projected by the 40 model ensemble (containing all the CMIP5 mod-

els) and the ’good’ model ensemble (containing only the ’good’ CMIP5 models). The

’good’ models referred to in this result are determined by statistical comparison of cor-

relation values with those computed from CRU data, by using the Fisher-Z method for

comparing independent correlations. The results are summarised separately for the fu-

ture warming scenario of RCP 8.5 (2001-2100) and the historical scenario (1901-2000) in

Fig.9.
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(a) 40 model ensemble (1901-2000) (b) ’Good’ model ensemble (1901-2000)

(c) 40 model ensemble (2001-2100) (d) ’Good’ model ensemble (2001-2100)

Figure 9: Mean frequency of compound hot and dry summer occurrences pro-
jected by two model ensembles for the 20th century (1901-2000) and the 21st

century (2000-2100)
(a) Mean frequency projected by model ensemble consisting of all the 40 CMIP5 mod-
els for the 20th century (1901-2000) (b) Mean frequency projected by model ensemble
consisting of only the ’good’ CMIP5 models for the 20th century (1901-2000) (c) Mean
frequency projected by model ensemble consisting of all the 40 CMIP5 models for the
21st century (2001-2100) (d) Mean frequency projected by model ensemble consisting of
only the ’good’ CMIP5 models for the 21st century (2001-2100)
Note : Scale for (a) and (b) run from 0 to 0.06 while the scale for (c) and (d) run from
0 to 0.40. This happens because the frequency projections for compound hot and dry
summer occurrences increase significantly from the 20th century to the 21st century under
RCP 8.5

As can be seen from Fig.9a and Fig.9c, the projected mean occurrence frequency of

compound hot and dry summers show considerable increase over all land domains between

the two centuries. The scale of frequencies increased from (0 to 0.06) in the 20th century

to (0 to 0.40) in the 21st century. In Fig.10 we show by how many folds this frequency

increased at each grid point. While upper northern hemisphere generally shows slightly

less increase, Western Europe shows significant projected increase. This was also observed

by Zscheischler and Seneviratne (2017)) and is a cause for concern.
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Figure 10: By how many folds the projected mean occurrence frequency of compound
hot and dry summers increase between the 20th and the 21st centuries. Mean frequency
is computed from ensemble consisting of all the CMIP5 models.

The main goal of this project was to compare the difference between the mean fre-

quency of compound hot and dry summers projected by the all model ensemble and

the ’good’ model ensemble on a global scale. Fig.11 shows the relative difference in the

projected frequency (i.e. [Mean frequency projected by ’good’ models - Mean frequency

projected by all models] / Mean frequency projected by all models) at each grid point,

for the 20th century (1901-2000).

Figure 11: Relative difference between the mean frequency of compound hot and dry
summers projected by the ’good’ model ensemble and the all model ensemble for 20th

century. Grid points where data is not available or the difference is not statistically sig-
nificant are left as blank.
Relative difference is computed as (Mean frequency projected by ’good’ models - Mean
frequency projected by all models) / Mean frequency projected by all models, and ex-
pressed in percentages

For the 20th century, we only looked at points where the difference between the projec-
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tions were statistically significant. In the majority of these points, the relative difference

is negative, i.e. the ’good models’ tend to project less occurrence frequency for compound

hot and dry summers compared to all models. For the 21st century (2001-2100), the dif-

ference between the two ensembles were found to be field insignificant, i.e. less than 2%

of grid points (with values) showed a significant difference. Therefore, no meaningful

observations could be made.

4.3 Results : Other factors

In order to further explain some of the main results, we looked at possible limitations

that may have been present in the data sets and the analysis that we employed. Fig.12

addresses the station number constraint present in the procurement of CRU observation

data.

Figure 12: Number of observation stations providing monthly precipitation data for CRU
TS, averaged over the period 1901-2019, at each grid

The lack of stations in collecting data was more apparent in the case of precipitation

than temperature for CRU. However, both temperature and precipitation had, on average,

maximum 8 stations and minimum 0 stations providing observations depending upon

the region. Even though we tried to overcome this limitation by using GPCC data

for precipitation, there was no significant difference in resulting correlation coefficients

computed (correlation from CRU temperature and GPCC precipitation), when compared

with the correlation computed from CRU alone. Even though GPCC had, on average,

many more stations providing data, the spatial distribution of stations and their time
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evolution through the century follow the same sparse pattern as in Fig.12 (Sun et al.

(2018), Fig.2). Therefore it was not anymore useful than the CRU data.

To see whether the lack of stations providing precipitation data has any significant

impact on the dependence computed from the CRU data, we looked at Fig.13. In Fig.13a,

the correlation values at all grid points, computed from the CRU observation data, are

plotted against the average number of stations providing precipitation data for CRU at

those corresponding points. The median line is also plotted. Fig.13b, also explores how

many of the correlation values computed from CRU are outliers with respect to the 0.1

and 0.9 quantiles of correlation value distribution from the 40 CMIP5 models. The ratio

of outliers to total number of points is plotted against the average number of stations

providing the precipitation data. It can be observed that there is a clear downward

trend in the median line for Fig.13a. This means that the correlations between residual

mean summer temperature and precipitation computed from CRU, at grid points which

do not have a severe station number constraint, tend to be slightly more negative than

correlations computed at points with a station constraint. However, it is also to be

noted that there are significantly more number of points in the regions where the station

constraints are not severe, compared to points with few stations providing precipitation

data on average. From Fig.13b we can also spot a reasonable downward trend. This

indicate that the dependence computed from CRU observations tend to disagree with the

general projections of CMIP5 models at those grid points more, where there is station

number constraints for CRU, i.e. grid points, where the reliability of observation data

could be in question.

Finally, we also explored the uncertainty associated with correlation computed from

a bivariate normal distribution, due to small sampling size. Fig.14 shows the result of

repeatedly sampling sets of 120 data points from the theoretical distribution with a true

correlation of -0.2, and computing correlations. The results from 10000 samplings is

portrayed. It is evident that the sample correlations shows a wide range from -0.5 to 0.1,

even though the true correlation of the bivariate population was -0.2.
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(a) (b)

Figure 13: (a)Pearson correlation coefficients computed between yearly mean summer
temperature and precipitation (residual) over 119 years (1901-2019) from observational
(CRU TS) data plotted against number of observation stations providing monthly pre-
cipitation data to CRU TS averaged over 119 years (1901-2019) at each grid. The outlier
values of CRU based correlation coefficients are shown in red colour. The outliers are
computed with respect to 0.1 and 0.9 quantiles of correlation coefficients from 40 distinct
CMIP5 model data (1901-2005) at each grid. The corresponding inliers are represented
in green. The median line is shown in blue. (b) The ratio of outliers (red) with total
number of points (red+green) contained in bins of sizes of 0.25 stations for (a).

Figure 14: Histogram of correlation values computed from 10000 samplings of sets of 120
data points each. The samples are taken from a theoretical bivariate normal distribution
with a true correlation of -0.2. Both the marginals in the theoretical distribution are
considered to be standard normal, i.e. mean = 0 and standard deviation = 1

5 Discussion

Through this project, we were able to reassert many results observed by past re-

searchers in the realm of compound hot and dry events. Moreover, we were able to test
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our own hypothesis regarding whether constraining CMIP5 global climate models for de-

pendence between temperature and precipitation have any impact on their projections

for compound hot and dry summer occurrence on a global scale.

The correlation between summer mean temperature and precipitation computed from

CRU observation was generally observed to be less strongly negative than corresponding

model projections (Fig.4,5). Zscheischler and Seneviratne (2017) had suggested that this

could be due to the sparse distribution of stations providing data for CRU, leading to the

correlations being less well constrained. We explored this in Fig.13a,13b, and observed

that the assertion could be true to some extent. The trend in Fig.13b in particular is

indicative of the fact that CRU correlations disagree more with model projections in re-

gions with station number limitations. However, both these results are contingent upon

the fact that there are far too many points representing higher number of stations com-

pared to lower number of stations. Therefore, this asymmetry in distribution could also

be contributing to the trend. Further exploration is required to establish the association.

The correlation computed from ERA 20C shows extreme diverging patterns in the

south and in the north, towards the lower percentiles and the higher percentiles, respec-

tively (Fig.4,6a). The EC-Earth global climate model was observed to project compara-

ble correlation coefficients, to that projected by ERA 20C in general (Fig.6, Appendix

Table.2). Berg et al. (2015) attributed this dependence pattern projected by the EC-

Earth model to a combination of land-atmosphere and cloud-atmosphere feedback incor-

porated by the model (See section.1). Since both EC-Earth and ERA 20C are products of

ECMWF, one could assume that they share some core model genealogy (See section.2.2).

This could explain the observed similarity. However, there were also significant depar-

tures from similarity in some regions. This could be attributed to the fact that ERA 20C

is shown to have performed poorly in terms of reproducing observations in some regions,

especially outside Europe (Poli et al. (2016)). Therefore, utilising ERA 20C to constrain

models for dependence is not recommended.

While comparing the correlation coefficients to constrain the models, the three statis-

tical tests used were found to have given quite similar outputs (Fig. 7,8). This could be
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explained by the fact that the p-value constraints we imposed on each test is, by design,

highly in favour of inclusion to ’good’ models than exclusion as ’not good’. Therefore, the

tests tend to include similar number of models at each grid. Moreover, the advantage the

copula test have over the correlation comparisons is that the former can capture the tail

dependence better than the latter. However, since we only have 119 data points at best

for the bivariate distribution, the tail of the distribution is rather short. This could be a

reason why the copula test fails to provide significantly different results from the other

two.

The main result of this project showed that there was no significant difference between

the projected mean frequency for compound hot and dry summers in future (2001-2100),

under RCP 8.5, between the ’good’ model ensemble and the all model ensemble. There

were some points where this difference was significant for the 20th century. In those points,

the ’good models’ tend to project lesser frequency for hot and dry summers on average

compared to all models. Both these observations were in contradiction to our initial

hypothesis. In the case of the 20th century result, it can be observed that there exists a

spatial correlation between the significant points of difference (Fig. 11) and points where

there are severe station number limitations in CRU (Fig.12). This could mean that the

only significant difference we observed in this case could be a consequence of the poorly

constrained correlation values in observation, owing to the lack of quality observations.

This makes it impossible to further associate significance to the observed result.

As for the lack of significant difference in projections of hot and dry event frequencies

between the constrained and the non constrained models in general, we provide couple of

explanations. One, it could be argued that the limited number of data points (119 at best

and 105 at worst) available while computing correlation could mean that the observed

correlation is not a reflection of the true correlation of the underlying population. This

was demonstrated through a simple numerical experiment in Fig.14. This could mean

that the constraints have certain limitations to this extent and it might be reflecting

in the final result. Secondly, and most importantly, Bevacqua et. al.(2021) [submitted ]

have shown that precipitation is the significant component in determining the projected
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frequency of hot and dry compound summer occurrence for the 21st century under RCP

8.5 warming. This follows from the fact that the mean temperature is projected to rise over

all land domains for the future, especially in the second half of the 21st century, essentially

pushing most of the future summers to the hot extreme compared to the 20th century

percentile thresholds. Therefore, the probability of occurrence for multivariate hot and

dry compound summers will largely depend on the univariate statistics of precipitation.

This could be a reason why we fail to observe a significantly high frequency of occurrence

for the multivariate extreme projected by the ’good’ model ensemble, which is constrained

only for dependence between temperature and precipitation, and not for precipitation

statistics.

6 Conclusion

6.1 Summary

In this project, we constrained an ensemble of 40 CMIP5 global climate models over

land, with a constraint on the dependence between summer temperature and precipita-

tion over each grid point, based on the 20th century observation climatology (from CRU

observation data). We used correlation as the dependence parameter between tempera-

ture and precipitation in the first stage of the project and empirical copula in the second

stage. Fisher-Z test was employed to statistically compare the observed correlation with

the correlation obtained from each of the CMIP5 model data sets. Bi-variate empirical

copulas obtained from observation data of temperature and precipitation and that from

each of the CMIP5 models were directly compared using the R package TwoCop. The re-

sults of comparing correlation and copulas were found to be nearly equivalent. Therefore,

we based the rest of our analysis on the comparison of correlation values with Fisher-Z

method and not the copula test. The empirical copula comparison test was also computa-

tionally much more expensive than the Fisher-z test. Subsequently, the mean occurrence

frequency of compound hot and dry summers as projected by the constrained models

(’good models’) and all the models at each grid point was compared for the 20th cen-
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tury and the 21st century (under RCP 8.5 warming) projections. We hypothesised that

the ’good’ models will, on average, project higher occurrence frequency for compound

hot and dry summers, wherever temperature and precipitation were anti-correlated. The

hypothesis was found not to be true, for results from the period 1901-2000 as well as

the future period 2001-2100, under RCP 8.5 warming. The projected mean frequency

difference between the ensembles were found to be insignificant for more than 98% of grid

points in the future period. For the historical period, the good models were found to be

projecting a lower frequency on average, at most of the significant points. We argue that

the results, which are in contradiction to our initial hypothesis, could be a product of

multiple factors. One being the lack of stations providing data for the observation, which

leaves the observed correlation less well constrained. Moreover, researchers have recently

shown that the future occurrence frequency of compound hot and dry summers may only

depend on the univariate statistics of precipitation, as temperatures will be pushed to

the hot extreme constantly under the high warming scenario of RCP 8.5. This essentially

renders the constraint for dependence between temperature and precipitation ineffective,

as only the variability in precipitation matters for the hot and dry event occurrence.

6.2 Limitations

This project suffers from a few limitations. One of them being the low number of

samples used to compute dependence between temperature and precipitation. CRU data

with 119 data points (1901-2019), for temperature and precipitation, is the longest time

series that we have employed in this study in this regard. But we observed from Fig.14

that there is large uncertainty associated with the correlation coefficient, when only 120

points are sampled. This could suggest that the dependence parameter that we used to

constrain the models may not be reliable. We tried to overcome this limitation by using

empirical copulas to assess the dependence. However, the copula comparison test too

provided nearly identical results. This, again could be a consequence of only having close

to 100 data points, which results in a short tail and therefore, making it nearly impossible

for copulas to detect any tail dependencies that the correlation cannot. Increasing the
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number of data points by including individual monthly means from each year was also

not advisable. Because, that will result in intra-annual correlation dominating the de-

pendence, while our focus is on constraining the models for their inter-annual dependence

between the variables. Using other data sets, such as GPCC for observational data and

ERA 20C as reanalysis data, and comparing the dependence patterns among the data

sets was also not an ideal solution to the problem. Because we observed that, the depen-

dence patterns computed from these data sets too were equally or even more unreliable

than those computed from the CRU data. The ideal solution for this is to have reliable

observation data, across regions, that span a longer time-frame. For this, however, we

may have to wait for a few more decades to obtain observational data from the future as

well.

Another limitation stems from what could also be considered as a philosophical issue

associated with climate modelling. Our study involved constraining global climate models,

which incorporate complex, coupled physical processes to arrive at climate projections for

the historical period as well as the future. We used observational dependence from CRU

data and projections of dependence from each of the models, in the historical period,

to constrain the models and looked at their future projections of compound extremes.

One implicit assumption we made here is that, the models that are better equipped at

projecting the dependence well today, will also manage to do so in the future. This

may not be true as climate regime shifts in the future, owing to anthropogenic climate

change, might mean that the processes governing the dependence between variables are

completely different then, compared to today. Therefore, even if the models, which are

considered ’good’ today for projecting the dependence, projected an increased frequency

for occurrences of compound extremes in the future, we can never be assured that the

result amounts to absolute physical certainty. There are also pitfalls in hoping to capture

the spectrum of physical processes that may govern the dependence in future, by using

an ensemble of CMIP global climate models. For one, many of these models share the

same climate modelling ancestry, which reduces the spectrum of underlying processes

significantly (Knutti et al. (2013)). And for two, due to their extremely complex nature,
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we do not have much clarity regarding the physical processes that govern these models

(Baumberger et al. (2017)). The solution to this problem is the better understanding of

physical processes that govern the climate systems and ’demystifying’ the global climate

models using novel methods such as interpretable AI. This is why, fundamental research

into the physical science basis of climate change is extremely crucial, even today.

6.3 Outlook

The years 2020 and 2021 have been a challenging period for humanity across the planet,

owing largely to the novel corona virus outbreak. The global nature and the associated

complexity and unprecedented social responses to the pandemic has prompted scholars to

look for potential parallels between tackling the climate crisis and the corona crisis (Hulme

et al. (2020)). Additionally, in 2021, Europe in particular has experienced concurrent

contrasting weather patterns of extreme precipitation and flooding in the west (Binnie

and Abnett (2021)) and severe heatwaves with record high temperatures in the south-

east, with Greece bearing the brunt of the heat (Kampouris (2021)). Eminent climate

scientists have made public statements regarding the potential association with climate

change for such extremely divergent weather patterns that are becoming more prevalent

in Europe (Wanner (2021)). Evidences suggest that we are entering a time period where

lives across borders are starting to face first hand experiences in the compounding nature

of impacts that climate change can bring about. In this context, the ’Assessment Report

6’ from IPCC, with ’Working Group 1 - The Physical Science Basis for Climate Change’

scheduled to be published in August 2021 and the rest to follow within the next year,

becomes extremely crucial in communicating the scientific facts and projections related

to climate change. Well-known climate scientists such as Prof. Thomas Stocker have

always believed in the role of science and scientists in shaping policy (Stocker and Blülle

(2021)).

Under such circumstances, a project such as this becomes relevant in communicat-

ing the potential risks into the future, if societies continue to opt for a non-mitigating

pathway such as RCP 8.5. As the present study demonstrated, the projected frequency
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of compound hot and dry summers will be significantly higher for the 21st century com-

pared to the 20th century over all land domains. Even up to 10 folds in certain regions.

This directly translate to a disproportionate and significantly higher risk, both societal

and environmental. The project also was an attempt towards constraining global climate

models in order to have projections of future compound event occurrences, which take

the dependence between variables into account. This could potentially improve our pre-

dictions and therefore aid in future risk assessments and their reduction. Even though

the project failed to establish a significant difference in frequency projections by the con-

strained model ensemble compared to the all model ensemble for the future, the work has

produced both valuable insights and paved way for research directions that can reduce

gaps in our understanding with respect to such compound extremes.

I would like to conclude this thesis by listing out the potential future research ideas

and further developments that have come out of this study.

• Replicating the analysis using CMIP - Phase 6 (CMIP6) models and comparing the

results with that of CMIP5 data.

• Analysing the role of individual variables in determining the occurrence probability

of hot and dry summers for the future.

• Exploring the geneology of ERA 20C and identifying whether the physical processes

that govern the model and the EC-EARTH model have many similarities.

• Studying the impacts that station number constraints have on observed dependence,

by making use of other observation datasets of temperature and precipitation as well

as other climate variables.

• Testing whether the empirical copula test is better suited, compared to Fisher-Z

test or Zou test, to analyse dependence between marginals that have longer tails.

This could be explored by performing all tests on actual climate data along with on

distributions that are artificially modified to have a longer tail.
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A Appendix

Table 2: List of CMIP5 models in decreasing order of corresponding ’good’ grid points (in
percentage) with respect to ERA 20C reanalysis data. The number of ’good’ grid point are
those which show comparable correlation coefficient to correlation coefficient computed
from ERA20C at each grid. Correlations are statistically compared using Fisher-Z test.

Sr.No Model Name Good grids(%) Sr.No Model Name Good grids (%)

1 EC-EARTH 71 21 CanESM2 54
2 FGOALS-g2 63 22 CSIRO-Mk3-6-0 54
3 GFDL-CM3 63 23 bcc-csm1-1-m 53
4 ACCESS1-3 61 24 GFDL-ESM2G 53
5 GISS-E2-H-CC 58 25 GFDL-ESM2M 52
6 HadGEM2-AO 58 26 CESM1-CAM5 52
7 HadGEM2-ES 58 27 MPI-ESM-MR 52
8 GISS-E2-R-CC 58 28 CNRM-CM5 52
9 HadGEM2-CC 57 29 IPSL-CM5B-LR 52
10 GISS-E2-H 57 30 IPSL-CM5A-MR 51
11 MRI-CGCM3 57 31 MPI-ESM-LR 51
12 CMCC-CESM 57 32 FIO-ESM 49
13 GISS-E2-R 57 33 CESM1-BGC 49
14 MRI-ESM1 56 34 IPSL-CM5A-LR 49
15 ACCESS1-0 56 35 CCSM4 49
16 BNU-ESM 56 36 CMCC-CM 49
17 bcc-csm1-1 55 37 CMCC-CMS 48
18 MIROC5 55 38 NorESM1-M 48
19 MIROC-ESM 54 39 NorESM1-ME 46
20 MIROC-ESM-CHEM 54 40 inmcm4 42
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