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Abstract 
The persistence of weather events plays a large role for the associated impacts and thus society. 
Understanding the mechanisms leading to persistent weather can improve forecasting skill of such 
events. Recurrent Rossby wave packets (RRWPs) have recently been recognised to produce persistent 
high-impact weather. However, little is known about what causes RRWPs. Therefore, this thesis 
investigates potential drivers of boreal winter RRWPs in the North Atlantic and eastern North Pacific 
basins. This work shows that atmospheric blocking, changes in the zonal background flow, and, to a 
lesser degree, forcing from deep convection are drivers of RRWPs. Areas where blocks, the background 
flow, and deep convection are linked to RRWP events are identified using composite maps and 
regression analysis. Subsequently, the causal inference method PCMCI was used to quantify the 
strength and time lags of causal links between RRWPs, measured by the R-metric R, and these possible 
drivers. We find that R is increased after an increase in the local background flow at a lag of one week 
in both basins. In the North Atlantic, R increases after an increase in blocking in the central North 
Atlantic within a week, whilst in the eastern North Pacific, an increase in R is preceded by an increase 
in Greenland blocking at a lag of one week. Increases in R can also be caused by strengthened deep 
convection. Finally, I find that R also drives many of the investigated processes and can foster 
downstream blocking, decrease the local background flow, and invigorate tropical convection. These 
results highlight the large interconnectedness between transient RRWPs, the background flow, and 
blocking. By identifying regions where these drivers influence R and by providing consistent causal 
pathways for these interactions, this work suggests that prediction of RRWPs could be improved by 
further studying these pathways. 
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1. Introduction 
1.1 Persistent surface weather and extreme events 

The persistence of weather phenomena is often crucial to the impacts on the surface (Davies, 2015; 
Barton et al., 2016; Pfleiderer and Coumou, 2018; Lenggenhager et al., 2019; Röthlisberger and 
Martius, 2019). Persistent weather can lead to prolonged extreme conditions such as cold spells 
(Hoskins and Sardeshmukh, 1987; Davies, 2015), heavy precipitation (Barton et al., 2016; 
Lenggenhager et al., 2019), dry spells and heatwaves (Röthlisberger and Martius, 2019). Extreme events 
often have a large socio-economic impact, damaging property and livestock, creating various physical 
and mental health-related issues, and producing direct or indirect mortality (Huynen et al., 2001; 
MeteoSchweiz, 2006; Gosling et al., 2009; Hajat et al., 2010). A better understanding of the atmospheric 
processes leading to persistent surface weather patterns is vital for accurate weather forecasts, especially 
concerning extreme events (Cassou, 2008; Horton et al., 2015; Quandt et al., 2017). 

1.2 Upper-level dynamics and recurrent Rossby wave packets 
The surface weather systems such as cyclones and anticyclones are to a large degree steered by 
synoptic-scale transient Rossby waves (RWs) at upper levels (Hoskins et al., 1985; see Appendix A1.1 
for a brief introduction to RW theory). It is well established that when the upper-level RWs move slowly 
or become quasi-stationary they can cause persistent, and thus possibly high-impact surface weather. 
Examples include atmospheric blocking (Hoskins and Sardeshmukh, 1987; Buehler et al., 2011; 
Sillmann et al., 2011; Pfahl and Wernli, 2012; Whan et al., 2016; Lenggenhager et al., 2019) or nearly 
stationary troughs, as in the case described by Blackburn et al. (2008). They found that extremely 
persistent RW patterns caused nearly stationary troughs and thereby lead to prolonged precipitation and 
subsequent floods over the United Kingdom in summer 2007. Generally, slower moving RWs have 
been suggested to cause more persistent surface weather (Francis and Vavrus, 2012 and 2015). 

However, non-stationary, transient flow configurations can also cause extreme weather. The amplitude 
of RWs is often not uniform across longitude and time, with local maxima confined to certain longitudes 
and amplitude decreasing with distance (Fig. 1; Wirth et al., 2018). An area of enhanced RW 
amplification is termed Rossby wave packet (RWP) and is denoted by the envelope of the amplified 
waves. In part due to the large amplitude RWs confined within RWPs, which are prone to wave breaking 
(Wirth et al., 2018), RWPs can act as a precursor to high-impact surface weather (Davies, 2015; Barton 
et al., 2016; Röthlisberger et al., 2016; Fragkoulidis et al., 2018). This suggests another mechanism 
leading to persistent surface weather: The repeated occurrence of the same flow pattern over the same 
spatial area. Concretely, a series of transient RWPs can occur in phase and the troughs and ridges of 
each RWP will amplify over the same region repeatedly. This can cause “persistent” surface weather 
co-located with, as well as up and downstream of, the area of repeated amplification (Röthlisberger et 
al., 2019; Ali et al., 2021). 

These so-called recurrent Rossby wave packets (RRWPs) were first formally described by 
Röthlisberger et al. (2019), who also introduced a quantity to measure RRWPs, the R-metric (R). 
Furthermore, they showed that the transient RWPs which caused the extreme precipitation in 1993 
described by Barton et al. (2016) and the RWPs which caused the cold spell over the US described by 
Davies (2015) were RRWPs characterized by high values of R. Climatological evidence also shows that 
RRWPs can increase the duration of northern hemisphere winter cold spells and summer hot spells 
(Röthlisberger et al., 2019) and dry and wet spells in both hemispheres (Ali et al., 2021). These findings 
are supported by case studies, showing the causal effect of RRWPs on the surface weather 
(Röthlisberger et al., 2019; Ali et al., 2021). From the perspective of human wellbeing, the impacts of 
the persistent surface weather associated with RRWPs are mainly important over land. Considering the 
land-surface effects of northern hemisphere RRWPs in boreal winter, Röthlisberger et al. (2019) found 
that R increases the duration of cold spells in extended boreal winter over the east - and west coast of 
the US as well as over the Mediterranean. Ali et al. (2021) showed that RRWPs are also linked to an 
increase in the duration of extended boreal winter wet spells over central Europe and the Mediterranean, 
and to a lesser degree over the eastern US. Furthermore, they found that RRWPs increase the duration 
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of extended boreal winter dry spells over the entire US and central Asia. Hence, for boreal winter, 
RRWPs upstream of the affected land masses, mainly North America and Europe, warrant attention. 

 

 
Moreover, RWPs, and consequently RRWPs, are of interest for weather forecasting and predictability. 
The predictability of RWPs can be higher than that of individual troughs and ridges contained within 
(Glatt and Wirth, 2014). However, Glatt and Wirth (2014) found that a RWP was only well predicted 
by a numerical weather prediction model if it was already present at the time of model initiation. The 
onset of the RWP is not well resolved. Furthermore, forecast errors can propagate with RWPs, thus 
causing substantial forecasting uncertainty in the downstream area of RWPs (Wirth et al., 2018). 
Finally, the large impact of RRWPs on the persistence of surface weather (Davies, 2015; Barton et al., 
2016; Fragkoulidis et al., 2018; Röthlisberger et al., 2019; Ali et al., 2021) highlight the potential gain 
in forecasting capabilities in the seasonal to sub-seasonal realm if RRWPs were accurately predicted. 

1.3 Causes of RRWPs 
However, the atmospheric processes driving RRWPs are not known. Amongst others, Röthlisberger et 
al. (2019) list the following phenomena as possible drivers of RRWPs: Atmospheric blocking, wave–
mean flow interactions, and Rossby wave forcing from the tropics. 

1.3.1 Atmospheric blocking 
Röthlisberger et al. (2019) investigated composites of R anomalies centred on blocks in the North 
Pacific and the North Atlantic. They found that R values increased considerably downstream of blocks 
3-9 days prior and again 3-6 days after the time of maximum blocking. Atmospheric blocking might 
initiate a wave train downstream, a mechanism described by Altenhoff et al. (2008), and thus cause 
RRWPs. Blocking is also identified up and downstream of, as well as co-located with, positive R 
anomalies in two case studies of RRWPs by Röthlisberger et al. (2019). Moreover, Ali et al. (2021) 
investigated prolonged dry anomalies over São Paulo in November 1985 triggered by RRWPs and 
found blocking upstream of the RRWPs. They also investigated a RRWP episode over the North 
Atlantic associated with persistent wet conditions and anomalous precipitation over the Iberian 
Peninsula. Blocking conditions were found upstream of this event, over the Gulf of Alaska and southern 
Greenland. Blocking also contributed to the RRWPs leading to the 1993 clustered extreme precipitation 
event over Switzerland described by Barton et al. (2016). Here, blocking over the Gulf of Alaska caused 
phase locking of the Rossby waves downstream which was reinforced by blocking in the North Atlantic. 
In summary, blocking upstream might cause in phase wave trains and thus RRWPs downstream. 
Röthlisberger et al. (2019) also describe a different interaction between R and blocking. They found 
positive R anomalies upstream of blocking events 3-9 days prior to, and for about 3-6 days after the 

Figure 1: A Rossby wave packet at a) 00:00 UTC 7th August 2002 and b) 48 hours later at 00:00 UTC 9th 
August. The meridional wind V at 300 hPa meridionally averaged (40° N to 60° N) and filtered for 
synoptic wavenumbers 4-10 is shown with blue lines. The envelope is shown with red lines and capital 
letters denote individual troughs. Note that the RWP propagates faster than the RWs and hence trough 
A has dissipated between (a) and (b), whilst new troughs D and E have formed in (b), exemplifying 
downstream development. Taken from Wirth et al. (2018). 



 
 

3 
 

time of maximum amplitude of the blocks. Here, waves amplifying in phase might continuously 
strengthen the block downstream and hence blocking does not act as a driver of RRWPs but vice versa.  

1.3.2 Changes in the background flow 
The jet stream (hereafter jet), a band of enhanced zonal wind, often acts as a waveguide for RWPs so 
that they propagate eastwards with the direction of the jet (Martius et al., 2010). Waveguides can also 
be viewed as areas with a large meridional gradient of potential vorticity (PV) along which Rossby 
waves, which are PV anomalies triggered by local perturbations of PV, can propagate (Martius et al., 
2010; Wirth et al., 2018).  Therefore, the state of the waveguide affects the propagation of RWPs (Wirth 
et al., 2018). Generally, higher jet amplitudes and lower jet width increase the capacity of the jet to act 
as waveguide (Martius et al., 2010; Wirth, 2020). A stronger, narrower, and therefore more zonal jet 
consequently corresponds to a better, more zonal waveguide with increased propagation of waves and 
RWPs in the zonal direction (Wirth et al., 2018; Wirth, 2020). Consequently, the amplitude of the 
meridional wind V, which is directly linked to RWs and RWPs, is smaller on a more zonally aligned jet 
(Wirth et al., 2018). Conversely, a wider and weaker jet also affects the propagation of RWPs, and 
therefore RRWPs, by causing weaker eastward propagation and enabling larger meridional 
amplification, i.e., wavier flow (Wirth et al., 2018; Wirth, 2020). In terms of PV thinking, this 
waveguidability of the jet depends strongly on the meridional PV gradient. Large meridional gradients 
are conductive of strong zonal propagation of RWs and vice versa (Wirth, 2020).  

Furthermore, diffluent flow, flow which decelerates and fans outwards, can also influence Rossby wave 
propagation. Nakamura and Huang (2017) investigated connections between high-frequency transient 
wave trains and diffluent flow. They found that advection of local wave activity (LWA) from upstream 
and the local deceleration of the background flow in regions with diffluent flow can cause large 
meridional PV perturbations, i.e., wavey flow, and eventually a blocking like pattern. This shows that 
a diffluent flow can develop into a blocked or meridional state due to forcing from high-frequency 
transient waves upstream (presumably advected on a more zonal flow). Furthermore, results from 
Huang and Nakamura (2017) indicate that the advection of LWA and the deceleration and diffluence 
of the background flow can reinforce each other. Therefore, a process might be conceivable where 
advection of LWA on a strong westerly flow leads to recurrence of amplified waves in areas of diffluent 
flow, as often found at the jet exit regions. 

In practice, the waveguide can be approximated using the zonal wind field. Thereby, the background 
flow is often defined as a time and/or low pass filtered product of the wind (Wirth et al., 2018). In 
summary, changes in the upper-level background flow, mainly in the zonal wind U, are related to the 
waveguide and will interact with RWPs by influencing both their propagation and amplification within 
the extratropics. 

1.3.3 Rossby wave forcing from deep convection 
Latent heat release from deep tropical convection and divergent outflow at upper levels can act as a 
Rossby wave source and force atmospheric circulation in other areas (Wheeler and Hendon, 2004; 
Moore et al., 2010), e.g., by advection of air with anomalous absolute vorticity from the outflow 
(Cassou, 2008; Li et al., 2020). The common response is an anticyclone to the north-west of the 
anomalous convection, which can initiate a RWP and acts to strengthen the waveguide north of the 
anticyclone as the meridional absolute vorticity gradient is enhanced locally (Moore et al., 2010). 
Concretely, changes in the extratropical flow in the North Atlantic region have been linked to deep 
convection in the Caribbean and central Atlantic region (Hoskins and Sardeshmukh, 1987; Li et al., 
2020), but also to deep convection in the tropical Pacific, which has been related to the Madden Julian 
Oscillation (MJO; Cassou, 2008). The North Pacific extratropical flow has also been shown to be 
sensitive to forcing from the tropical Pacific and Indian oceans (Moore et al., 2010). 

Therefore, RRWPs might be initiated or influenced by RW forcing from deep convection. Barton et al. 
(2016) connected a series of RW trains to tropical forcing in the form of an active MJO phase 2 in the 
Indian Ocean. They found that low outgoing longwave radiation (OLR) values and associated divergent 
upper-level outflow caused anticyclonic flow anomalies northwards of the anomalous divergence. 
These anticyclonic anomalies initiated and strengthened a series of far-reaching wave trains which were 
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linked to RW breaking over Europe and extreme precipitation over Switzerland. This episode was 
characterized by high R values exceeding 15 m s-1 between 180° W and 150° W and R values of 12 m 
s-1 around 10° W from 21st September until 13th October 2002 (see Appendix A1.2). In his case study 
of the cold and wet winter 2013/2014 in Europe and North America, Davies (2015) studied backward 
trajectories of air parcels which formed the upper-level troughs and ridges constituting the RRWPs 
(Röthlisberger et al., 2019). The amplification of these RRWPs resulted from extreme relative PV 
values, which were in part generated by diabatic processes. Davies (2015) showed that some of the air 
parcels reaching the North Atlantic came from lower levels (800 to 500 hPa) of the eastern tropical 
Pacific, around 25° N and 170° W, and underwent large diabatic ascent over Central America before 
reaching the RWPs. Further upstream, air parcels which joined and possibly strengthened a ridge over 
the northeast Pacific originated in the tropics, around 10° N, 95° E and experienced ascent over the 
western tropical Pacific. 

OLR has been used as a proxy for intense tropical convection in many studies (Kiladis, 1998; Wheeler 
and Hendon, 2004; Cassou, 2008; Moore et al., 2010; Kiladis et al., 2014; van der Wiel et al., 2016; Di 
Capua et al., 2020b), as deep tropical convection leads to high cloud tops and thus lower emission 
temperatures and lower OLR values. Furthermore, the divergent outflow at upper levels resulting from 
the ascending air can also be used as an indicator of deep convection (Cassou, 2008; Moore et al., 2010; 
Barton et al., 2016). 

1.4  Causal inference 
To summarize, there exist many potential drivers of RRWPs but no dedicated studies to investigate 
them. Atmospheric blocking, changes in the background flow, and RW forcing from deep convection 
are three plausible drivers (Röthlisberger et al., 2019) which are also interconnected (Moore et al., 2010; 
Nakamura and Huang, 2017; Li et al., 2020). 

Identifying cause and effect in complex systems such as the earth-system is often not possible using 
conventional statistical methods (Moore et al., 2010; Kretschmer et al., 2016; Runge, 2018; Runge et 
al., 2019a and 2019b). To overcome this hurdle, novel approaches based on causal inference methods 
have been developed and increasingly applied in atmospheric sciences. Ebert-Uphoff and Deng (2012) 
first used causal discovery to study relations between large climate oscillations. Causal inference 
methods in atmospheric science have further been used to study atmospheric flow changes (Deng and 
Ebert-Uphoff, 2014), teleconnections between ENSO and the Walker circulation (Runge et al., 2014), 
monsoon dynamics (Runge et al., 2015; Di Capua et al., 2020a and 2020b), the Atlantic meridional 
overturning circulation and its influence on global temperature variability (Schleussner et al., 2014), 
and Arctic drivers of midlatitude winter circulation (Kretschmer et al., 2016). 

One such method is the Peter and Clark momentary conditional independence (PCMCI) algorithm 
(Runge, 2018; Runge et al., 2019b), a causal inference method which combines a condition-selection 
step, the PC algorithm developed by Spirtes and Glymour (1991), with a momentary conditional 
independence (MCI) test. PCMCI deals well with autocorrelated, high dimensional, and non-linear time 
series and is therefore suited for complex interactions as is often the case in the climate system (Runge 
et al., 2019a and 2019b). 
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1.5 Research questions 
In this thesis, areas where atmospheric blocking, the background flow, and deep convection might drive 
the occurrence of boreal winter RRWPs in the North Atlantic and eastern North Pacific are identified 
using composite maps and regression analysis. The causal inference method PCMCI is applied to find 
relevant links and their time lags between RRWPs and these potential drivers. Applying causal 
inference methods to a complex, not yet fully understood phenomenon such as drivers of RRWPs, can 
yield insight into the direction, strength, and temporal scale of these processes. Thus, two research 
questions can be derived. 

I. In what regions are changes in atmospheric blocking, the background flow, and deep 
convection related to RRWPs in the North Atlantic and eastern North Pacific in 
boreal winter, as measured by the R-metric? 
 

II. At what time lags and with which link strength do atmospheric blocking, the 
background flow, and deep convection in the regions identified in I. interact with 
RRWPs? 

Moreover, from a methodological point of view, the insights gained during this work will also contribute 
to evaluating an emerging statistical method to take advantage of the large amount of data available in 
climate sciences. This leads to a final, broader research question. 

III. How can causal inference be applied to capture links between synoptic-scale 
phenomena such as RRWPs and their drivers? 
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2. Data and Methods 
2.1 Data 

Data from the ERA5 reanalysis (Hersbach et al., 2020) from 01.01.1979 to 31.12.2018 was used. The 
spatial resolution is 31 km horizontally and 137 levels up to 0.01 hPa vertically and its output frequency 
is hourly. In this work the data was resampled to daily resolution. Data was available at 0.5° by 0.5° 
spatial resolution, except for atmospheric blocking, where 1° by 1° data was used. In this thesis, 
December, January, and February (DJF) are investigated. 

2.1.1 R-metric 
The R-metric, R, quantifies RRWPs. It was developed by Röthlisberger et al. (2019) and describes a 
time – and wavenumber filtered 250 hPa meridional wind velocity (Ali et al., 2021). It has high values, 
when troughs and ridges repeatedly amplify in phase, that is at the same longitudes. R used in this work 
is derived from the ERA5 meridional wind (“V-component of wind”) at 250 hPa using publicly 
available code (Ali and Röthlisberger, 2021). For a detailed description see Röthlisberger et al. (2019). 
The derivation of R can be broken down into 4 consecutive steps (Fig. 2):  

1. Meridionally average the 250 hPa meridional wind from 35° N to 65° N. 
2. Apply a 14.25-day running mean filter to only retain signals lasting longer than the synoptic 

scale. Note that 14.25 corresponds to approximately two synoptic-scale Rossby wave periods. 
This removes instances where synoptic-scale waves do not amplify in phase. 

3. Apply a high-pass filter for synoptic (4–15) wavenumber signals to remove planetary-scale 
waves and retain synoptic-scale waves. 

4. Calculate the envelope of this synoptic wavenumber signal. 

In this work, R was further zonally averaged over (1) the area between 50° W to 10° E for R in the 
North Atlantic (𝑅𝑅𝑁𝑁−𝐴𝐴𝐴𝐴𝐴𝐴) and (2) the area between 175° W to 115° W for R in the eastern North Pacific 
(𝑅𝑅𝑁𝑁𝑁𝑁−𝑃𝑃𝑃𝑃𝑃𝑃), thus deriving a daily time series of R for each region. In both these areas the mean and 95th 
percentile of R in DJF is high (Fig. 3). The link between R and persistent DJF surface weather 
downstream of these ocean basins has been established in section 1.2 (Röthlisberger et al., 2019; Ali et 
al., 2021). 

2.1.2 Atmospheric blocking, PV, and the Atlantic European weather regimes 
Atmospheric blocking is defined based on negative upper level (500-150 hPa) PV anomalies as in 
Schwierz et al. (2004) with modifications following Rohrer et al. (2018). Hereby, PV anomalies below 
-1.3 PVU (1 PVU = 10−6 𝐾𝐾 𝑘𝑘𝑔𝑔−1 𝑚𝑚2 𝑠𝑠−2) which can be identified for a minimum of 5 consecutive 
days and whose area between 6-hourly timesteps overlaps at least by 70 % are identified as blocked. In 
this thesis, the 6-hourly data was resampled to daily data by assigning a grid cell as blocked on a given 
day, if a block was present on any one of the four 6-hourly time steps within said day. PV on the 320 K 
isentrope was used in the composite maps to show the approximate location of the jet, i.e., waveguide 
(Martius et al., 2010; Wirth et al., 2018). Röthlisberger et al. (2018) show that the 320 K isentrope 
displays the largest PV gradient between the latitudes 35° N to 65° N in DJF and is thus best suited to 
represent the extratropical waveguide (Martius et al., 2010). For the North Atlantic, there is a tradition 
of classifying the synoptic situation using weather regimes (Vautard, 1990; Cassou, 2008), which 
include blocked weather situations. In this work the Atlantic European weather regimes defined by 
Grams et al. (2017) are used to represent selected blocking patterns like Greenland blocking (see 
Appendix A2.1 for a full description of the weather regimes). 

2.1.3 Background flow 
The background flow was approximated using the instantaneous, low-pass filtered for zonal 
wavenumbers 0 to 3 zonal wind U at 250 hPa (𝑈𝑈250wvnf k0k3). Most common definitions of the 
background flow include not only such a filtering for low-frequency wavenumbers but also averaging 
over time (Wirth et al., 2018). This was not done in this work, as potential areas of interest revealed by 
analysing the background flow shall be used in PCMCI. Time-averaged quantities have higher than 
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usual autocorrelation, which reduces the detection power of PCMCI (Runge et al., 2019b; Runge, 2020). 
Furthermore, this quantity should represent the atmospheric background state, or the position and 
strength of jet acting as a waveguide at a given moment, and thus instantaneous values are more 
appropriate. In this work, I limit the investigation to areas related to the jet, which are defined as 
anomalies in proximity to the climatological jets (Moore et al., 2010; Li et al., 2020). 

2.1.4 Deep convection - outgoing longwave radiation and velocity potential 
The negative of ERA5 mean top net long-wave radiation flux was used as OLR data (Hersbach et al., 
2018). Enhanced convection is captured by small absolute values of OLR (Kiladis, 1998; Moore et al., 
2010; Li et al., 2020) or when considering anomalies, by negative OLR anomalies (Cassou, 2008). As 
deep convection leads to divergent outflow at upper levels, negative velocity potential (VP) values or 
anomalies at upper levels can be used to track tropical deep convection (Cassou, 2008; Kiladis et al., 
2014). In this work, velocity potential at 250 hPa, derived from ERA5 zonal and meridional wind, was 
used in conjunction with OLR to determine areas with enhanced convection. 

 

 

Figure 2: Calculation of R for two RRWP events. One event a), c), e), g) linked to extreme precipitation in 
autumn 1993 described by Barton et al. (2016) and another b), d), f), h) linked to persistent cold and wet 
conditions in winter 2013/2014 described by Davies (2015). Hovmöller diagrams a), b) show the 250 hPa 
meridionally averaged meridional wind 𝐕𝐕𝐦𝐦𝐦𝐦 in shadings and black dashed lines indicate the approximate 
trajectories of individual RWPs. After applying a time filter c), d), a wavenumber filter e), f), and 
calculating the envelope of this signal, R is retained g), h). Green contours indicate R of 𝟏𝟏𝟏𝟏 𝐦𝐦 𝐬𝐬−𝟏𝟏. Taken 
from Röthlisberger et al. (2019). 
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2.2 Methods 
2.2.1 Composites 

Composite maps are a useful tool to characterize the mean state of the atmosphere during periods of 
interest. In this work, composite maps of blocking frequency anomalies, 𝑈𝑈250wvnf k0k3 anomalies, and 
OLR and VP anomalies leading up to and during days with RRWP activity, i.e., days where R is high, 
are created. Recall that time series of R averaged over the North Atlantic (𝑅𝑅𝑁𝑁−𝐴𝐴𝐴𝐴𝐴𝐴) and eastern North 
Pacific (𝑅𝑅𝑁𝑁𝑁𝑁−𝑃𝑃𝑃𝑃𝑃𝑃) basins are studied. To investigate days with RRWPs, high R days (𝑅𝑅ℎ𝑖𝑖𝑖𝑖ℎ) are defined 
as days where R, averaged over an ocean basin, is higher than the 85th percentile of R (𝑅𝑅85𝑝𝑝𝑃𝑃𝐴𝐴𝐴𝐴) in that 
basin: 

𝑅𝑅ℎ𝑖𝑖𝑖𝑖ℎ  =  �𝑅𝑅𝐴𝐴  | 𝑅𝑅𝐴𝐴  ≥  𝑅𝑅85𝑝𝑝𝑃𝑃𝐴𝐴𝐴𝐴� 

(Eq. 1) 

, read as: "𝑅𝑅ℎ𝑖𝑖𝑖𝑖ℎ is the set of all elements of the form 𝑅𝑅𝐴𝐴 where 𝑅𝑅𝐴𝐴  ≥  𝑅𝑅85𝑝𝑝𝑃𝑃𝐴𝐴𝐴𝐴 holds”, where 𝑅𝑅𝐴𝐴 is the 
time series of R and t stands for time. The distribution of high R days within DJF (Fig. 4) reveals that 
they are spread evenly within DJF and that there is no tendency for high R days to fall within a certain 
month. This indicates that there is not much seasonality in occurrence of high R days within DJF. 
Furthermore, high R days in the North Atlantic (Fig. 4a) occur in shorter “bursts”, whilst in the eastern 
North Pacific (Fig. 4b), high R days more often occur in long consecutive episodes. 

 

Figure 3: R climatology a) and 95th percentile b) for each longitude and day of year. Taken from 
Röthlisberger et al. (2019). Black rectangles have been added to mark the study areas (North Atlantic: 50° 
W to 10° E; eastern North Pacific: 175° W to 115° W) and studied season (DJF) for this work. 
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To capture the state of the atmosphere during RRWPs, composites of selected variables were created 
during high R days. The composites display the mean difference to the seasonal climatology of the 
respective variable per gridpoint, e.g., the average difference in blocking frequency between the 
composite period, 𝑅𝑅ℎ𝑖𝑖𝑖𝑖ℎ, and the seasonal mean. 

Furthermore, the conditions leading up to RRWPs are of interest to identify possible precursors of 
RRWPs. Therefore, time lagged composites with respect to high R days were also created. Since high 
R days often occur in long consecutive episodes (Fig. 4), days in the lagged composite sample are often 
also high R days. These high R days should not be included in the lagged composites, as the intent of 
this analysis is to examine the atmospheric state prior to RRWPs and remove any signal from RRWPs. 
Therefore, the composites at lag 𝜏𝜏 (𝑅𝑅ℎ𝑖𝑖𝑖𝑖ℎ,𝜏𝜏) were defined as: 

𝑅𝑅ℎ𝑖𝑖𝑖𝑖ℎ,𝜏𝜏  =  �𝑅𝑅𝐴𝐴−𝜏𝜏 | 𝑅𝑅𝐴𝐴  ≥  𝑅𝑅85𝑝𝑝𝑃𝑃𝐴𝐴𝐴𝐴 ∧ 𝑅𝑅𝐴𝐴−𝜏𝜏  <  𝑅𝑅85𝑝𝑝𝑃𝑃𝐴𝐴𝐴𝐴� 

(Eq. 2) 

, read as: "𝑅𝑅ℎ𝑖𝑖𝑖𝑖ℎ,𝜏𝜏 is the set of all elements of the form 𝑅𝑅𝐴𝐴−𝜏𝜏 where 𝑅𝑅𝐴𝐴  ≥  𝑅𝑅85𝑝𝑝𝑃𝑃𝐴𝐴𝐴𝐴 and 𝑅𝑅𝐴𝐴−𝜏𝜏  <
 𝑅𝑅85𝑝𝑝𝑃𝑃𝐴𝐴𝐴𝐴  holds”, where 𝑅𝑅𝐴𝐴−𝜏𝜏 is the time series of R lagged by 𝜏𝜏 days. As an example, consider two days 
with high R in the North Atlantic: The 31st January and 1st February 1985 (t = 31.01.1985, 01.02.1985). 
Both dates are included in the non-lagged composite as 𝑅𝑅𝐴𝐴  ≥  𝑅𝑅85𝑝𝑝𝑃𝑃𝐴𝐴𝐴𝐴 holds for both t. In the composite 
at lag 𝜏𝜏 = 1 day (t-1 = 30.01.1985, 31.01.1985) only the 30.01.1985 is included as the 31.01.1985 is a 
high R day and 𝑅𝑅𝐴𝐴−𝜏𝜏  <  𝑅𝑅85𝑝𝑝𝑃𝑃𝐴𝐴𝐴𝐴 does not hold. In other words, if at a date within t – 𝜏𝜏, R  ≥ 𝑅𝑅85𝑝𝑝𝑃𝑃𝐴𝐴𝐴𝐴, 
then that date is removed from the t - 𝜏𝜏 composite. 

Statistically significant areas were determined by applying a two-sided Welch’s t-test (Welch, 1947) on 
the samples of low R days (𝑅𝑅𝐴𝐴𝑙𝑙𝑙𝑙  = �𝑅𝑅𝐴𝐴  | 𝑅𝑅𝐴𝐴  ≤  𝑅𝑅15𝑝𝑝𝑃𝑃𝐴𝐴𝐴𝐴�; 𝑅𝑅𝐴𝐴𝑙𝑙𝑙𝑙,𝜏𝜏  =  �𝑅𝑅𝐴𝐴−𝜏𝜏 | 𝑅𝑅𝐴𝐴  ≤  𝑅𝑅15𝑝𝑝𝑃𝑃𝐴𝐴𝐴𝐴�) and high 
R days at equivalent lags. The Welch’s t-test is a variation of the Student’s t-test, which does not assume 
equal sample variance as its test statistic value is calculated by including each sample’s standard 
deviation. The test statistic t is calculated as: 

𝑡𝑡 =  
�̅�𝑥1 −  �̅�𝑥2

�𝜎𝜎𝑥𝑥1
2

𝑛𝑛1
+  
𝜎𝜎𝑥𝑥2
2

𝑛𝑛2

 

(Eq. 3) 

, where �̅�𝑥𝑖𝑖 is the mean of sample i, 𝜎𝜎𝑥𝑥𝑖𝑖
2 is the variance of sample i, and 𝑛𝑛𝑖𝑖 is the sample size. It should be 

noted that whilst the fraction of area blocked is not a normally distributed variable, the means of samples 

Figure 4: Distribution of high R days within DJF for a) the North Atlantic basin and b) the eastern North 
Pacific basin. The y-axis shows the day of year of each high R day, whilst the x-axis is the index of the n = 
540 days during which R exceeded the 85th percentile of R within each basin. The horizontal red dashed 
lines show the boundaries of DJF by day of year. 
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will still be normally distributed and hence the Welch’s t-test is appropriate. The unequal variance of 
the fraction of area blocked samples for high and low R is not an issue with the Welch’s t test, as it does 
not assume equal sample variance. 

The spatial field of p-values obtained by the Welch’s t-test were corrected for multiple testing using the 
method by Benjamini and Hochberg (BH; 1995) to control the false discovery rate (FDR) to a given 
level. The FDR is defined as: 

FDR =  E �
𝐹𝐹𝐹𝐹

𝐹𝐹𝐹𝐹 +  𝑇𝑇𝐹𝐹
�  =  𝐸𝐸 �

𝐹𝐹𝐹𝐹
𝐷𝐷
� 

(Eq. 4) 

, where E denotes the expected value, FP is the number of false positives and TP the number of true 
positives, and D the total discoveries, i.e., the sum of FP and TP. In this work the p-values were adjusted 
(i.e., increased) so that the FDR is constrained at 0.01. Concretely, the p-values are sorted by rank, k, 
where the smallest p-values receives rank 1. Then for each ranked p-value, pk, an adjusted p-value, 
pk,adj, is calculated: 

pk,adj  =  pk  
m
k

 

(Eq. 5) 

, where m is the total number of p-values and k is the rank of current p-value pk. Note that pk,adj  >  pk, 
except for the largest p-value, where m = k, and thus pk,adj  =  pk. The BH adjusted p-value pk,adj,BH 
is then the smaller value of either pk,adj or the BH adjusted p-value of the next highest rank pk+1,adj,BH: 

pk,adj,BH  =  �
𝐩𝐩𝐤𝐤,𝐦𝐦𝐚𝐚𝐚𝐚 𝑖𝑖𝑖𝑖 pk,adj  ≤  pk+1,adj,BH              
𝐩𝐩𝐤𝐤+𝟏𝟏,𝐦𝐦𝐚𝐚𝐚𝐚,𝐁𝐁𝐁𝐁 𝑖𝑖𝑖𝑖 pk,adj  >  pk+1,adj,BH 

 

(Eq. 6) 

Finally, only gridpoints where pk,adj,BH  ≤  𝛼𝛼, are marked as statistically significant, with 𝛼𝛼 = 0.01. 

2.2.2 Regression analysis 
Whilst composite maps show the mean state of the atmosphere associated with high R days, a regression 
analysis can provide information on whether the observed changes, e.g., large 𝑈𝑈250wvnf k0k3 anomalies 
in a certain region, influence or can predict changes the dependent variable (Draper and Smith, 1998, 
p. 15-20), in this case R. Therefore, a linear least-squares regression of R on the variables described 
above was carried out: 

𝑌𝑌𝐴𝐴  =  𝛽𝛽0  + 𝛽𝛽1 𝑋𝑋𝐴𝐴   

(Eq. 7) 

The R time series for the basin of choice (𝑌𝑌𝐴𝐴) was regressed against each gridpoint’s time series of the 
selected variable (𝑋𝑋𝐴𝐴). For each gridpoint, the slope parameter of the regression (𝛽𝛽1) indicates the mean 
change in R for one unit change in the dependent variable (𝑋𝑋𝐴𝐴). Because blocking data is binary (1 if a 
block is present in a gridpoint, 0 if not) 𝛽𝛽1 cannot be considered a slope parameter, since there are only 
two groups of data (0,1) instead of continuous values. Here 𝑋𝑋𝐴𝐴 takes the form: 

𝑋𝑋𝐴𝐴  =  �
1 𝑖𝑖𝑖𝑖 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘 𝑝𝑝𝑝𝑝𝑝𝑝𝑠𝑠𝑝𝑝𝑛𝑛𝑡𝑡 𝑎𝑎𝑡𝑡 𝑡𝑡𝑖𝑖𝑚𝑚𝑝𝑝 𝑡𝑡      
0 𝑖𝑖𝑖𝑖 𝑛𝑛𝑏𝑏 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘 𝑝𝑝𝑝𝑝𝑝𝑝𝑠𝑠𝑝𝑝𝑛𝑛𝑡𝑡 𝑎𝑎𝑡𝑡 𝑡𝑡𝑖𝑖𝑚𝑚𝑝𝑝 𝑡𝑡 

(Eq. 8) 

and 𝛽𝛽1corresponds to the difference between expected R value 𝐸𝐸(𝑌𝑌𝐴𝐴) in absence (Eq. 9) and presence 
(Eq. 10) of a block at each gridpoint. The expected R values are defined as: 
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𝐸𝐸(𝑌𝑌𝐴𝐴  | 𝑋𝑋𝐴𝐴 = 0) =  𝛽𝛽0 

(Eq. 9) 

𝐸𝐸(𝑌𝑌𝐴𝐴  | 𝑋𝑋𝐴𝐴 = 1) =  𝛽𝛽0  +  𝛽𝛽1 

(Eq. 10) 

Thus, 𝛽𝛽1 can be defined as: 

𝛽𝛽1 =  𝐸𝐸(𝑌𝑌𝐴𝐴  | 𝑋𝑋𝐴𝐴 = 1) −  𝐸𝐸(𝑌𝑌𝐴𝐴  | 𝑋𝑋𝐴𝐴 = 0) 

(Eq. 11) 

In other words, 𝛽𝛽1 is the difference in mean values of R between two groups distinguished by presence 
or absence of a block (Stock and Watson, 2015; p. 158-160). 

Linear least square regression analysis assumes that observations are independent of each other (Draper 
and Smith, 1998, p. 62-69, p. 179ff.), an assumption that is violated in highly autocorrelated time series. 
As R is a 14.25-day time-averaged product of the meridional wind at 250 hPa, consecutive observations 
within 14.25 of each other are not independent and autocorrelation of R time series is high (Fig. 5). The 
autocorrelation stabilizes around lag 14 days at 0.07 for 𝑅𝑅𝑁𝑁−𝐴𝐴𝐴𝐴𝐴𝐴 (Fig. 5a) and 0.12 for 𝑅𝑅𝑁𝑁𝑁𝑁−𝑃𝑃𝑃𝑃𝑃𝑃 (Fig. 
5a). Therefore, only every 7th day of the time series was used for the regression to reduce 
autocorrelation. Whilst the observations are still not completely independent as would have been with 
selecting every 14th day, the results using every 14th day were sensitive to the choice of start date, 
meaning that the 14 different possible regression analyses differed. Using every 7th day gave similar 
results independently of start day selection. The autocorrelation of R at lag 7 is 0.42 for 𝑅𝑅𝑁𝑁−𝐴𝐴𝐴𝐴𝐴𝐴  (Fig. 
5a) and 0.46 for 𝑅𝑅𝑁𝑁𝑁𝑁−𝑃𝑃𝑃𝑃𝑃𝑃 (Fig. 5a), which is still considerable, but markedly lower than when using the 
whole dataset. Note that the partial autocorrelation drops to values around 0.1 at lag 7 (Figs. 5c and 5d). 
Therefore, an observation at lag 0 is nearly independent of an observation at lag 7 if lags 1,2,3, …, 6 
are conditioned on. 

 

The p-values obtained by the regression analysis indicate whether the obtained slope, 𝛽𝛽1, differs 
significantly from 0 using a Wald test (Wald, 1943). The spatial field of p-values was corrected for 
multiple testing in the same manner as the p-values obtained from the significance test of the composites 
(Benjamini and Hochberg, 1995) and grid points where pk,adj,BH  ≤  0.01 are marked as significant. 

Figure 5: The autocorrelation function (ACF) and partial autocorrelation function (PACF) for time lags 
from 0 to 40 days for R over a) and c) the North Atlantic and b) and d) the eastern North Pacific. Shaded 
areas correspond to the 95 % confidence interval per lag. Vertical dashed lines mark lags 7 and 14 and 
horizontal dashed lines in a) and b) mark the correlation at those two lags. 
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2.2.3 PCMCI 
The information from the composites and regression analysis as well as insights from the literature will 
be combined to build concrete hypotheses on what causes RRWPs. More precisely, the direction, 
strength, time lag, and if possible, driving physical mechanism behind causal links should be 
formulated. These hypotheses can then be tested using the causal inference tool PCMCI (Runge et al., 
2019b), which quantifies link direction, time lags, and link strength. In the following section a 
theoretical introduction to PCMCI is first given. Then assumptions and limitations of PCMCI are 
considered, before PCMCI is applied to generic data to show its functionality. Finally, the concrete 
application of PCMCI to discern the causal drivers of RRWPs is discussed. 

2.2.3.1 Theory of the PCMCI algorithm 
PCMCI can be separated into two parts: The first step, the Peter and Clark algorithm (Spirtes and 
Glymour, 1991), detects causal drivers of each link, also called causal parents, whilst the second step, 
the momentary conditional independence test, quantifies the link strength. Both will be explained in the 
next paragraphs following the descriptions of Kretschmer et al. (2016), Runge (2018), Runge et al. 
(2019b), and Di Capua et al. (2020a). 

1. Detecting the causal links with the Peter and Clark (PC) condition selection algorithm 

Assume a system of time series 𝑿𝑿𝐴𝐴 =  (𝑋𝑋𝐴𝐴1,𝑋𝑋𝐴𝐴2, . . . ,𝑋𝑋𝐴𝐴𝑁𝑁), where t indicates time and N is the number of 
time series in the system. The PC algorithm is applied to find the causal parents 𝐹𝐹�(𝑋𝑋𝐴𝐴

𝑗𝑗) of the variable 
𝑋𝑋𝐴𝐴
𝑗𝑗, where 𝑗𝑗 ∈  𝑁𝑁, within the pool of selected univariate detrended time series 𝑿𝑿𝐴𝐴. The assumption of 

time-order (cause precedes effect) is given in time series and therefore the direction of links is known 
(Runge, 2018). Simplified this means that the past causes the present. Therefore, the causal parents 
𝐹𝐹�(𝑋𝑋𝐴𝐴

𝑗𝑗) are variables within 𝑿𝑿𝐴𝐴, at different time lags 𝜏𝜏 in the past, which have a causal effect on the 
examined variable in the present, 𝑋𝑋𝐴𝐴

𝑗𝑗. For the PC algorithm two parameters must be defined by the user: 
The significance level for the partial correlation tests, 𝛼𝛼𝑃𝑃𝑃𝑃, and the maximum time lag, 𝜏𝜏𝑚𝑚𝑃𝑃𝑥𝑥. 

● The pool of parents is first initialized as 𝐹𝐹�(𝑋𝑋𝐴𝐴
𝑗𝑗)  =  (𝑿𝑿𝐴𝐴−1,𝑿𝑿𝐴𝐴−2, . . . ,𝑿𝑿𝐴𝐴− 𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚) thus containing 

every lagged timestep up to  𝜏𝜏𝑚𝑚𝑃𝑃𝑥𝑥 of every other variable, see the definition of 𝑿𝑿𝐴𝐴 above. In a 
next step (iteration p = 0) any variable 𝑋𝑋𝐴𝐴− 𝜏𝜏

𝑖𝑖 , where 𝑖𝑖 ∈  𝑁𝑁, is removed from the parents 𝐹𝐹�(𝑋𝑋𝐴𝐴
𝑗𝑗) 

if the null hypothesis 
 
𝑋𝑋𝐴𝐴− 𝜏𝜏
𝑖𝑖  ⫫  𝑋𝑋𝐴𝐴

𝑗𝑗 
(Eq. 12) 

read as: 𝑋𝑋𝐴𝐴− 𝜏𝜏
𝑖𝑖  and 𝑋𝑋𝐴𝐴

𝑗𝑗 are unconditionally independent 

cannot be rejected at the significance threshold 𝛼𝛼𝑃𝑃𝑃𝑃. This is done by removing all 𝑋𝑋𝐴𝐴− 𝜏𝜏
𝑖𝑖  which 

do not significantly correlate with 𝑋𝑋𝐴𝐴
𝑗𝑗. 

● In subsequent steps (iterations p = 1, 2, 3, …) any variable 𝑋𝑋𝐴𝐴− 𝜏𝜏
𝑖𝑖  is removed from the parents 

𝐹𝐹�(𝑋𝑋𝐴𝐴
𝑗𝑗) if the null hypothesis 

 
𝑋𝑋𝐴𝐴− 𝜏𝜏
𝑖𝑖  ⫫  𝑋𝑋𝐴𝐴

𝑗𝑗  | 𝑆𝑆 
(Eq. 13) 

read as: 𝑋𝑋𝐴𝐴− 𝜏𝜏
𝑖𝑖  and 𝑋𝑋𝐴𝐴

𝑗𝑗 are conditionally independent given 𝑆𝑆 
 
cannot be rejected at the significance threshold 𝛼𝛼𝑃𝑃𝑃𝑃. Here 𝑆𝑆 refers to the p elements of 𝐹𝐹�(𝑋𝑋𝐴𝐴

𝑗𝑗) 
which exhibited the strongest correlations to 𝑋𝑋𝐴𝐴

𝑗𝑗 in the previous iteration. This means that partial 
correlations are calculated between 𝑋𝑋𝐴𝐴

𝑗𝑗 and each element 𝑋𝑋𝐴𝐴− 𝜏𝜏
𝑖𝑖  within 𝐹𝐹�(𝑋𝑋𝐴𝐴

𝑗𝑗) conditional on the 
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first p most strongly correlating (with 𝑋𝑋𝐴𝐴
𝑗𝑗) variables 𝑋𝑋𝐴𝐴− 𝜏𝜏

𝑖𝑖  within 𝐹𝐹�(𝑋𝑋𝐴𝐴
𝑗𝑗) as determined by the 

previous iteration, e.g., for iteration p = 1 the 1 most strongly correlating variable as identified 
in p = 0. See Kretschmer et al. (2016) for an applied example. 
 
In other words, in each iteration p the remaining causal parents are tested for independence 
regarding the variable 𝑋𝑋𝐴𝐴

𝑗𝑗 conditional on the p most strongly correlating (with 𝑋𝑋𝐴𝐴
𝑗𝑗) causal 

parents. If the hypothesis of conditional independence cannot be rejected, this means that there 
still exists a significant correlation between 𝑋𝑋𝐴𝐴− 𝜏𝜏

𝑖𝑖  and 𝑋𝑋𝐴𝐴
𝑗𝑗 which cannot be explained only by 

the p most strongly correlating parent 𝐹𝐹�(𝑋𝑋𝐴𝐴
𝑗𝑗). Hence, 𝑋𝑋𝐴𝐴− 𝜏𝜏

𝑖𝑖  could be a causal parent of 𝑋𝑋𝐴𝐴
𝑗𝑗 and 

should not be removed from the pool. If the above null hypothesis is rejected, this means that 
𝑋𝑋𝐴𝐴− 𝜏𝜏
𝑖𝑖  and 𝑋𝑋𝐴𝐴

𝑗𝑗 are conditionally independent given 𝑆𝑆 and thus 𝑋𝑋𝐴𝐴− 𝜏𝜏
𝑖𝑖  should not be kept within 

the pool of causal parents. 

● The algorithm converges once 𝑆𝑆 = 𝐹𝐹��𝑋𝑋𝐴𝐴
𝑗𝑗� \ 𝑋𝑋𝐴𝐴− 𝜏𝜏

𝑖𝑖  (the number of parents is equal to the number 
of conditions) and the null hypothesis 

𝑋𝑋𝐴𝐴− 𝜏𝜏
𝑖𝑖  ⫫  𝑋𝑋𝐴𝐴

𝑗𝑗  | 𝐹𝐹��𝑋𝑋𝐴𝐴
𝑗𝑗� \ 𝑋𝑋𝐴𝐴− 𝜏𝜏

𝑖𝑖  

(Eq. 14) 

read as: 𝑋𝑋𝐴𝐴− 𝜏𝜏
𝑖𝑖  and 𝑋𝑋𝐴𝐴

𝑗𝑗 are conditionally independent 
given the parents of 𝑋𝑋𝐴𝐴

𝑗𝑗 excluding 𝑋𝑋𝐴𝐴− 𝜏𝜏
𝑖𝑖  

is rejected. The output of the PC algorithm is that each variable (𝑋𝑋𝐴𝐴
𝑗𝑗) has a strongly reduced set 

of causal parents which can then be entered into the MCI algorithm. 

2. Quantifying the strength of the causal effects with the momentary conditional independence 
(MCI) test 

MCI tests every variable pair 𝑋𝑋𝐴𝐴− 𝜏𝜏
𝑖𝑖 ,𝑋𝑋𝐴𝐴

𝑗𝑗 for a causal link 𝑋𝑋𝐴𝐴− 𝜏𝜏
𝑖𝑖  →  𝑋𝑋𝐴𝐴

𝑗𝑗, which is given if the null 
hypothesis 

𝑋𝑋𝐴𝐴− 𝜏𝜏
𝑖𝑖  ⫫  𝑋𝑋𝐴𝐴

𝑗𝑗  | 𝐹𝐹��𝑋𝑋𝐴𝐴
𝑗𝑗� \ {𝑋𝑋𝐴𝐴− 𝜏𝜏

𝑖𝑖 } ,𝐹𝐹� �𝑋𝑋𝐴𝐴−𝜏𝜏𝑖𝑖 � 

(Eq. 15) 

read as: 𝑋𝑋𝐴𝐴− 𝜏𝜏
𝑖𝑖  and 𝑋𝑋𝐴𝐴

𝑗𝑗 are conditionally independent 
given the parents of 𝑋𝑋𝐴𝐴

𝑗𝑗 excluding 𝑋𝑋𝐴𝐴− 𝜏𝜏
𝑖𝑖  and given the 

parents of 𝑋𝑋𝐴𝐴− 𝜏𝜏
𝑖𝑖  

is rejected. This means that partial correlations are again calculated between each variable 𝑋𝑋𝐴𝐴
𝑗𝑗 and every 

other variable at every time lag up to  𝜏𝜏𝑚𝑚𝑃𝑃𝑥𝑥, but now conditional on both the causal parents 𝐹𝐹��𝑋𝑋𝐴𝐴
𝑗𝑗� of 

𝑋𝑋𝐴𝐴
𝑗𝑗 excluding the past 𝑋𝑋𝐴𝐴− 𝜏𝜏

𝑖𝑖  and the causal parents of every parent 𝐹𝐹� �𝑋𝑋𝐴𝐴−𝜏𝜏𝑖𝑖 � as determined by the PC 
algorithm. Only the parents that still show a significant partial correlation here are retained and 
correspond to the final set of causal parents, revealing the causal structure of the system. An advantage 
of the MCI algorithm, so conditioning on the causal parents of both 𝑋𝑋𝐴𝐴

𝑗𝑗 and 𝑋𝑋𝐴𝐴−𝜏𝜏𝑖𝑖 , is that autocorrelation 
is accounted for (Runge et al., 2019b), which reduces false positives and increases detection power 
(Runge, 2020). 

MCI is in essence a multiple linear regression using the parents of each variable, derived in the PC step 
as independent variables (Kretschmer et al., 2016). Thus, the link strength can be thought of as a path 
coefficient and expresses the expected difference in standard deviations of a variable, also called an 
actor, given a change of 1 standard deviation in the parent (Kretschmer et al., 2016), whilst keeping all 
other parents identical (Di Capua et al., 2020b). A link strength of 0.2 going from 𝑋𝑋𝐴𝐴− 4

1  to 𝑋𝑋𝐴𝐴2 means 
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that a change of 1 standard deviation of causal parent 𝑋𝑋1 at time t-4 leads to a change of 0.2 standard 
deviations of 𝑋𝑋2 at time t. These results can be visualised using causal effect networks, which can be 
represented within schematic visualizations, oftentimes maps, of the studied system (Kretschmer et al., 
2016; Di Capua et al., 2020b). 

2.2.3.2 Assumptions and limitations of PCMCI 
Causal inference methods are often based on a set of assumptions, some of which are: Time-order, that 
is the cause should precede the effect; Causal Sufficiency, all direct common drivers are included; and 
the Causal Markov Condition, where a variable is conditionally independent of other variables given 
its parents (direct causes). However, in more recent studies it was shown that PCMCI can still be applied 
even when these assumptions do not hold completely true (Runge et al., 2019a and 2019b) as is the case 
in complex systems like the atmosphere. Here, especially the Causal Sufficiency Assumption can hardly 
be fulfilled and therefore care should be taken when interpreting the results of PCMCI: Adding 
previously unobserved actors or removing actors might change causal networks. A further assumption 
is stationarity of the studied time series (Runge et al., 2019b), hence any trends and seasonality should 
first be removed as far as possible. Retention of some non-stationarity is not an issue however, as 
PCMCI has proven to deal with observations containing trends or seasonality (Runge et al., 2019b). 
Finally, Runge (2018) notes that the absence of a link is more robust than the presence of a link as it 
does not require the assumptions of Causal Sufficiency or the Causal Markov Condition. Further 
assumptions and limitations and how to deal with them are discussed in detail in Runge (2018) and 
Runge et al. (2019a and 2019b). 

2.2.3.3 Testing PCMCI with generic data 
To examine how PCMCI captures links from different lagged relationships, it was tested with various 
generic time series which should mirror different lagged dependencies. Two binary (0,1) step functions 
were created to which random noise was added to create two continuous time series, one termed R and 
the other driver of R. Slight modifications to the lags and patterns of increase and decrease in the time 
series allowed to test different scenarios for causal links and are outlined in the following section. All 
PCMCI runs used  𝜏𝜏𝑚𝑚𝑃𝑃𝑥𝑥 of 5 to inspect only the immediate lagged relationships at lags 4 and 2 and 𝛼𝛼𝑃𝑃𝑃𝑃 
was set to 0.01. The Benjamini and Hochberg (1995) FDR test was applied to correct the p-values for 
multiple testing and limit FDR to 0.01. Only links significant at the 0.01 level after FDR are plotted. 

PCMCI visualises causal network using so-called causal process graphs (Runge et al., 2019b), which 
consist of nodes and edges connecting the nodes (Figs. 6 and 7). Concretely, the nodes in the causal 
process graph represent each actor, i.e., time series in this case, and its colour shows the autocorrelation 
strength, measured by the autocorrelation path coefficient. The edges represent the statistically 
significant links between actors with the colour indicating the link strength, measured by the path 
coefficient. Time-lagged and therefore directional links (based on the assumption of time order) are 
represented by arrows. The time lags of these links are indicated by numbers overlaying the links. If 
actors are linked on multiple time lags, more than one number is shown, with the strongest link listed 
first. Note that the link colour is defined by the strongest link. For instantaneous links no direction can 
be assigned. Thus, instantaneous links are visualised as solid lines with nodes at each end (Fig. 6d). 

In a first set of tests (Fig. 6), the links detected by PCMCI for changing lagged relationships between 
the driver of R and R were investigated. If the driver of R changes 4 timesteps before a change of R, i.e., 
at lag 4 (Fig. 6a), PCMCI correctly detects the link (Fig. 6b) with a link strength of 0.848. If the driver 
of R changes at lag 4 to a change of R but remains high while R is high (Fig. 6c), PCMCI correctly 
detects both the lagged link (Fig. 6d), although with reduced link strength 0.423, and the instantaneous 
relationship (link strength 0.446). Since PCMCI needs time order to direct causality (Runge et al., 
2019b), there is no direction for the instantaneous link. If the driver of R changes at lag 4 to a change 
of R but remains high while R is high and beyond (Fig. 6e), the link is correctly detected (Fig. 6f), but 
with further reduced effect strength of 0.389. It should be noted that detected autocorrelation increased 
for each of the last three examples, as less of the variance in the values could be explain by the links 
between variables. If the driver of R changes at lag 4 to a change of R but in another instance also at lag 
2 (Fig. 6g), PCMCI correctly detects both links (Fig. 6h). The link at time lag 2 has a larger effect 
strength (0.462) than the link at time lag 4 (0.380). 
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As mentioned above, in this work only changes of actors within DJF are investigated, whilst changes 
in driving variables at given lags might still come from other preceding months, in this case November. 
PCMCI offers a masking function to achieve this. In the next set of tests, this feature was investigated 
by separating the time series into a “winter” and “summer” season (Fig. 7). In a first example, driver of 
R changes at lag 4 to a change of R in “winter” and at lag 2 in “summer” (Fig. 7a). Without the masking 
function both links at lags 4 and 2 are detected and the causal network (not shown) is identical to the 
last example investigated above (Fig. 6h). However, using the PCMCI masking function to only 
consider changes during “winter”, allows to correctly identify only the link at lag 4 (Fig. 7b). In the 
final example, driver of R again changes at lag 4 to a change of R in “winter” and at lag 2 in “summer”. 
However, it now has a positive effect on R in “winter” and a negative effect in “summer” (Fig. 7c). 
Both links are detected if the model is not masked for “season” (Fig. 7d). However, due to the noise 
added to the series the positive link at lag 4 is slightly stronger (0.344) than the negative link at lag 2 
(0.342) and thus the causal graph depicts a positive link and displays lags 4 and 2, despite the link at 
lag 2 being negative. If the season masking for “winter” is applied, the positive link at lag 4 with a 
strength of 0.848 is correctly detected (Fig. 7e). Vice versa, if masking for changes in “summer” only, 
the negative link with strength -0.870 at lag 2 is detected (Fig. 7f). This example shows that the causal 
graph can be misleading, as all significant links are plotted, but the colour of the link and thus the sign 
of the link is only taken from the strongest link (Fig. 7d). If this example was repeated but the negative 
link in “summer” acted at the same lag as in “winter”, i.e., at lag 4, then the causal network for the 
whole year would not show any links, as they cancel out (not shown). 

2.2.3.4 Application of PCMCI to the drivers of RRWPs 
The following section provides an overview of how the PCMCI algorithm was used to quantify links 
between potential drivers of RRWPs and R. PCMCI was applied using tigramite, an open-source python 
package developed by Runge et al. (2019b), which allows to carry out and visualise PCMCI. The 
software and documentation are available at https://github.com/jakobrunge/tigramite/. 

In a first step, the potential drivers and the time lags at which they influence RRWPs were identified 
based upon statistically significant areas in the composites and the regression maps and known links 
from the literature. Often many areas circumglobally show statistically significant signals. Hence, only 
areas which can also be linked to R via a physical mechanism or plausible hypothesis were considered. 
Once possible drivers and hypotheses on how they influence RRWPs have been defined, the drivers 
must be converted from gridded data into time series in an appropriate manner. One approach is to 
spatially average variables over regions (Kretschmer et al., 2016; Runge et al., 2019a). Furthermore, 
time-averaging can reveal the different timescales, on which each driver is acting (Kretschmer et al., 
2016). The process of converting gridded data to time series is outlined in the following paragraph. 

PCMCI requires times series of detrended anomalies as input data (Di Capua et al., 2020b). Therefore, 
for each timestep at each gridpoint, anomalies with regards to its seasonal climatology were calculated, 
thus removing the seasonal cycle. Next, time series were created from the gridded data by spatially 
averaging over the regions of interest. When calculating spatial averages, all the gridded data was 
weighted by the cosine of the latitude to adjust for spherical geometry and the thus decreasing size of 
grid cells towards the poles. For blocking, the anomaly of the fraction of area blocked was calculated. 
Here, for a region of interest, again applying the area weighting, the fraction of area blocked per 
timestep was calculated by dividing the area covered by blocking by the total area of the region of 
interest. From this value the seasonal mean fraction of area blocked was subtracted, thus receiving an 
anomaly of fraction of area blocked with regards to the seasonal mean fraction of area blocked for 
regions of interest. Finally, any linear trend in the time series was removed. As this work focuses on 
DJF, the masking function of PCMCI was used to ensure that only changes of variables within DJF are 
considered. Drivers acting at some time lag, however, might still come from other months, specifically 
November, as the highest time lag investigated in this study is 23 days (Tab. 1). 

  

https://github.com/jakobrunge/tigramite/
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Figure 6: The panels in the left column a), c), e), and g) show generic time series of R (blue line) and driver 
of R (orange line). The time series are generated from binary (0,1) step functions with random noise added 
to each timestep to create a continuous time series. The panels in the right column b), d), f), and h) show 
the resulting causal networks. The node colour represents the autocorrelation path coefficient 
(autocorrelation strength) and the link colour indicates the path coefficient (link strength) and sign. Blue 
denotes a negative link and red a positive link. Note the different colour scales for nodes and links. The 
numbers written in white on the links in the causal network are the lags at which links were found. Directed 
links are visualised with arrows, whilst instantaneous links, where no direction of causality is derived, are 
visualised by lines with nodes at both ends as in panel d). 
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PCMCI was run for three different time scales: Daily, 3-daily, and 6-daily. This approach can give 
insight into how actors influence each other on multiple time scales (Kretschmer et al., 2016) and 
whether the links change across timescales. Since RRWPs are synoptic-scale phenomena, it is expected 
that most links act within lags of maximum 1-2 weeks. To resample the daily data to 3 and 6-daily 
resolutions, only every 3rd or 6th timestep was retained and assigned the mean value of itself and the 
next 2, respectively 5 days for a total of 3, respectively 6 days which were averaged (Tab. 1). 

The parameters 𝜏𝜏𝑚𝑚𝑃𝑃𝑥𝑥 (maximum time lag), 𝛼𝛼𝑃𝑃𝑃𝑃 (significance level for the PC algorithm), and 𝛼𝛼𝐹𝐹𝐹𝐹𝐹𝐹 
(significance threshold for the FDR corrected p-values) must be set in PCMCI. Kretschmer et al. (2016) 
found that changing the parameters  𝜏𝜏𝑚𝑚𝑃𝑃𝑥𝑥 and 𝛼𝛼𝑃𝑃𝑃𝑃  would change results, but sensitivity tests using 
different parameter choices and time scales yielded robust results. It is recommended to select  𝜏𝜏𝑚𝑚𝑃𝑃𝑥𝑥 
according to the maximum physical time lag expected in the system and that a larger choice is usually 
better since the only downside is longer runtime (Kretschmer et al., 2016; Runge et al., 2019b). As 
PCMCI was run on daily, 3-daily, and 6-daily timescales,  𝜏𝜏𝑚𝑚𝑃𝑃𝑥𝑥 was adjusted accordingly from 20 for 

Figure 7: Generic time series a) and c) and resulting causal networks b), and d), e), f) respectively, as in 
Figure 6. Here the PCMCI season masking function is used to investigate only changes within a specific 
season. 
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daily data, to 6 for 3-daily, and 3 for 6-daily so that all PCMCI models investigate processes at lags 
within about 20 days (Tab. 1). 

Table 1: Schematic representation of the time-averaging applied on the three different time scales. Each 
square is one time step for the respective model. Note that daily lags 19 to 23 are not shown. 

daily 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

3-daily 0 1 2 3 4 5 6 

6-daily 0 1 2 3 

𝛼𝛼𝑃𝑃𝑃𝑃 can be set by the user to a single value or determined from multiple values by selecting the best 
value based on the quality of the model it produces (Runge et al., 2019b; Di Capua et al., 2020). Runge 
et al. (2019b) note that  𝛼𝛼𝑃𝑃𝑃𝑃 should not be seen as a significance level, but rather as a “regularization 
parameter” as is used in model selection techniques. They further remark, that to low 𝛼𝛼𝑃𝑃𝑃𝑃 excludes too 
many true links during the PC stage, which can lead to false positives in the MCI stage, where these 
missing true links are not within the condition set.  𝛼𝛼𝑃𝑃𝑃𝑃 being too high on the other hand leads to lower 
detection power and higher runtime. Values between 0.01 and 0.05 were tested for  𝛼𝛼𝑃𝑃𝑃𝑃. Higher values 
did tend to reveal more links, but overall, the links significant at a conservative significance level, i.e., 
0.01, tended to be the strongest links and higher 𝛼𝛼𝑃𝑃𝑃𝑃 often only revealed additional lags to links which 
already existed (see Appendix A2.2 for sensitivity tests of 𝛼𝛼𝑃𝑃𝑃𝑃 for the eastern North Pacific model). 
Furthermore, since the tested time series here are rather long, a lower significance level is recommended 
(Kretschmer et al., 2016). Therefore, a conservative approach was favoured and  𝛼𝛼𝑃𝑃𝑃𝑃 set to 0.01 for all 
tests. This means that after the PC step, parents which are below 99 % significance will not be 
considered for the MCI stage. PCMCI also includes an FDR control (Runge et al., 2019b) and adjusts 
the p-values received after the MCI stage for multiple testing. In this work, the BH (Benjamini and 
Hochberg, 1995) correction was applied to constrain FDR to 0.01 and only links with adjusted p-values, 
pk,adj,BH, significant at  𝛼𝛼𝐹𝐹𝐹𝐹𝐹𝐹 = 0.01 were retained. 
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3. Results and Discussion 
In the following chapter, the results from the composites and regression analysis are presented and used 
to generate concrete hypotheses on areas possibly influencing R. Actors, i.e., time series, representing 
these areas are created by spatial averaging. The hypotheses are then tested in PCMCI by combining 
the actors in causal networks. Results are presented separately for the North Atlantic (3.1) and the 
eastern North Pacific (3.2) basins. Per basin, the results from the composites and regression analysis, 
and subsequently PCMCI, are also presented separately for each possible driver of R (blocking, changes 
in the background flow, and forcing from deep convection). Basin specific results regarding the drivers 
of R are discussed in 3.1.3 (𝑅𝑅𝑁𝑁−𝐴𝐴𝐴𝐴𝐴𝐴) and 3.2.3 (𝑅𝑅𝑁𝑁𝑁𝑁−𝑃𝑃𝑃𝑃𝑃𝑃). A general discussion, limitations, and outlook 
are presented in section 3.3. 

3.1 North Atlantic 
3.1.1 Composites and regression analysis 
3.1.1.1 Atmospheric blocking 

Following the findings of Röthlisberger et al. (2019), I focus on atmospheric blocking within 
approximately 60° up - or downstream of changes in R. The blocking frequency composite at lag 0 days 
(Fig. 8c) reveals positive anomalies exceeding 9 % in the central North Atlantic and from Scandinavia 
into Siberia during high R days. The former are already visible, although extending over a smaller area, 
at lag 5 (Fig. 8b). Over Scandinavia and the western North Atlantic, however, negative anomalies up to 
-7 % occur at lags 10 and 5 (Figs. 8a and 8b). The regression analysis reveals a similar pattern. At lag 
0 and 3 (Figs. 9c and 9b), blocking in the central North Atlantic is associated with an increase in R, 
whilst at lag 10 (Fig. 9a) there is a negative relationship between blocking over Scandinavia and R. 
High R days in the North Atlantic are characterized by positive blocking frequency anomalies in the 
central North Atlantic and a reversal from negative blocking frequency anomalies leading up to high R 
days to positive blocking frequency anomalies during high R days over Scandinavia. Therefore, actors 
representing North Atlantic blocking (𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘𝑠𝑠𝑁𝑁−𝐴𝐴𝐴𝐴𝐴𝐴, Tab. 2) and Scandinavian blocking (𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘𝑠𝑠𝑆𝑆𝑃𝑃𝑃𝑃𝑆𝑆𝑆𝑆, 
Tab. 2) were created to test their links to 𝑅𝑅𝑁𝑁−𝐴𝐴𝐴𝐴𝐴𝐴. 

 

 

Figure 8: Composite of atmospheric blocking frequency anomalies leading up to high R days in the North 
Atlantic at lag a) 10 days, b) 5 days, and c) 0 days, i.e., during high R days. The green line shows the 
composite 2 PVU line on the 320 K isentrope as a proxy of the jet. Black dashed lines denote the 10 % 
DJF climatological blocking frequency. Statistically significant blocking frequency anomalies at α = 0.01 
are marked by black solid lines. The spatial extent of 𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝑵𝑵−𝑨𝑨𝑨𝑨𝒃𝒃 (at 50° N and 35° W) and 𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝑺𝑺𝒃𝒃𝑺𝑺𝑺𝑺𝑺𝑺 
(at 70° N and 40° E) is indicated by rectangles of black dashed lines. 
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3.1.1.2 Changes in the background flow 

From the 𝑈𝑈250wvnf k0k3 anomaly composites two features of the background flow over the North 
Atlantic are evident prior to and during high R days (Fig. 10). Firstly, a reversal from positive anomalies 
up to 4 m s-1 10 days before high R days (Fig. 10a) to negative anomalies up to -6 m s-1 during high R 
days (Fig. 10c) over north-western Europe (around 53°N and 0° W° E) over the exit of the 
climatological jet. This matches the negative blocking frequency anomalies leading up to high R-days 
(Fig. 8a) with presumably more zonal flow, and then blocked flow and weaker background flow during 
high R days (Fig. 8c). Secondly, large negative anomalies up to -6 m s-1 over the entire North Atlantic 
(around 40° N and 40° W) during high R days (Fig. 10c) are found. The onset of these anomalies is 
rapid, as they are barely discernible 3 days before high R days (Fig. 10b). The regression analysis (not 
shown) displays both features as well, however with reduced magnitude and not always statistically 
significant. Both these features were investigated in PCMCI: 𝑈𝑈250wvnf k0k3 anomalies averaged over 
north-western Europe (𝑈𝑈250𝑁𝑁−𝑁𝑁𝐸𝐸; Tab. 2) were analysed to test the connection of the reversal of the 
background flow to 𝑅𝑅𝑁𝑁−𝐴𝐴𝐴𝐴𝐴𝐴 and 𝑈𝑈250wvnf k0k3 anomalies averaged over the North Atlantic 
(𝑈𝑈250𝑁𝑁−𝐴𝐴𝐴𝐴𝐴𝐴; Tab. 2) were analysed to test the link between the substantial decrease in the background 
flow and 𝑅𝑅𝑁𝑁−𝐴𝐴𝐴𝐴𝐴𝐴. 

 

Figure 9: The slope coefficient 𝜷𝜷1of a regression of 𝑹𝑹𝑵𝑵−𝑨𝑨𝑨𝑨𝒃𝒃 on blocks displaying the mean expected change 
in 𝑹𝑹𝑵𝑵−𝑨𝑨𝑨𝑨𝒃𝒃 between presence or absence of a block per gridpoint at lag a) 10 days, b) 3 days, and c) 0 days. 
The green dashed lines denote the 7.5 % and 10 % DJF climatological blocking frequency. Areas where 𝜷𝜷1 
is significantly different from 0 at the 0.01 and 0.05 significance level are marked by black solid lines. Areas 
where the seasonal blocking frequency is ≤ 0.01 % are not shown. The spatial extent of 𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝑵𝑵−𝑨𝑨𝑨𝑨𝒃𝒃 (at 50° 
N and 35° W) and 𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝑺𝑺𝒃𝒃𝑺𝑺𝑺𝑺𝑺𝑺 (at 70° N and 40° E) is indicated by rectangles of black dashed lines. 

Figure 10: Composite of 𝑼𝑼𝑼𝑼𝑼𝑼𝟏𝟏𝒘𝒘𝒘𝒘𝑺𝑺𝒘𝒘 𝒃𝒃𝟏𝟏𝒃𝒃𝒌𝒌 anomalies leading up to high R days in the North Atlantic at lag a) 
10 days, b) 3 days, and c) 0 days, i.e., during high R days. Green dashed lines denote the DJF 𝑼𝑼𝑼𝑼𝑼𝑼𝟏𝟏𝒘𝒘𝒘𝒘𝑺𝑺𝒘𝒘 𝒃𝒃𝟏𝟏𝒃𝒃𝒌𝒌 
climatology at 20 m s-1 intervals starting at 20 m s-1. Statistically significant 𝑼𝑼𝑼𝑼𝑼𝑼𝟏𝟏𝒘𝒘𝒘𝒘𝑺𝑺𝒘𝒘 𝒃𝒃𝟏𝟏𝒃𝒃𝒌𝒌 anomalies at α 
= 0.01 are marked by black solid lines. The spatial extent of 𝑼𝑼𝑼𝑼𝑼𝑼𝟏𝟏𝑵𝑵−𝑬𝑬𝑬𝑬 (at 52° N and 0° W) and 𝑼𝑼𝑼𝑼𝑼𝑼𝟏𝟏𝑵𝑵−𝑨𝑨𝑨𝑨𝒃𝒃 
(at 42° N and 40° W) is indicated by rectangles of black dashed lines. 
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3.1.1.3 Forcing from deep convection 
The role (tropical) deep convection can play in modulating the extratropical flow field has been 
discussed in section 1.3.3. Here, specific hypotheses regarding the role of deep convection relating to 
RRWPs over the North Atlantic (𝑅𝑅𝑁𝑁−𝐴𝐴𝐴𝐴𝐴𝐴) shall be discussed. The composites and regression analysis 
for lag 0 (Figs. 11a, 12a, and 12b) reveal statistically significant overlapping OLR and VP anomalies 
(up to -8 W m-2 and -1x106 m2 s-1 respectively) over western Africa around the Gulf of Guinea during 
high R days, indicating enhanced convection in this area. Therefore, an actor representing OLR 
anomalies over the Gulf of Guinea, 𝑂𝑂𝑂𝑂𝑅𝑅𝐺𝐺𝐸𝐸𝐴𝐴𝐺𝐺−𝐺𝐺𝐸𝐸𝑖𝑖𝑆𝑆𝐺𝐺𝑃𝑃 (Tab. 2), was created. However, as these anomalies 
occur during high R days and geographically downstream of 𝑅𝑅𝑁𝑁−𝐴𝐴𝐴𝐴𝐴𝐴, it is unlikely that this convection 
is a precursor to RRWPs in the North Atlantic. The lagged OLR and VP composites show statistically 
significant negative anomalies over the Maritime Continent between lags 3 and 20 with largest values 
at lags 10 (exceeding -14 W m-2 and -1x106 m2 s-1 respectively; Fig. 11b) and 15 (not shown). 
Convection in this area can trigger RWs (Röthlisberger et al., 2018) which can propagate over the 
Pacific and can force extratropical flow in the Atlantic (Hoskins and Sardeshmukh, 1987; Cassou, 2008; 
Barton et al., 2016). Therefore, an actor for convection over the Maritime Continent, 𝑂𝑂𝑂𝑂𝑅𝑅𝑀𝑀𝑃𝑃𝑀𝑀𝑖𝑖𝐴𝐴−𝑃𝑃𝑙𝑙𝑆𝑆𝐴𝐴 
(Tab. 2), was created. 

 

 

Figure 11: Composite of OLR (shaded) and VP anomalies (coloured contours at 0.25x106 m2 s-1 intervals, 
green dashed lines denote negative values, brown solid lines denote positive values) and absolute VP values 
(grey contours at 1x106 m2 s-1, solid lines denote positive values, dashed lines denote negative values) a) 
during high R days and b) at lag 10 before high R days in the North Atlantic. Statistically significant 
anomalies are marked by black contours for OLR and by hatches for VP. The spatial extent of a) 
𝑶𝑶𝑶𝑶𝑹𝑹𝑮𝑮𝑬𝑬𝒃𝒃𝒘𝒘−𝑮𝑮𝑬𝑬𝑮𝑮𝑺𝑺𝑮𝑮𝑺𝑺 (at 5° N and 5° W) and b) 𝑶𝑶𝑶𝑶𝑹𝑹𝑴𝑴𝑺𝑺𝑴𝑴𝑮𝑮𝑨𝑨−𝒃𝒃𝒃𝒃𝑺𝑺𝑨𝑨 (at 5° S and 150° E) is indicated by rectangles of 
black dashed lines. 
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3.1.2 PCMCI 
In summary, the following actors were created and analysed in a causal network for the North Atlantic 
at three different time scales (Figs. 13-15): 𝑅𝑅𝑁𝑁−𝐴𝐴𝐴𝐴𝐴𝐴, 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘𝑠𝑠𝑁𝑁−𝐴𝐴𝐴𝐴𝐴𝐴, 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘𝑠𝑠𝑆𝑆𝑃𝑃𝑃𝑃𝑆𝑆𝑆𝑆, 𝑈𝑈250𝑁𝑁−𝑁𝑁𝐸𝐸, 𝑈𝑈250𝑁𝑁−𝐴𝐴𝐴𝐴𝐴𝐴, 
𝑂𝑂𝑂𝑂𝑅𝑅𝐺𝐺𝐸𝐸𝐴𝐴𝐺𝐺−𝐺𝐺𝐸𝐸𝑖𝑖𝑆𝑆𝐺𝐺𝑃𝑃, and 𝑂𝑂𝑂𝑂𝑅𝑅𝑀𝑀𝑃𝑃𝑀𝑀𝑖𝑖𝐴𝐴−𝑃𝑃𝑙𝑙𝑆𝑆𝐴𝐴 (Tab. 2). In the following section the results from PCMCI are 
presented separately for each possible driver (atmospheric blocking, changes in the background flow, 
and forcing from deep convection) before they are discussed in section 3.1.3. Remember that the causal 
link strength given by PCMCI is in units of standard deviation (Kretschmer et al., 2016). The standard 
deviation of each time series is included in the tables describing the relevant actors for each ocean basin 
(Tabs. 2 and 3). Shown causal graphs follow the conventions described in section 2.2.3.3 and Figs. 6 
and 7. In the text, links between actors are formulated in the following notation: 

𝑝𝑝𝑝𝑝𝑏𝑏𝑏𝑏𝑝𝑝𝑠𝑠𝑠𝑠 1𝑃𝑃𝑀𝑀𝐺𝐺𝑃𝑃 1  
 𝜏𝜏
→  𝑝𝑝𝑝𝑝𝑏𝑏𝑏𝑏𝑝𝑝𝑠𝑠𝑠𝑠 2𝑃𝑃𝑀𝑀𝐺𝐺𝑃𝑃 2 

, where τ denotes the time lag at which links were detected. Links strengths are given in brackets (). 

3.1.2.1 Atmospheric blocking 
PCMCI (Figs. 13-15) finds a close link between 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘𝑠𝑠𝑁𝑁−𝐴𝐴𝐴𝐴𝐴𝐴 and 𝑅𝑅𝑁𝑁−𝐴𝐴𝐴𝐴𝐴𝐴. There is a positive link 
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘𝑠𝑠𝑁𝑁−𝐴𝐴𝐴𝐴𝐴𝐴  →  𝑅𝑅𝑁𝑁−𝐴𝐴𝐴𝐴𝐴𝐴 at lag of around one week. This link occurs in the daily model (Fig. 13) at lag 
7 (0.074), in the 3-daily model (Fig. 14) at lag 2 (0.108), and is instantaneous in the 6-daily model 
(0.166; Fig. 15). Note that the link 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘𝑠𝑠𝑁𝑁−𝐴𝐴𝐴𝐴𝐴𝐴  

𝜏𝜏=8
�⎯�  𝑅𝑅𝑁𝑁−𝐴𝐴𝐴𝐴𝐴𝐴 in the daily model is negative (-0.066). 

The reverse link, 𝑅𝑅𝑁𝑁−𝐴𝐴𝐴𝐴𝐴𝐴  →  𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘𝑠𝑠𝑁𝑁−𝐴𝐴𝐴𝐴𝐴𝐴, is less consistent across time scales. The daily model shows 
a negative link at lag 8 (-0.073), but in the 3-daily model the link is positive at lag 1 (0.131). Generally, 
North Atlantic blocking and RRWPs positively reinforce each other. The negative influence of blocking 
over Scandinavia (𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘𝑠𝑠𝑆𝑆𝑃𝑃𝑃𝑃𝑆𝑆𝑆𝑆) on 𝑅𝑅𝑁𝑁−𝐴𝐴𝐴𝐴𝐴𝐴 is also captured by the model. At lag 7 in the daily model (-
0.069) and at lag 2 in the 3-daily model (-0.101) there is a negative link 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘𝑠𝑠𝑆𝑆𝑃𝑃𝑃𝑃𝑆𝑆𝑆𝑆  →  𝑅𝑅𝑁𝑁−𝐴𝐴𝐴𝐴𝐴𝐴. 
Finally, 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘𝑠𝑠𝑁𝑁−𝐴𝐴𝐴𝐴𝐴𝐴 drives an increase in 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘𝑠𝑠𝑆𝑆𝑃𝑃𝑃𝑃𝑆𝑆𝑆𝑆. The daily model shows positive links at lags 
2,3 (0.062, 0.061), with links at lag 1 in the 3-daily (0.107) and 6-daily model (0.145). Overall, it is 
concluded that 𝑅𝑅𝑁𝑁−𝐴𝐴𝐴𝐴𝐴𝐴 and 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘𝑠𝑠𝑁𝑁−𝐴𝐴𝐴𝐴𝐴𝐴 reinforce each other and that a decrease in 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘𝑠𝑠𝑆𝑆𝑃𝑃𝑃𝑃𝑆𝑆𝑆𝑆, i.e., a 
more zonal or cyclonic flow, precedes RRWPs. Further, the increase in 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘𝑠𝑠𝑁𝑁−𝐴𝐴𝐴𝐴𝐴𝐴 associated with 
RRWPs might also increase 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘𝑠𝑠𝑆𝑆𝑃𝑃𝑃𝑃𝑆𝑆𝑆𝑆 during RRWP episodes. 

Figure 12: The slope coefficient 𝜷𝜷𝟏𝟏of a regression of 𝑹𝑹𝑵𝑵−𝑨𝑨𝑨𝑨𝒃𝒃 on a) OLR at lag 0 and b) VP at lag 0. Shadings 
display the expected change in 𝑹𝑹𝑵𝑵−𝑨𝑨𝑨𝑨𝒃𝒃 for each a) 1 W m-2 change in OLR or b) 1x107 m2 s-1 change in VP. 
Areas where 𝜷𝜷𝟏𝟏 is significantly different from 0 at the 0.01 and 0.05 significance level are marked by black 
solid lines. The spatial extent of 𝑶𝑶𝑶𝑶𝑹𝑹𝑮𝑮𝑬𝑬𝒃𝒃𝒘𝒘−𝑮𝑮𝑬𝑬𝑮𝑮𝑺𝑺𝑮𝑮𝑺𝑺 (at 5° N and 5° W) is indicated by a rectangle of black 
dashed lines. 
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Table 2: List of actors in the causal networks for R in the North Atlantic. 

Abbreviation Actor Variable [unit] Region Standard 
deviation 

𝑅𝑅𝑁𝑁−𝐴𝐴𝐴𝐴𝐴𝐴 RRWPs in the North 
Atlantic 

R [m s-1] 35° N - 65° N, 
50° W - 10° E 

3.08 

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘𝑠𝑠𝑁𝑁−𝐴𝐴𝐴𝐴𝐴𝐴 Blocking over the 
North Atlantic 

Fraction of area 
blocked [%] 

46° N - 56° N, 
45° W - 25° W 

0.17 

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘𝑠𝑠𝑆𝑆𝑃𝑃𝑃𝑃𝑆𝑆𝑆𝑆 Blocking over 
Scandinavia 

60° N - 80° N, 
15° W - 70° E 

0.11 

𝑈𝑈250𝑁𝑁−𝑁𝑁𝐸𝐸 Background flow 
over north-western 
Europe Zonal wind U at 250 

hPa, filtered for 
wavenumbers k 0-3 
[m s-1] 

45° N – 60° N, 
20° W – 20° E 

9.42 

𝑈𝑈250𝑁𝑁−𝐴𝐴𝐴𝐴𝐴𝐴 Background flow 
over the North 
Atlantic 

38° N – 45° N, 
60° W – 25° W 

10.91 

𝑂𝑂𝑂𝑂𝑅𝑅𝐺𝐺𝐸𝐸𝐴𝐴𝐺𝐺−𝐺𝐺𝐸𝐸𝑖𝑖𝑆𝑆𝐺𝐺𝑃𝑃 Convection over the 
Gulf of Guinea 

Outgoing longwave 
radiation [W m-2] 

3° N - 8° N, 
12° W - 5° E 

19.98 

𝑂𝑂𝑂𝑂𝑅𝑅𝑀𝑀𝑃𝑃𝑀𝑀𝑖𝑖𝐴𝐴−𝑃𝑃𝑙𝑙𝑆𝑆𝐴𝐴 Convection over the 
Maritime Continent 

20° S – 10° N, 
110° E – 180° E 

10.19 

 

3.1.2.2 Changes in the background flow 
Negative feedback between 𝑅𝑅𝑁𝑁−𝐴𝐴𝐴𝐴𝐴𝐴 and 𝑈𝑈250𝑁𝑁−𝑁𝑁𝐸𝐸 at timescale of about 1 week is found. 𝑈𝑈250𝑁𝑁−𝑁𝑁𝐸𝐸 
increases 𝑅𝑅N−Atl, which in turn decreases 𝑈𝑈250𝑁𝑁−𝑁𝑁𝐸𝐸. A positive link 𝑈𝑈250𝑁𝑁−𝑁𝑁𝐸𝐸  →  𝑅𝑅𝑁𝑁−𝐴𝐴𝐴𝐴𝐴𝐴 is present 
in the daily model (Fig. 13) at lag 7 (0.076) and in the 6-daily model (Fig. 15) at lag 1 (0.140), whilst a 
negative link 𝑅𝑅𝑁𝑁−𝐴𝐴𝐴𝐴𝐴𝐴  →  𝑈𝑈250𝑁𝑁−𝑁𝑁𝐸𝐸 is present on all three timescales (-0.108 at lag 7, -0.138 at lag 2, 
and -0.149 at lag 1 for the daily, 3-daily, and 6-daily models). This confirms the hypothesis that a strong 
background flow causes an increase in 𝑅𝑅𝑁𝑁−𝐴𝐴𝐴𝐴𝐴𝐴 about a week later, which then decreases the strength of 
the background flow. Furthermore, 𝑈𝑈250𝑁𝑁−𝑁𝑁𝐸𝐸 is strongly negatively linked to 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘𝑠𝑠Scand. An 
instantaneous link is present at all time scales (-0.125, -0.296, -0.347, for the daily, 3-daily, and 6-daily 
model). In the daily and 3-daily model (Figs. 13 and 14) negative links 𝑈𝑈250𝑁𝑁−𝑁𝑁𝐸𝐸  

𝜏𝜏=1
�⎯�  𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘𝑠𝑠𝑆𝑆𝑃𝑃𝑃𝑃𝑆𝑆𝑆𝑆 

with strength -0.126 and -0.124 respectively are found. However, in the daily model a positive link 
𝑈𝑈250𝑁𝑁−𝑁𝑁𝐸𝐸  

𝜏𝜏=2
�⎯�  𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘𝑠𝑠𝑆𝑆𝑃𝑃𝑃𝑃𝑆𝑆𝑆𝑆 (0.075) is also found, showing the high variability in links at the daily 

scale. Overall, the negative instantaneous link between 𝑈𝑈250𝑁𝑁−𝑁𝑁𝐸𝐸 and 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘𝑠𝑠𝑆𝑆𝑃𝑃𝑃𝑃𝑆𝑆𝑆𝑆 and the negative 
link 𝑈𝑈250𝑁𝑁−𝑁𝑁𝐸𝐸  

𝜏𝜏=1
�⎯�  𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘𝑠𝑠𝑆𝑆𝑃𝑃𝑃𝑃𝑆𝑆𝑆𝑆 indicate that a decrease in background flow is strongly connected to 

an increase in the local blocking. Furthermore, the increase in 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘𝑠𝑠𝑆𝑆𝑃𝑃𝑃𝑃𝑆𝑆𝑆𝑆 seen during high R days 
(Figs. 8c and 9c) can be explained via the negative effect of 𝑅𝑅𝑁𝑁−𝐴𝐴𝐴𝐴𝐴𝐴 on 𝑈𝑈250𝑁𝑁−𝑁𝑁𝐸𝐸. A decrease in 
𝑈𝑈250𝑁𝑁−𝑁𝑁𝐸𝐸 then causes an increase in 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘𝑠𝑠𝑆𝑆𝑃𝑃𝑃𝑃𝑆𝑆𝑆𝑆. Finally, PCMCI shows direct negative feedback 
between 𝑈𝑈250𝑁𝑁−𝑁𝑁𝐸𝐸 and 𝑅𝑅𝑁𝑁−𝐴𝐴𝐴𝐴𝐴𝐴 where an increase in 𝑈𝑈250𝑁𝑁−𝑁𝑁𝐸𝐸 increases 𝑅𝑅𝑁𝑁−𝐴𝐴𝐴𝐴𝐴𝐴, which in turn causes 
lower 𝑈𝑈250𝑁𝑁−𝑁𝑁𝐸𝐸. 
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𝑅𝑅𝑁𝑁−𝐴𝐴𝐴𝐴𝐴𝐴 drives a decrease in 𝑈𝑈250𝑁𝑁−𝐴𝐴𝐴𝐴𝐴𝐴 at a lag of about half a week. There is a negative link 𝑅𝑅𝑁𝑁−𝐴𝐴𝐴𝐴𝐴𝐴  

𝜏𝜏=1
�⎯�  𝑈𝑈250𝑁𝑁−𝐴𝐴𝐴𝐴𝐴𝐴 (-0.117) in the 3-daily model (Fig. 14), whilst the link is instantaneous in the 6-daily 
model (-0.137; Fig. 15). However, a positive link 𝑅𝑅𝑁𝑁−𝐴𝐴𝐴𝐴𝐴𝐴  

𝜏𝜏=3
�⎯�  𝑈𝑈250𝑁𝑁−𝐴𝐴𝐴𝐴𝐴𝐴 (0.100) was also found the 

3-daily model, showing that 𝑅𝑅𝑁𝑁−𝐴𝐴𝐴𝐴𝐴𝐴 can also have a positive effect on the strength of the background 
flow at higher lags. Furthermore, 𝑈𝑈250𝑁𝑁−𝐴𝐴𝐴𝐴𝐴𝐴 is closely linked to 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘𝑠𝑠N−Atl. In the daily model, 
𝑈𝑈250𝑁𝑁−𝐴𝐴𝐴𝐴𝐴𝐴 negatively influences 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘𝑠𝑠𝑁𝑁−𝐴𝐴𝐴𝐴𝐴𝐴 at lags 1 (-0.165), whilst 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘𝑠𝑠𝑁𝑁−𝐴𝐴𝐴𝐴𝐴𝐴 negatively 
influences 𝑈𝑈250𝑁𝑁−𝐴𝐴𝐴𝐴𝐴𝐴 at lag 1 (-0.079). The two actors are also connected by a negative instantaneous 
link at all time scales (-0.190, -0.371, -0.495, in the daily, 3-daily, and 6-daily model respectively). Both 
in the 3-daily and 6-daily model a negative link 𝑈𝑈250𝑁𝑁−𝐴𝐴𝐴𝐴𝐴𝐴  

𝜏𝜏=1
�⎯�  𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘𝑠𝑠𝑁𝑁−𝐴𝐴𝐴𝐴𝐴𝐴 is present. In the daily 

model, the link 𝑈𝑈250𝑁𝑁−𝐴𝐴𝐴𝐴𝐴𝐴  
𝜏𝜏=2
�⎯�  𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘𝑠𝑠𝑁𝑁−𝐴𝐴𝐴𝐴𝐴𝐴 is positive (0.096), again showing the high variability in 

links at the daily scale. 𝑈𝑈250𝑁𝑁−𝑁𝑁𝐸𝐸 and 𝑈𝑈250𝑁𝑁−𝐴𝐴𝐴𝐴𝐴𝐴 share a negative respectively positive instantaneous 
link in the daily and 6-daily model (Figs. 13 and 15), whilst links 𝑈𝑈250𝑁𝑁−𝑁𝑁𝐸𝐸  

𝜏𝜏=1,2
�⎯⎯�  𝑈𝑈250𝑁𝑁−𝐴𝐴𝐴𝐴𝐴𝐴 (0.138 

and -0.131) are detected in the daily model (Fig. 13). 

3.1.2.3 Forcing from deep convection 
Remember, that since negative OLR anomalies represent enhanced convection, a negative link away 
from OLR corresponds to a mechanism, where increasing convection causes an increase in another and 
vice versa. 𝑅𝑅𝑁𝑁−𝐴𝐴𝐴𝐴𝐴𝐴 drives a decrease in 𝑂𝑂𝑂𝑂𝑅𝑅𝐺𝐺𝐸𝐸𝐴𝐴𝐺𝐺−𝐺𝐺𝐸𝐸𝑖𝑖𝑆𝑆𝐺𝐺𝑃𝑃, and hence an increase in convection, at a lag 
of about one week. The link is at lag 2 (-0.120) in the 3-daily model (Fig. 14) and at lag 1 (-0.140) in 
the 6-daily model (Fig. 15). Thus, the anomalous convection over the Gulf of Guinea is driven by 
RRWPs. Moreover, the background flow influences 𝑂𝑂𝑂𝑂𝑅𝑅𝐺𝐺𝐸𝐸𝐴𝐴𝐺𝐺−𝐺𝐺𝐸𝐸𝑖𝑖𝑆𝑆𝐺𝐺𝑃𝑃, as 𝑈𝑈250𝑁𝑁−𝑁𝑁𝐸𝐸 drives 
𝑂𝑂𝑂𝑂𝑅𝑅𝐺𝐺𝐸𝐸𝐴𝐴𝐺𝐺−𝐺𝐺𝐸𝐸𝑖𝑖𝑆𝑆𝐺𝐺𝑃𝑃 with about weekly lag at all time scales and is connected instantaneously in the 3 and 
6 daily models. No direct links were found between 𝑂𝑂𝑂𝑂𝑅𝑅𝑀𝑀𝑃𝑃𝑀𝑀𝑖𝑖𝐴𝐴−𝑃𝑃𝑙𝑙𝑆𝑆𝐴𝐴 and 𝑅𝑅𝑁𝑁−𝐴𝐴𝐴𝐴𝐴𝐴. However, 
𝑂𝑂𝑂𝑂𝑅𝑅𝑀𝑀𝑃𝑃𝑀𝑀𝑖𝑖𝐴𝐴−𝑃𝑃𝑙𝑙𝑆𝑆𝐴𝐴 has a negative instantaneous link to 𝑈𝑈250𝑁𝑁−𝐴𝐴𝐴𝐴𝐴𝐴 in the daily and 3-daily model (Figs. 13 
and 14) and thus through 𝑈𝑈250𝑁𝑁−𝐴𝐴𝐴𝐴𝐴𝐴 and 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘𝑠𝑠𝑁𝑁−𝐴𝐴𝐴𝐴𝐴𝐴 an indirect link to 𝑅𝑅𝑁𝑁−𝐴𝐴𝐴𝐴𝐴𝐴 is present. Further, 
𝑂𝑂𝑂𝑂𝑅𝑅𝑀𝑀𝑃𝑃𝑀𝑀𝑖𝑖𝐴𝐴−𝑃𝑃𝑙𝑙𝑆𝑆𝐴𝐴 is linked to 𝑂𝑂𝑂𝑂𝑅𝑅𝐺𝐺𝐸𝐸𝐴𝐴𝐺𝐺−𝐺𝐺𝐸𝐸𝑖𝑖𝑆𝑆𝐺𝐺𝑃𝑃, however the link varies or disappears with changing time 
scales. 
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Figure 13: Causal network for the North Atlantic at daily time scale. The actors are centred on their 
approximate location. Symbols and colour scales are as in Fig. 6: The node colour represents the 
autocorrelation path coefficient (autocorrelation strength) and the link colour indicates the path coefficient 
(link strength) and sign. Blue denotes a negative link and red a positive link. Note the different colour scales 
for nodes and links. The numbers written in black on the links are the lags at which links were found. Note 
that the time lags refer to time steps for that specific model (see Tab. 1), e.g., for this model at daily time 
scale lags refer to days, whilst the model in Fig. 14 is at 3-daily time scale and thus lags refer to 3-day time 
steps. Directed links are visualised with arrows, whilst instantaneous links, where no direction of causality 
is derived, are visualised by lines with nodes at both ends, as the negative link 𝑶𝑶𝑶𝑶𝑹𝑹𝑮𝑮𝑬𝑬𝒃𝒃𝒘𝒘−𝑮𝑮𝑬𝑬𝑮𝑮𝑺𝑺𝑮𝑮𝑺𝑺  ↔
 𝑶𝑶𝑶𝑶𝑹𝑹𝑴𝑴𝑺𝑺𝑴𝑴𝑮𝑮𝑨𝑨−𝑪𝑪𝒃𝒃𝑺𝑺𝑨𝑨 in this figure. 
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Figure 14: As Figure 13, but at 3-daily time scale. 
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Figure 15: As Figure 13, but at 6-daily time scale. 
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3.1.3 Discussion 
In the following section the results regarding drivers of 𝑅𝑅𝑁𝑁−𝐴𝐴𝐴𝐴𝐴𝐴 are discussed. Overall, a consistent 
pattern for the links between 𝑅𝑅𝑁𝑁−𝐴𝐴𝐴𝐴𝐴𝐴, blocking, and the background flow is found, where 𝑅𝑅𝑁𝑁−𝐴𝐴𝐴𝐴𝐴𝐴 
decreases the magnitude of the background flow, causing an increase the local blocking, which in turn 
affects 𝑅𝑅𝑁𝑁−𝐴𝐴𝐴𝐴𝐴𝐴 (Figs. 13-15). This is partially in agreement with Nakamura and Huang’s (2017) findings 
on the relationship between high-frequency transient wave trains and a local deceleration of the 
background flow. Their interaction leads to wave convergence and large amplitude, i.e., wavey, flow 
and even blocking like patterns, a phenomenon already described by Shutts (1983). 

More concretely, a change in atmospheric blocking is an important driver of 𝑅𝑅𝑁𝑁−𝐴𝐴𝐴𝐴𝐴𝐴, with 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘𝑠𝑠𝑁𝑁−𝐴𝐴𝐴𝐴𝐴𝐴 
increasing 𝑅𝑅𝑁𝑁−𝐴𝐴𝐴𝐴𝐴𝐴 and a decrease in 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘𝑠𝑠𝑆𝑆𝑃𝑃𝑃𝑃𝑆𝑆𝑆𝑆 increasing 𝑅𝑅𝑁𝑁−𝐴𝐴𝐴𝐴𝐴𝐴, both at weekly time lag (Figs. 13 
and 14). Note that whilst 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘𝑠𝑠𝑁𝑁−𝐴𝐴𝐴𝐴𝐴𝐴 is located geographically within the longitudes which define 
𝑅𝑅𝑁𝑁−𝐴𝐴𝐴𝐴𝐴𝐴, it is at the western, i.e., upstream, edge of the area denoting 𝑅𝑅𝑁𝑁−𝐴𝐴𝐴𝐴𝐴𝐴 (see Appendix A3.1). This 
confirms the hypothesis formulated by Röthlisberger et al. (2019), whereas blocking upstream, in this 
case 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘𝑠𝑠𝑁𝑁−𝐴𝐴𝐴𝐴𝐴𝐴, can cause phasing of RWs downstream, thus causing RRWPs. The effect of 𝑅𝑅𝑁𝑁−𝐴𝐴𝐴𝐴𝐴𝐴 
on 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘𝑠𝑠𝑁𝑁−𝐴𝐴𝐴𝐴𝐴𝐴 is less clear, however, as the change from negative link in the daily model to positive 
link in the 3-daily model shows. Finally, the links from 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘𝑠𝑠𝑆𝑆𝑃𝑃𝑃𝑃𝑆𝑆𝑆𝑆 and 𝑈𝑈250𝑁𝑁−𝑁𝑁𝐸𝐸 to 𝑅𝑅𝑁𝑁−𝐴𝐴𝐴𝐴𝐴𝐴 show 
that a more zonal flow regime over Scandinavia and north-western Europe can increase 𝑅𝑅𝑁𝑁−𝐴𝐴𝐴𝐴𝐴𝐴, which 
then causes a less zonal and more blocked flow in that region (Figs. 13-15). The negative effect of 
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘𝑠𝑠𝑆𝑆𝑃𝑃𝑃𝑃𝑆𝑆𝑆𝑆 on 𝑅𝑅𝑁𝑁−𝐴𝐴𝐴𝐴𝐴𝐴 might be linked to the preferred transition of the weather regimes in the North 
Atlantic. After a zonally oriented flow regime, qualitatively like the negative blocking anomalies 10 
and 5 days before high R days (Figs. 8a and 8b), transitions into an Atlantic Ridge or Scandinavian 
blocking regime are most likely (Vautard, 1990; Cassou, 2008). 

𝑂𝑂𝑂𝑂𝑅𝑅𝑀𝑀𝑃𝑃𝑀𝑀𝑖𝑖𝐴𝐴−𝑃𝑃𝑙𝑙𝑆𝑆𝐴𝐴 is not a driver of RRWPs over the North Atlantic as no direct link to 𝑅𝑅𝑁𝑁−𝐴𝐴𝐴𝐴𝐴𝐴 was found. 
This does not exclude convection in this area as a driver for RRWPs in single cases or in season other 
than DJF, as the event in November 2002 studied by Barton et al. (2016) shows. An open question 
remains the instantaneous, negative link 𝑂𝑂𝑂𝑂𝑅𝑅𝑀𝑀𝑃𝑃𝑀𝑀𝑖𝑖𝐴𝐴−𝑃𝑃𝑙𝑙𝑆𝑆𝐴𝐴  ↔  𝑈𝑈250𝑁𝑁−𝐴𝐴𝐴𝐴𝐴𝐴 at daily and 3 daily resolutions 
(Figs. 13 and 14). It is possible that this link results from a missing common or intermediary driver, 
e.g., a change in 𝑈𝑈250𝑁𝑁−𝐴𝐴𝐴𝐴𝐴𝐴 causing a downstream effect which interacts with 𝑂𝑂𝑂𝑂𝑅𝑅𝑀𝑀𝑃𝑃𝑀𝑀𝑖𝑖𝐴𝐴−𝑃𝑃𝑙𝑙𝑆𝑆𝐴𝐴. 

In addition to possible drivers of 𝑅𝑅𝑁𝑁−𝐴𝐴𝐴𝐴𝐴𝐴, the causal network reveals that 𝑅𝑅𝑁𝑁−𝐴𝐴𝐴𝐴𝐴𝐴 acts as a driver of many 
processes. How 𝑅𝑅𝑁𝑁−𝐴𝐴𝐴𝐴𝐴𝐴 influences the background flow has been discussed above. 𝑅𝑅𝑁𝑁−𝐴𝐴𝐴𝐴𝐴𝐴 was further 
found to drive 𝑂𝑂𝑂𝑂𝑅𝑅𝐺𝐺𝐸𝐸𝐴𝐴𝐺𝐺−𝐺𝐺𝐸𝐸𝑖𝑖𝑆𝑆𝐺𝐺𝑃𝑃. An increase in 𝑅𝑅𝑁𝑁−𝐴𝐴𝐴𝐴𝐴𝐴 causes lower 𝑂𝑂𝑂𝑂𝑅𝑅𝐺𝐺𝐸𝐸𝐴𝐴𝐺𝐺−𝐺𝐺𝐸𝐸𝑖𝑖𝑆𝑆𝐺𝐺𝑃𝑃 values and hence 
increases convection directly (Figs. 14 and 15) or via 𝑈𝑈250𝑁𝑁−𝑁𝑁𝐸𝐸 (Figs. 13-15). This might be related 
to eddy-mean flow interactions, where wave breaking associated with RRWPs distributes wave energy 
meridionally into the tropics (Wirth et al., 2018) and thus reinforces the tropical meridional circulation. 
Concretely, the large wave activity associated with high amplitude breaking RWs in RRWPs strengthen 
the so-called residual circulation (Vallis, 2007, p. 305), a thermally direct circulation with rising motion 
in the tropics. Wave breaking occurs when large amplitude RWs, as found in RRWPs, reach critical 
latitudes and break (Wolf and Wirth, 2017; Wirth et al., 2018). The associated wave energy is 
distributed meridionally and can strengthen the tropical meridional circulation triggering convection in 
the tropics (Slingo, 1998; Knippertz, 2007). 

3.2 Eastern North Pacific 
3.2.1 Composites and regression analysis 
3.2.1.1 Atmospheric blocking 

As for the North Atlantic, I follow Röthlisberger et al. (2019) regarding their results connecting R 
anomalies to blocking and focus on blocking within 60° up-or downstream of changes in R. Two main 
features are highlighted by the composites and regression analysis: Increased blocking frequency over 
the west coast of North America during high R days and increased blocking frequency over Greenland 
leading up to high R days. Both shall be discussed briefly. The composite of blocking frequency during 
high R days (Fig. 16c) shows positive anomalies exceeding 9 % over the west coast of North America 
(53° N, 130° W) and exceeding 7 % over the area around Greenland (65° N, 60° W), where blocking is 
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climatologically already frequent (>10 %). Leading up to high R days the blocking frequency anomalies 
over Greenland exceed 9 % over large areas (Figs. 16a and 16b). The regression confirms this (Fig. 17). 
Whilst blocking over the west coast of North America is the main signal during high R days (Fig. 17c), 
an increase in Greenland blocking at higher lags is linked to an increase in R (Figs. 17a and 17b). The 
composites also show other areas which exhibit positive or negative blocking frequency anomalies. 
However, these are weaker and not captured by the regression (Fig. 17) and are therefore not considered 
as potential drivers of RRWPs. An actor representing blocking over the west coast of North America 
(𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘𝑠𝑠𝑁𝑁𝐴𝐴−𝑙𝑙𝑃𝑃𝑙𝑙𝑃𝑃𝑤𝑤𝐴𝐴) was created to test, whether RRWPs in the eastern North Pacific (𝑅𝑅𝑁𝑁𝑁𝑁−𝑃𝑃𝑃𝑃𝑃𝑃) cause 
the increase in blocking. The blocking signal over Greenland is qualitatively alike the Atlantic European 
weather regime Greenland blocking (GL), as defined by Grams et al. (2017). Thus, an actor based on 
the GL index was used to characterize blocking over Greenland (𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘𝑠𝑠𝑊𝑊𝐹𝐹−𝐺𝐺𝐺𝐺) to test if 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘𝑠𝑠𝑊𝑊𝐹𝐹−𝐺𝐺𝐺𝐺 
cause RRWPs in the eastern North Pacific. See Appendix A3.2 for a comparison of PCMCI analyses 
using 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘𝑠𝑠𝑊𝑊𝐹𝐹−𝐺𝐺𝐺𝐺 and an actor based on fraction of area blocked. 

 

 

 

Figure 16: Composite of atmospheric blocking frequency anomalies as Figure 8, but leading up to high R days 
in the eastern North Pacific at lag a) 10 days, b) 3 days, and c) 0 days, i.e., during high R days. The spatial 
extent of 𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝑵𝑵𝑨𝑨−𝒘𝒘𝒃𝒃𝒃𝒃𝑺𝑺𝒃𝒃𝑨𝑨 (at 55° N and 125° W) is indicated by a rectangle of black dashed lines and the 
approximate area of the maximum 500 hPa geopotential height anomaly characterising 𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝑾𝑾𝑹𝑹−𝑮𝑮𝑶𝑶 as 
defined by Grams et al. (2017) is highlighted with an orange star (at 67° N and 54° W). 

Figure 17: As Figure 9 but for a regression of 𝑹𝑹𝑵𝑵𝑬𝑬−𝑷𝑷𝑺𝑺𝒃𝒃 on blocks. The spatial extent of 𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝑵𝑵𝑨𝑨−𝒘𝒘𝒃𝒃𝒃𝒃𝑺𝑺𝒃𝒃𝑨𝑨 (at 
55° N and 125° W) is indicated by a rectangle of black dashed lines and the approximate area of the 
maximum 500 hPa geopotential height anomaly characterising 𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝑾𝑾𝑹𝑹−𝑮𝑮𝑶𝑶 as defined by Grams et al. 
(2017) is highlighted with a black star (at 67° N and 54° W). 
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3.2.1.2 Changes in the background flow 
The background flow over the eastern North Pacific is characterized by a reversal from positive 
anomalies up to 5 m s-1 before high R days (Figs. 18a and 18b) to large negative anomalies reaching -7 
m s-1 over the entire region during high R days (Fig. 18c). The regression analysis (Fig. 19) confirms 
this pattern, albeit with a weaker positive signal before changes in R (Figs. 19a and 19b). Therefore, 
𝑈𝑈250wvnf k0k3 anomalies averaged over the eastern North Pacific and western North America 
(𝑈𝑈250𝑁𝑁𝑁𝑁−𝑃𝑃𝑃𝑃𝑃𝑃; Tab. 3) were analysed in PCMCI to test the connection of the reversal of the background 
flow to 𝑅𝑅𝑁𝑁𝑁𝑁−𝑃𝑃𝑃𝑃𝑃𝑃. 

 

 

3.2.1.3 Forcing from deep convection 
The composites and the regression analysis of OLR and VP (Figs. 20 and 21) reveal multiple areas 
where negative OLR and VP signals linked to high R days or R changes overlap. The OLR signal 
generally shows more statistically significant areas than VP. Two areas in the Pacific stand out: The 
eastern North Pacific and the Philippine Sea in the western Pacific. 

At lag 0 significant OLR and VP anomalies (up to -11 W m-2 and exceeding -1x106 m2 s-1 respectively; 
Fig. 20a) and a significant signal in the regression analysis of both OLR (Fig. 21a) and VP (Fig. 21b) 
are found in the eastern North Pacific around 30°N and 145° W. Therefore, OLR anomalies over the 

Figure 18: As Figure 10, but composite of 𝑼𝑼𝑼𝑼𝑼𝑼𝟏𝟏𝒘𝒘𝒘𝒘𝑺𝑺𝒘𝒘 𝒃𝒃𝟏𝟏𝒃𝒃𝒌𝒌 anomalies leading up to high R days in the eastern 
North Pacific at lag a) 10 days, b) 5 days, and c) 0 days, i.e., during high R days. The spatial extent of 
𝑼𝑼𝑼𝑼𝑼𝑼𝟏𝟏𝑵𝑵𝑬𝑬−𝑷𝑷𝑺𝑺𝒃𝒃 (at 150° W) is indicated by a rectangle of black dashed lines. 

Figure 19: The slope coefficient 𝜷𝜷𝟏𝟏of a regression of 𝑹𝑹𝑵𝑵𝐄𝐄−𝐏𝐏𝐦𝐦𝐏𝐏 on 𝑼𝑼𝑼𝑼𝑼𝑼𝟏𝟏𝒘𝒘𝒘𝒘𝑺𝑺𝒘𝒘 𝒃𝒃𝟏𝟏𝒃𝒃𝒌𝒌 at lag a) 10 days, b) 7 days, 
and c) 0 days. Shadings display the expected change in 𝑹𝑹𝑵𝑵𝑬𝑬−𝑷𝑷𝑺𝑺𝒃𝒃 for each 1 m s-1 change in 𝑼𝑼𝑼𝑼𝑼𝑼𝟏𝟏𝒘𝒘𝒘𝒘𝑺𝑺𝒘𝒘 𝒃𝒃𝟏𝟏𝒃𝒃𝒌𝒌. 
Areas where 𝜷𝜷𝟏𝟏 is significantly different from 0 at the 0.01 and 0.05 significance level are marked by black 
solid lines. The spatial extent of 𝑼𝑼𝑼𝑼𝑼𝑼𝟏𝟏𝑵𝑵𝑬𝑬−𝑷𝑷𝑺𝑺𝒃𝒃 (at 150° W) is indicated by a rectangle of black dashed lines. 
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eastern North Pacific were averaged (𝑂𝑂𝑂𝑂𝑅𝑅𝑁𝑁𝑁𝑁−𝑃𝑃𝑃𝑃𝑃𝑃; Tab. 3) to investigate possible links to 𝑅𝑅𝑁𝑁𝑁𝑁−𝑃𝑃𝑃𝑃𝑃𝑃. At 
lag 0 (Figs. 20a and 21a), large negative significant OLR anomalies exceeding -14 W m-2 are also found 
in the western Pacific, in the Philippine Sea (around 25° N and 140° E). The VP signal is not significant 
in the regression or composites. Nonetheless, OLR anomalies over the Philippine Sea are investigated 
(𝑂𝑂𝑂𝑂𝑅𝑅𝑃𝑃ℎ𝑖𝑖𝐴𝐴𝑖𝑖𝑝𝑝−𝑆𝑆𝐺𝐺𝑃𝑃; Tab. 3) for links to 𝑅𝑅𝑁𝑁𝑁𝑁−𝑃𝑃𝑃𝑃𝑃𝑃. 

Furthermore, the composite at lag 0 (Fig. 20a) shows statistically significant OLR and VP anomalies 
over the Caribbean and Central America (at 18° N and 95° W) of up to -8 W m-2 and -0.75x106 m2 s-1 
respectively. The regression of R onto OLR at lag 0 (Fig. 21a) also shows a signal in the Caribbean. 
However, preliminary analysis in PCMCI revealed that whilst OLR in the Caribbean is linked to 
𝑅𝑅𝑁𝑁𝑁𝑁−𝑃𝑃𝑃𝑃𝑃𝑃, the link is instantaneous across all timescales except for a weak link at lag 9 in the daily model 
from 𝑅𝑅𝑁𝑁𝑁𝑁−𝑃𝑃𝑃𝑃𝑃𝑃 to OLR in the Caribbean (see Appendix A3.3). It is possible that OLR in the Caribbean 
is driven by 𝑅𝑅𝑁𝑁𝑁𝑁−𝑃𝑃𝑃𝑃𝑃𝑃 via eddy-mean flow interactions, where the wave energy from breaking RRWPs 
can drive the meridional circulation in the tropics (Vallis, 2007, p. 305), as for the links from 𝑅𝑅𝑁𝑁−𝐴𝐴𝐴𝐴𝐴𝐴 to 
𝑂𝑂𝑂𝑂𝑅𝑅𝐺𝐺𝐸𝐸𝐴𝐴𝐺𝐺−𝐺𝐺𝐸𝐸𝑖𝑖𝑆𝑆𝐺𝐺𝑃𝑃 (see section 3.1.3). Nonetheless, as even the daily model found an instantaneous link 
and directionality could not be well assessed, OLR in the Caribbean is not further investigated. 
Moreover, the composite at lag 10 (Fig. 20c) reveals negative OLR and VP anomalies in the Bay of 
Bengal (at 8° N and 97° E) exceeding -14 W m-2 and -0.5x106 m2 s-1, respectively. Note that whilst the 
regression analysis at lag 0 (Fig. 21a) shows a similar OLR signal north of the Bay of Bengal, they are 
spatially distinct. It is plausible that the anomalous convection in this area could trigger RW trains which 
might cause RRWPs. However, preliminary analysis in PCMCI revealed no direct links from OLR in 
the Bay of Bengal to 𝑅𝑅𝑁𝑁𝑁𝑁−𝑃𝑃𝑃𝑃𝑃𝑃 (see Appendix A3.4). Only in the daily model is OLR in the Bay of 
Bengal linked to 𝑅𝑅𝑁𝑁𝑁𝑁−𝑃𝑃𝑃𝑃𝑃𝑃 via 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘𝑠𝑠𝑊𝑊𝐹𝐹−𝐺𝐺𝐺𝐺 at lags 2,1, and 3 and the sign of the link is not consistent 
across lags. Therefore, OLR in the Bay of Bengal was not further investigated. The choice to not further 
investigate these OLR actors was made to include only the most plausible actors in the causal model. 
Furthermore, limiting the number of actors included in the network increases legibility of the graphical 
causal model. 

Since the Greenland blocking precedes RRWPs, this blocking feature is further investigated, especially 
regarding tropical forcing. Therefore, one theory, which is only partially motivated by the composites, 
and more by literature, is investigated. Cassou (2008) studied links between the MJO phases and North 
Atlantic weather regimes. He found an increase in occurrence of up to 60 % of the NAO- regime 10-15 
days after MJO phase 6 and 4-15 days after MJO phase 7. In the more refined classification by Grams 
et al. (2017) the Greenland blocking regime, GL, is the analogue of the NAO-. Therefore, the links 
Cassou (2008) finds between the MJO and NAO- might be found between an OLR based actor and 
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘𝑠𝑠𝑊𝑊𝐹𝐹−𝐺𝐺𝐺𝐺. Cassou (2008) showed that convection and upper-level divergence in the eastern tropical 
Pacific at around 15° N and 120° W during MJO phase 6 leads to northwards advection of anticyclonic 
vorticity anomalies. These can propagate to Europe with the jet leading to anticyclonic anomalies over 
Greenland and thus preferred occurrence of NAO-. The composite analysis does not strongly discourage 
this hypothesis. The composites at lags 3 and 10 days (Fig. 20b and 20c) show negative, but non-
statistically significant, OLR and VP anomalies in the eastern Pacific (up to -8 W m-2 and -0.25x106 m2 
s-1 respectively). Therefore, OLR anomalies in the eastern Pacific (𝑂𝑂𝑂𝑂𝑅𝑅𝑁𝑁−𝑃𝑃𝑃𝑃𝑃𝑃) are investigated in 
PCMCI.  

3.2.2 PCMCI 
In summary, the following actors were created and analysed in a causal network for the eastern North 
Pacific at three different time scales (Figs. 22-24): 𝑅𝑅𝑁𝑁𝑁𝑁−𝑃𝑃𝑃𝑃𝑃𝑃, 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘𝑠𝑠𝑁𝑁𝐴𝐴−𝑙𝑙𝑃𝑃𝑙𝑙𝑃𝑃𝑤𝑤𝐴𝐴, 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘𝑠𝑠𝑊𝑊𝐹𝐹−𝐺𝐺𝐺𝐺, 
𝑈𝑈250𝑁𝑁𝑁𝑁−𝑃𝑃𝑃𝑃𝑃𝑃, 𝑂𝑂𝑂𝑂𝑅𝑅𝑁𝑁𝑁𝑁−𝑃𝑃𝑃𝑃𝑃𝑃, 𝑂𝑂𝑂𝑂𝑅𝑅𝑁𝑁−𝑃𝑃𝑃𝑃𝑃𝑃, 𝑎𝑎𝑛𝑛𝑎𝑎 𝑂𝑂𝑂𝑂𝑅𝑅𝑃𝑃ℎ𝑖𝑖𝐴𝐴𝑖𝑖𝑝𝑝−𝑆𝑆𝐺𝐺𝑃𝑃 (Tab. 3). In the following section the results 
from PCMCI are presented separately for each possible driver (atmospheric blocking, changes in the 
background flow, and forcing from deep convection) before they are discussed in section 3.2.3. Notation 
is as in section 3.1.2. 
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Figure 20: As Figure 11, but composites of OLR and VP anomalies leading up to high R days in the eastern 
North Pacific at lag a) 10 days, b) 3 days, and c) 0 days, i.e., during high R days. The spatial extent of  
𝑶𝑶𝑶𝑶𝑹𝑹𝑷𝑷𝑷𝑷𝑮𝑮𝒃𝒃𝑮𝑮𝑷𝑷−𝑆𝑆𝑮𝑮𝑺𝑺 (at 25° N and 125° E), 𝑶𝑶𝑶𝑶𝑹𝑹𝑵𝑵𝑬𝑬−𝑷𝑷𝑺𝑺𝒃𝒃 (at 30° N and 145° W), and 𝑶𝑶𝑶𝑶𝑹𝑹𝑬𝑬−𝑷𝑷𝑺𝑺𝒃𝒃 (at 15° N and 120° 
W) is indicated by rectangles of black dashed lines. 

Figure 21: As Figure 12, but a) regression of 𝑹𝑹𝑵𝑵𝑬𝑬−𝑷𝑷𝑺𝑺𝒃𝒃 on OLR at lag 0 and b) regression of 𝑹𝑹𝑵𝑵𝑬𝑬−𝑷𝑷𝑺𝑺𝒃𝒃 on VP 
at lag 0. The spatial extent of  𝑶𝑶𝑶𝑶𝑹𝑹𝑷𝑷𝑷𝑷𝑮𝑮𝒃𝒃𝑮𝑮𝑷𝑷−𝑆𝑆𝑮𝑮𝑺𝑺 (at 25° N and 125° E), 𝑶𝑶𝑶𝑶𝑹𝑹𝑵𝑵𝑬𝑬−𝑷𝑷𝑺𝑺𝒃𝒃 (at 30° N and 145° W), and 
𝑶𝑶𝑶𝑶𝑹𝑹𝑬𝑬−𝑷𝑷𝑺𝑺𝒃𝒃 (at 15° N and 120° W) is indicated by rectangles of black dashed lines. 
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Table 3: List of actors in the causal networks for R in the eastern North Pacific. 

Abbreviation Actor Variable [unit] Region Standard 
deviation 

𝑅𝑅𝑁𝑁𝑁𝑁−𝑃𝑃𝑃𝑃𝑃𝑃  RRWPs in the eastern 
North Pacific 

R [m s-1] 35° N - 65° N, 
175° W - 115° W 

3.56 

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘𝑠𝑠𝑁𝑁𝐴𝐴−𝑙𝑙𝑃𝑃𝑙𝑙𝑃𝑃𝑤𝑤𝐴𝐴 Blocking over the west 
coast of North America 

Fraction of area 
blocked [%] 

45° N - 65° N, 
140° W - 110° W 

0.13 

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘𝑠𝑠𝑊𝑊𝐹𝐹−𝐺𝐺𝐺𝐺  Greenland blocking 
weather regime index 

Correlation to 
Greenland blocking 
(Appendix A2.1) 

NA 1.00 

𝑈𝑈250𝑁𝑁𝑁𝑁−𝑃𝑃𝑃𝑃𝑃𝑃  Background flow over 
the eastern North 
Pacific and western 
North America 

Zonal wind U at 250 
hPa, filtered for 
wavenumbers k 0-3 
[m s-1] 

40° N - 53° N, 
170° W - 130 ° W 

7.10 

𝑂𝑂𝑂𝑂𝑅𝑅𝑁𝑁𝑁𝑁−𝑃𝑃𝑃𝑃𝑃𝑃  Convection over the 
eastern North Pacific 

Outgoing longwave 
radiation [W m-2] 

25° N - 35° N, 
160° W - 130° W 

12.97 

𝑂𝑂𝑂𝑂𝑅𝑅𝑃𝑃ℎ𝑖𝑖𝐴𝐴𝑖𝑖𝑝𝑝−𝑆𝑆𝐺𝐺𝑃𝑃  Convection over the 
Philippine Sea 

20° N - 30° N, 
130° E - 155° E 

17.04 

𝑂𝑂𝑂𝑂𝑅𝑅𝑁𝑁−𝑃𝑃𝑃𝑃𝑃𝑃  Convection over the 
tropical eastern Pacific 

10° N - 20° N, 
130° W - 110° W 

19.53 

 

3.2.2.1 Atmospheric blocking 
Overall, an increase in 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘𝑠𝑠𝑊𝑊𝐹𝐹−𝐺𝐺𝐺𝐺 is found to increase 𝑅𝑅𝑁𝑁𝑁𝑁−𝑃𝑃𝑃𝑃𝑃𝑃 at weekly time lag. This is evident 
from the positive link 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘𝑠𝑠𝑊𝑊𝐹𝐹−𝐺𝐺𝐺𝐺  →  𝑅𝑅𝑁𝑁𝑁𝑁−𝑃𝑃𝑃𝑃𝑃𝑃 at lag 7 (0.068) in the daily model (Fig. 22) and lag 
1 (0.151) in the 6-daily model (Fig. 24). This matches the positive relationship between R and blocking 
around Greenland at time lags up to 10 days found in the composites and regression (Figs. 16 and 17). 
𝑅𝑅𝑁𝑁𝑁𝑁−𝑃𝑃𝑃𝑃𝑃𝑃 increases 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘𝑠𝑠𝑁𝑁𝐴𝐴−𝑙𝑙𝑃𝑃𝑙𝑙𝑃𝑃𝑤𝑤𝐴𝐴 at time lag of about one week but decreases it at higher lags. The 
increase is seen in the daily model at lags 7,6 (0.085, 0.070) and the 6-daily model at lag 1 (0.196), 
whilst the decrease is captured by the 3-daily model (Fig. 23) at lag 3 (-0.099). 

3.2.2.2 Changes in the background flow 
𝑈𝑈250𝑁𝑁𝑁𝑁−𝑃𝑃𝑃𝑃𝑃𝑃 and 𝑅𝑅𝑁𝑁𝑁𝑁−𝑃𝑃𝑃𝑃𝑃𝑃 are linked with negative feedback on a 1 to 2 weekly scale, where an increase 
in 𝑈𝑈250𝑁𝑁𝑁𝑁−𝑃𝑃𝑃𝑃𝑃𝑃 increases 𝑅𝑅𝑁𝑁𝑁𝑁−𝑃𝑃𝑃𝑃𝑃𝑃, which successively causes a decrease in 𝑈𝑈250𝑁𝑁𝑁𝑁−𝑃𝑃𝑃𝑃𝑃𝑃. On the daily 
time scale a positive link 𝑈𝑈250𝑁𝑁𝑁𝑁−𝑃𝑃𝑃𝑃𝑃𝑃  

𝜏𝜏=7
�⎯�  𝑅𝑅𝑁𝑁𝑁𝑁−𝑃𝑃𝑃𝑃𝑃𝑃 (0.065) and negative links in the opposite 

direction, 𝑅𝑅𝑁𝑁𝑁𝑁−𝑃𝑃𝑃𝑃𝑃𝑃  
𝜏𝜏=4,6
�⎯⎯�  𝑈𝑈250𝑁𝑁𝑁𝑁−𝑃𝑃𝑃𝑃𝑃𝑃 (-0.071 and -0.059), are detected. This pattern is also found in 

the 3-daily model with a positive link 𝑈𝑈250𝑁𝑁𝑁𝑁−𝑃𝑃𝑃𝑃𝑃𝑃 𝜏𝜏=3�⎯� 𝑅𝑅𝑁𝑁𝑁𝑁−𝑃𝑃𝑃𝑃𝑃𝑃 (0.097) and a negative link 𝑅𝑅𝑁𝑁𝑁𝑁−𝑃𝑃𝑃𝑃𝑃𝑃  

𝜏𝜏=1
�⎯�  𝑈𝑈250𝑁𝑁𝑁𝑁−𝑃𝑃𝑃𝑃𝑃𝑃 (-0.129). In the 6-daily model a negative link 𝑅𝑅𝑁𝑁𝑁𝑁−𝑃𝑃𝑃𝑃𝑃𝑃  

𝜏𝜏=1
�⎯�  𝑈𝑈250𝑁𝑁𝑁𝑁−𝑃𝑃𝑃𝑃𝑃𝑃 (-0.211) 

and an instantaneous link (-0.162) are detected. As in the North Atlantic, a stronger zonal background 
flow can increase R, which then causes the background flow to decrease. However, the link 𝑅𝑅𝑁𝑁𝑁𝑁−𝑃𝑃𝑃𝑃𝑃𝑃 
→ 𝑈𝑈250𝑁𝑁𝑁𝑁−𝑃𝑃𝑃𝑃𝑃𝑃 at lag 2 (0.165) in the 6-daily model is positive, showing that at lags exceeding 1.5 
weeks, high 𝑅𝑅𝑁𝑁𝑁𝑁−𝑃𝑃𝑃𝑃𝑃𝑃 is again linked with higher 𝑈𝑈250𝑁𝑁𝑁𝑁−𝑃𝑃𝑃𝑃𝑃𝑃, i.e., increased zonal flow. Further, a 
negative instantaneous link 𝑈𝑈250𝑁𝑁𝑁𝑁−𝑃𝑃𝑃𝑃𝑃𝑃  ↔  𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘𝑠𝑠𝑁𝑁𝐴𝐴−𝑙𝑙𝑃𝑃𝑙𝑙𝑃𝑃𝑤𝑤𝐴𝐴 is present at all timescales (-0.189, -
0.290, -0.308; for daily, 3-daily, and 6-daily model), with a negative lagged link U250 
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𝜏𝜏=1
�⎯�  𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘𝑠𝑠𝑁𝑁𝐴𝐴−𝑙𝑙𝑃𝑃𝑙𝑙𝑃𝑃𝑤𝑤𝐴𝐴 (-0.094) in the daily model. Finally, there is also an instantaneous positive link 
𝑈𝑈250𝑁𝑁𝑁𝑁−𝑃𝑃𝑃𝑃𝑃𝑃  ↔  𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘𝑠𝑠𝑊𝑊𝐹𝐹−𝐺𝐺𝐺𝐺 (0.094) in the 3-daily model, implying that Greenland blocking is 
associated with slightly increased background flow upstream. 

3.2.2.3 Forcing from deep convection 
𝑂𝑂𝑂𝑂𝑅𝑅𝑁𝑁𝑁𝑁−𝑃𝑃𝑃𝑃𝑃𝑃 drives actors on different time scales. It drives 𝑅𝑅𝑁𝑁𝑁𝑁−𝑃𝑃𝑃𝑃𝑃𝑃 directly in the 6-daily model (Fig. 
24) with a strong negative link 𝑂𝑂𝑂𝑂𝑅𝑅𝑁𝑁𝑁𝑁−𝑃𝑃𝑃𝑃𝑃𝑃  

𝜏𝜏=3
�⎯�  𝑅𝑅𝑁𝑁𝑁𝑁−𝑃𝑃𝑃𝑃𝑃𝑃 (-0.136) and an instantaneous link (-0.147). 

Furthermore, 𝑂𝑂𝑂𝑂𝑅𝑅𝑁𝑁𝑁𝑁−𝑃𝑃𝑃𝑃𝑃𝑃 drives 𝑅𝑅𝑁𝑁𝑁𝑁−𝑃𝑃𝑃𝑃𝑃𝑃 indirectly through 𝑈𝑈250𝑁𝑁𝑁𝑁−𝑃𝑃𝑃𝑃𝑃𝑃 or 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘𝑠𝑠𝑊𝑊𝐹𝐹−𝐺𝐺𝐺𝐺. In the daily 
model (Fig. 22) it drives 𝑈𝑈250𝑁𝑁𝑁𝑁−𝑃𝑃𝑃𝑃𝑃𝑃 at lag 2 (0.098) and a positive instantaneous link is present at 3-
daily (0.137) and 6-daily timescales (0.240). On the daily timescale (Fig. 22) a negative link from 
𝑂𝑂𝑂𝑂𝑅𝑅𝑁𝑁𝑁𝑁−𝑃𝑃𝑃𝑃𝑃𝑃 to 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘𝑠𝑠𝑊𝑊𝐹𝐹−𝐺𝐺𝐺𝐺 at lag 2 (-0.074) is present with positive links at lag 1 (0.071) and 3 
(0.064). Remember that the blue arrow refers only to the strongest detected lag, which is negative. 
Overall, increased convection in the eastern North Pacific can increase 𝑅𝑅𝑁𝑁𝑁𝑁−𝑃𝑃𝑃𝑃𝑃𝑃 at the sub weekly scale 
by modulating the background flow (Figs. 22-24), but can also directly increase 𝑅𝑅𝑁𝑁𝑁𝑁−𝑃𝑃𝑃𝑃𝑃𝑃 at longer 
timescales exceeding 2 weeks (Fig. 24). 

𝑂𝑂𝑂𝑂𝑅𝑅𝑃𝑃ℎ𝑖𝑖𝐴𝐴𝑖𝑖𝑝𝑝−𝑆𝑆𝐺𝐺𝑃𝑃 is not found as a direct or indirect driver of 𝑅𝑅𝑁𝑁𝑁𝑁−𝑃𝑃𝑃𝑃𝑃𝑃, but is driven by 𝑅𝑅𝑁𝑁𝑁𝑁−𝑃𝑃𝑃𝑃𝑃𝑃 and 
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘𝑠𝑠𝑊𝑊𝐹𝐹−𝐺𝐺𝐺𝐺. 𝑅𝑅𝑁𝑁𝑁𝑁−𝑃𝑃𝑃𝑃𝑃𝑃 decreases 𝑂𝑂𝑂𝑂𝑅𝑅𝑃𝑃ℎ𝑖𝑖𝐴𝐴𝑖𝑖𝑝𝑝−𝑆𝑆𝐺𝐺𝑃𝑃 at lags 1 (-0.135) in the 3-daily model (Fig. 23) and 
is instantaneously connected to 𝑂𝑂𝑂𝑂𝑅𝑅𝑃𝑃ℎ𝑖𝑖𝐴𝐴𝑖𝑖𝑝𝑝−𝑆𝑆𝐺𝐺𝑃𝑃 in the 6-daily model (-0.173). There is a negative link 
from 𝑂𝑂𝑂𝑂𝑅𝑅𝑃𝑃ℎ𝑖𝑖𝐴𝐴𝑖𝑖𝑝𝑝−𝑆𝑆𝐺𝐺𝑃𝑃 to 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘𝑠𝑠𝑁𝑁𝐴𝐴−𝑙𝑙𝑃𝑃𝑙𝑙𝑃𝑃𝑤𝑤𝐴𝐴 at lag of 3 days (-0.062) in the daily model and lag 1 (-0.119) 
in the 3-daily model. These pathways suggest that 𝑅𝑅𝑁𝑁𝑁𝑁−𝑃𝑃𝑃𝑃𝑃𝑃 and 𝑂𝑂𝑂𝑂𝑅𝑅𝑃𝑃ℎ𝑖𝑖𝐴𝐴𝑖𝑖𝑝𝑝−𝑆𝑆𝐺𝐺𝑃𝑃 contribute to an increase 
in 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘𝑠𝑠𝑁𝑁𝐴𝐴−𝑙𝑙𝑃𝑃𝑙𝑙𝑃𝑃𝑤𝑤𝐴𝐴 directly, but 𝑅𝑅𝑁𝑁𝑁𝑁−𝑃𝑃𝑃𝑃𝑃𝑃 can also modulate the blocking via 𝑂𝑂𝑂𝑂𝑅𝑅𝑃𝑃ℎ𝑖𝑖𝐴𝐴𝑖𝑖𝑝𝑝−𝑆𝑆𝐺𝐺𝑃𝑃. Finally, 
the role of 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘𝑠𝑠𝑊𝑊𝐹𝐹−𝐺𝐺𝐺𝐺 as a driver of North Pacific processes is again highlighted. It has a negative 
link to 𝑂𝑂𝑂𝑂𝑅𝑅𝑃𝑃ℎ𝑖𝑖𝐴𝐴𝑖𝑖𝑝𝑝−𝑆𝑆𝐺𝐺𝑃𝑃 at lag 3 (-0.124) in the 3-daily model and lag 1 (-0.181) in the 6-daily model. In 
summary, 𝑅𝑅𝑁𝑁𝑁𝑁−𝑃𝑃𝑃𝑃𝑃𝑃 drives a decrease in 𝑂𝑂𝑂𝑂𝑅𝑅𝑃𝑃ℎ𝑖𝑖𝐴𝐴𝑖𝑖𝑝𝑝−𝑆𝑆𝐺𝐺𝑃𝑃 at the weekly scale, whilst 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘𝑠𝑠𝑊𝑊𝐹𝐹−𝐺𝐺𝐺𝐺 drives 
a decrease in 𝑂𝑂𝑂𝑂𝑅𝑅𝑃𝑃ℎ𝑖𝑖𝐴𝐴𝑖𝑖𝑝𝑝−𝑆𝑆𝐺𝐺𝑃𝑃 at around 2 weeks lag. Furthermore, 𝑂𝑂𝑂𝑂𝑅𝑅𝑃𝑃ℎ𝑖𝑖𝐴𝐴𝑖𝑖𝑝𝑝−𝑆𝑆𝐺𝐺𝑃𝑃 is identified as a driver 
of 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘𝑠𝑠𝑁𝑁𝐴𝐴−𝑙𝑙𝑃𝑃𝑙𝑙𝑃𝑃𝑤𝑤𝐴𝐴. 

𝑂𝑂𝑂𝑂𝑅𝑅𝑁𝑁−𝑃𝑃𝑃𝑃𝑃𝑃 has a negative link to 𝑅𝑅𝑁𝑁𝑁𝑁−𝑃𝑃𝑃𝑃𝑃𝑃 on the daily scale at lag 6 (-0.087). Otherwise, 𝑂𝑂𝑂𝑂𝑅𝑅𝑁𝑁−𝑃𝑃𝑃𝑃𝑃𝑃 is 
not linked to an increase in 𝑅𝑅𝑁𝑁𝑁𝑁−𝑃𝑃𝑃𝑃𝑃𝑃 directly or indirectly with mostly negative instantaneous links to 
dynamical actors in the eastern North Pacific, such as a negative instantaneous link to 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘𝑠𝑠𝑁𝑁𝐴𝐴−𝑙𝑙𝑃𝑃𝑙𝑙𝑃𝑃𝑤𝑤𝐴𝐴 
(-0.117) in the 6-daily model (Fig. 24). In the 3-daily and 6-daily model 𝑂𝑂𝑂𝑂𝑅𝑅𝑁𝑁−𝑃𝑃𝑃𝑃𝑃𝑃 is driven by 
𝑈𝑈250𝑁𝑁𝑁𝑁−𝑃𝑃𝑃𝑃𝑃𝑃 at lags 2 (-0.112) and 1 (-0.194) respectively. 
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Figure 22: As Figure 13, but for the eastern North Pacific at daily time scale. 
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Figure 23: As Figure 22, but at 3-daily time scale. 
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Figure 24: As Figure 22, but at 6-daily time scale. 
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3.2.3 Discussion 
In the following section the results regarding drivers of 𝑅𝑅𝑁𝑁𝑁𝑁−𝑃𝑃𝑃𝑃𝑃𝑃 are discussed. An increase of 𝑅𝑅𝑁𝑁𝑁𝑁−𝑃𝑃𝑃𝑃𝑃𝑃 
is driven at weekly time lag by an increase in the zonal background flow (Figs. 22 and 23). This was 
also found in the North Atlantic, but whilst there it was speculated to be due to the preferred regime 
transition (NAO+ and zonal flow transitioning preferably into blocked regimes), here the mechanism is 
unclear. As in the North Atlantic, the background flow and blocking are very closely linked, as the 
negative instantaneous link 𝑈𝑈250𝑁𝑁𝑁𝑁−𝑃𝑃𝑃𝑃𝑃𝑃 ↔ 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘𝑠𝑠𝑁𝑁𝐴𝐴−𝑙𝑙𝑃𝑃𝑙𝑙𝑃𝑃𝑤𝑤𝐴𝐴 at all timescales shows (Figs. 22-24). 
This implies that a reduction in the background flow relates to an increase of the fraction of area 
blocked, an effect described by Nakamura and Huang (2017). 

Moreover, Greenland blocking, 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘𝑠𝑠𝑊𝑊𝐹𝐹−𝐺𝐺𝐺𝐺, is identified as a direct positive driver of 𝑅𝑅𝑁𝑁𝑁𝑁−𝑃𝑃𝑃𝑃𝑃𝑃 (Figs. 
22 and 24) and it is mostly independent of processes in the North Pacific. Röthlisberger et al. (2019) 
show, that positive R anomalies occur up to 6 days after and up to 60° upstream of blocking in the North 
Pacific. However, their results are calculated across all seasons and thus not perfectly comparable to 
DJF as used in this work. Moreover, the statistically significant Greenland blocking signal extends no 
further than 65° W and 𝑅𝑅𝑁𝑁𝑁𝑁−𝑃𝑃𝑃𝑃𝑃𝑃 is defined as westwards of 115° W, so that at least 50° longitude lie 
between the signals. The physical mechanism for how blocking might cause RRWP activity far 
upstream is unclear, as upstream disturbances from perturbations to the background flow are generally 
of small magnitude (Simmons and Hoskins, 1979). However, one possibility is that the diffluent flow 
upstream of 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘𝑠𝑠𝑊𝑊𝐹𝐹−𝐺𝐺𝐺𝐺 increases the amplitude of the upstream RWs (Shutts, 1983; Nakamura and 
Huang, 2017). This pathway is hinted at in the 3-daily model (Fig. 23), where the link from 
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘𝑠𝑠𝑊𝑊𝐹𝐹−𝐺𝐺𝐺𝐺 to 𝑅𝑅𝑁𝑁𝑁𝑁−𝑃𝑃𝑃𝑃𝑃𝑃 goes through 𝑈𝑈250𝑁𝑁𝑁𝑁−𝑃𝑃𝑃𝑃𝑃𝑃. Another possibility might be, that the Greenland 
blocking triggers RW trains on the Arctic waveguide. Martius et al. (2010) present a case study, where 
a breaking wave on the extratropical waveguide, associated with a strong ridge qualitatively not unlike 
Greenland blocking, initiated a wave train on the Arctic waveguide. Wave trains on the Arctic 
waveguide can propagate across Asia and foster RW initiation in the North Pacific (Röthlisberger et al., 
2018) and could thus cause RRWPs. A further explanation is a missing driver, which modulates the 
effect of 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘𝑠𝑠𝑊𝑊𝐹𝐹−𝐺𝐺𝐺𝐺 on 𝑅𝑅𝑁𝑁𝑁𝑁−𝑃𝑃𝑃𝑃𝑃𝑃 or affects both variables. 

Assuming no missing driver for the link 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘𝑠𝑠𝑊𝑊𝐹𝐹−𝐺𝐺𝐺𝐺  →  𝑅𝑅𝑁𝑁𝑁𝑁−𝑃𝑃𝑃𝑃𝑃𝑃, what causes an increase of 
Greenland blocking is of interest, as this might improve prediction of RRWPs in the eastern North 
Pacific. In this work, the excitation of an NAO- phase (which is similar to Greenland blocking) by 
forcing from convection in the eastern tropical Pacific (Cassou, 2008) was investigated. However, the 
selected actor, 𝑂𝑂𝑂𝑂𝑅𝑅𝑁𝑁−𝑃𝑃𝑃𝑃𝑃𝑃, shows no links to 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘𝑠𝑠𝑊𝑊𝐹𝐹−𝐺𝐺𝐺𝐺, nor a robust link to 𝑅𝑅𝑁𝑁𝑁𝑁−𝑃𝑃𝑃𝑃𝑃𝑃 (Figs. 22-24). 
PCMCI not showing a link, does not exclude the mechanism proposed by Cassou (2008). The 
mechanism can still be present in single cases, 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘𝑠𝑠𝑊𝑊𝐹𝐹−𝐺𝐺𝐺𝐺 is not identical to NAO-, and the OLR 
signal might not adequately represent the full tropical forcing, which will be discussed in section 3.3.2 
on limitations. Alternatively, the Greenland blocking develops locally (Feldstein, 2003; Cassou, 2008) 
or could be forced by diabatic processes in the Caribbean, which are known to influence the North 
Atlantic circulation (Hoskins and Sardeshmukh, 1987; Manola et al., 2013; Knight et al., 2017; Li et 
al., 2020). However, no consistent directed links from an actor representing OLR in the western 
Caribbean and Central America to either 𝑅𝑅𝑁𝑁𝑁𝑁−𝑃𝑃𝑃𝑃𝑃𝑃 or 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘𝑠𝑠𝑊𝑊𝐹𝐹−𝐺𝐺𝐺𝐺 could be identified (see Appendix 
A3.3). 

Overall, the pattern linking 𝑅𝑅𝑁𝑁𝑁𝑁−𝑃𝑃𝑃𝑃𝑃𝑃 and blocking is less consistent across models than in the North 
Atlantic, due to the different links detected between 𝑅𝑅𝑁𝑁𝑁𝑁−𝑃𝑃𝑃𝑃𝑃𝑃 and blocks in the 3-daily model (Fig. 23) 
compared to the daily and 6-daily models. Concretely, the 3-daily model shows no link between 
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘𝑠𝑠𝑊𝑊𝐹𝐹−𝐺𝐺𝐺𝐺 and 𝑅𝑅𝑁𝑁𝑁𝑁−𝑃𝑃𝑃𝑃𝑃𝑃 and a negative link 𝑅𝑅𝑁𝑁𝑁𝑁−𝑃𝑃𝑃𝑃𝑃𝑃 𝜏𝜏=3�⎯�𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘𝑠𝑠𝑁𝑁𝐴𝐴−𝑙𝑙𝑃𝑃𝑙𝑙𝑃𝑃𝑤𝑤𝐴𝐴. Whilst a strong positive 
link 𝑅𝑅𝑁𝑁𝑁𝑁−𝑃𝑃𝑃𝑃𝑃𝑃 → 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘𝑠𝑠𝑁𝑁𝐴𝐴−𝑙𝑙𝑃𝑃𝑙𝑙𝑃𝑃𝑤𝑤𝐴𝐴 is present at weekly lag, detected by the daily and 6-daily model 
(Figs. 22 and 24), a negative link is present at about two weekly lag, detected by the 3-daily model at 
lag 3 (Fig. 23). This highlights the advantage of investigating processes using multiple time scales, as 
done by Kretschmer et al. (2016). Doing so can help uncover links not detected at other scales and 
therefore provides a fuller view of the causal network. 
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Additionally, convection in the eastern North Pacific (𝑂𝑂𝑂𝑂𝑅𝑅𝑁𝑁𝑁𝑁−𝑃𝑃𝑃𝑃𝑃𝑃) and to a lesser degree in the eastern 
Pacific (𝑂𝑂𝑂𝑂𝑅𝑅𝑁𝑁−𝑃𝑃𝑃𝑃𝑃𝑃) influence 𝑅𝑅𝑁𝑁𝑁𝑁−𝑃𝑃𝑃𝑃𝑃𝑃 directly or via 𝑈𝑈250𝑁𝑁𝑁𝑁−𝑃𝑃𝑃𝑃𝑃𝑃. However, most links are not 
consistent across time scales and some links show that increased convection can decrease 𝑅𝑅𝑁𝑁𝑁𝑁−𝑃𝑃𝑃𝑃𝑃𝑃. 
𝑂𝑂𝑂𝑂𝑅𝑅𝑁𝑁𝑁𝑁−𝑃𝑃𝑃𝑃𝑃𝑃 is linked to 𝑅𝑅𝑁𝑁𝑁𝑁−𝑃𝑃𝑃𝑃𝑃𝑃 via 𝑈𝑈250𝑁𝑁𝑁𝑁−𝑃𝑃𝑃𝑃𝑃𝑃 with positive links (Figs. 22-24), indicating that an 
increase in convection (decrease in OLR) reduces 𝑈𝑈250𝑁𝑁𝑁𝑁−𝑃𝑃𝑃𝑃𝑃𝑃 which reduces 𝑅𝑅𝑁𝑁𝑁𝑁−𝑃𝑃𝑃𝑃𝑃𝑃. However, the 
composites and regression analysis of OLR and VP (Figs. 20 and 21) show the opposite relationship, 
i.e., that increased convection is linked to an increase in 𝑅𝑅𝑁𝑁𝑁𝑁−𝑃𝑃𝑃𝑃𝑃𝑃. This is only found in the 6-daily 
model (Fig. 24), with an instantaneous and lag 3 negative link 𝑂𝑂𝑂𝑂𝑅𝑅𝑁𝑁𝑁𝑁−𝑃𝑃𝑃𝑃𝑃𝑃  →  𝑅𝑅𝑁𝑁𝑁𝑁−𝑃𝑃𝑃𝑃𝑃𝑃. Whilst 
𝑂𝑂𝑂𝑂𝑅𝑅𝑁𝑁−𝑃𝑃𝑃𝑃𝑃𝑃 drives 𝑅𝑅𝑁𝑁𝑁𝑁−𝑃𝑃𝑃𝑃𝑃𝑃 at lag 6 in the daily model (Fig. 22), it is otherwise mostly related to 
𝑈𝑈250𝑁𝑁𝑁𝑁−𝑃𝑃𝑃𝑃𝑃𝑃 and 𝑂𝑂𝑂𝑂𝑅𝑅𝑁𝑁𝑁𝑁−𝑃𝑃𝑃𝑃𝑃𝑃. 

Generally, 𝑅𝑅𝑁𝑁𝑁𝑁−𝑃𝑃𝑃𝑃𝑃𝑃 is identified as an important driver of North Pacific processes. The short-term 
increase in 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘𝑠𝑠𝑁𝑁𝐴𝐴−𝑙𝑙𝑃𝑃𝑙𝑙𝑃𝑃𝑤𝑤𝐴𝐴 is driven by 𝑅𝑅𝑁𝑁𝑁𝑁−𝑃𝑃𝑃𝑃𝑃𝑃 both directly and via a decrease in 𝑈𝑈250𝑁𝑁𝑁𝑁−𝑃𝑃𝑃𝑃𝑃𝑃 
(Figs. 22-24). This matches well with previous observations that positive R anomalies occur before and 
upstream of blocking in the North Pacific (Röthlisberger et al., 2019) and that blocking is often preceded 
by a wave train upstream, which can act to strengthen the blocking (Altenhoff et al., 2008). The negative 
effect of 𝑅𝑅𝑁𝑁𝑁𝑁−𝑃𝑃𝑃𝑃𝑃𝑃 on 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘𝑠𝑠𝑁𝑁𝐴𝐴−𝑙𝑙𝑃𝑃𝑙𝑙𝑃𝑃𝑤𝑤𝐴𝐴 at higher lags (lag 3 in the 3-daily model; Fig. 23) could be 
explained by the rapid decay of the blocking signal after high R days seen in the composites (see 
Appendix A3.5). If RRWPs only occur for a few days, the associated increase in R and blocking over 
the west coast of the US, is likely to be followed by a decrease in blocked area and zonal flow. As the 
mean length of consecutive high R days in DJF for the eastern North Pacific is 9.45 days (median 7 
days) such cases can exist. Whether this is indeed the mechanism behind the negative effect of 𝑅𝑅𝑁𝑁𝑁𝑁−𝑃𝑃𝑃𝑃𝑃𝑃 
on 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘𝑠𝑠𝑁𝑁𝐴𝐴−𝑙𝑙𝑃𝑃𝑙𝑙𝑃𝑃𝑤𝑤𝐴𝐴 at higher lags is unclear, however. 

Finally, 𝑂𝑂𝑂𝑂𝑅𝑅𝑃𝑃ℎ𝑖𝑖𝐴𝐴𝑖𝑖𝑝𝑝−𝑆𝑆𝐺𝐺𝑃𝑃 is driven by 𝑅𝑅𝑁𝑁𝑁𝑁−𝑃𝑃𝑃𝑃𝑃𝑃 (Fig. 23) and 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘𝑠𝑠𝑊𝑊𝐹𝐹−𝐺𝐺𝐺𝐺 (Figs. 23 and 24) at 1-2 weeks 
lag, although these links are inconsistent across time scales. The latter is difficult to explain. It might 
be linked to RWs on the Arctic waveguide initiated by blocking over Greenland, which can initiate 
RWs in the western Pacific (Röthlisberger et al., 2018) and lead to convection. Alternatively, another 
mediating or common driver could explain the link. The former might be a signal connected to co-
occurrence of RRWPs in the western North Pacific and RRWPs in the eastern North Pacific. R values 
in the western North Pacific are increased during high R days in the eastern North Pacific by 2-5 m s-1 
(Appendix A3.6). Furthermore, the composite of OLR and VP during high R days in the western North 
Pacific also shows large magnitude OLR and VP anomalies over the Philippine Sea (Appendix A3.7). 
Thus, it can be imagined that R in the western North Pacific is a missing driver explaining the link 
𝑅𝑅𝑁𝑁𝑁𝑁−𝑃𝑃𝑃𝑃𝑃𝑃  →  𝑂𝑂𝑂𝑂𝑅𝑅𝑃𝑃ℎ𝑖𝑖𝐴𝐴𝑖𝑖𝑝𝑝−𝑆𝑆𝐺𝐺𝑃𝑃. 

3.3 General discussion, limitations, and outlook 
In this section, the main findings across basins, but also important differences between them, as well as 
results regarding the application of PCMCI to analyse the drivers of RRWPs are discussed (3.3.1). Then, 
limitations of this study as well as an outlook are given. 

3.3.1 General discussion 
In both studied basins, blocks could be identified as a driver of R, although the mechanisms differ. 
Blocking in the central North Atlantic (𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘𝑠𝑠𝑁𝑁−𝐴𝐴𝐴𝐴𝐴𝐴), so co-located or slightly upstream of the area 
defined for 𝑅𝑅𝑁𝑁−𝐴𝐴𝐴𝐴𝐴𝐴, increases 𝑅𝑅𝑁𝑁−𝐴𝐴𝐴𝐴𝐴𝐴 (Figs. 13 and 14). This is further evidence that blocks can initiate 
RRWPs downstream (Röthlisberger et al., 2019; Ali et al., 2021). In the eastern North Pacific, 
Greenland blocking (𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘𝑠𝑠𝑊𝑊𝐹𝐹−𝐺𝐺𝐺𝐺), downstream of the area defined for 𝑅𝑅𝑁𝑁𝑁𝑁−𝑃𝑃𝑃𝑃𝑃𝑃, was found to drive 
𝑅𝑅𝑁𝑁𝑁𝑁−𝑃𝑃𝑃𝑃𝑃𝑃 (Figs. 22 and 24). The physical mechanism here is unclear, as signals propagating upstream 
from an initial perturbation are generally weak (Simmons and Hoskins, 1979). However, the 3-daily 
model (Fig. 23) shows a positive link between 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘𝑠𝑠𝑊𝑊𝐹𝐹−𝐺𝐺𝐺𝐺 and 𝑅𝑅𝑁𝑁𝑁𝑁−𝑃𝑃𝑃𝑃𝑃𝑃 going through 𝑈𝑈250𝑁𝑁𝑁𝑁−𝑃𝑃𝑃𝑃𝑃𝑃. 
It is possible that the blocks influence the upstream background flow, which can affect the amplitude 
of the upstream RWs (Shutts, 1983; Nakamura and Huang, 2017), and thereby foster RRWPs. 
Moreover, the influence of 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘𝑠𝑠𝑊𝑊𝐹𝐹−𝐺𝐺𝐺𝐺 on 𝑅𝑅𝑁𝑁𝑁𝑁−𝑃𝑃𝑃𝑃𝑃𝑃 could be due to either the Greenland blocking 
exciting waves on the Arctic waveguide (Martius et al., 2010), which can propagate over Asia into the 
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North Pacific (Röthlisberger et al., 2018), or perhaps from an unobserved driver, which mediates the 
link or acts as a common driver. 

The zonal background flow is a driver of R in both basins (Figs. 13, 15, 22, and 23). A distinct pattern 
of a reversal from an increased zonal flow before RRWPs to decreased background flow magnitude 
during RRWPs is discovered. A positive anomaly in the background flow drives an increase in R one 
week later and R then causes a decrease in the background flow. Long-lived RWPs are known to affect 
the background flow, mostly close to the location of the RWP (Wirth et al., 2018), and RRWPs could 
have a similar effect. 

In both basins, R was found to drive an increase in downstream blocking: Over the west coast of North 
America for 𝑅𝑅𝑁𝑁𝑁𝑁−𝑃𝑃𝑃𝑃𝑃𝑃 (Fig. 22 and 24) and over Scandinavia for 𝑅𝑅𝑁𝑁−𝐴𝐴𝐴𝐴𝐴𝐴 (Figs. 13-15). This mechanism 
was also suggested by Röthlisberger et al. (2019) and in general the contribution of transient waves to 
stationary or blocked flow is well established (Shutts, 1983; Nakamura and Huang, 2017; Ma and 
Franzke, 2021). Note that in the North Atlantic this link goes via the effect of 𝑅𝑅𝑁𝑁−𝐴𝐴𝐴𝐴𝐴𝐴 on the background 
flow over north-western Europe or blocking in the central North Atlantic, which then modulate 
Scandinavian blocking. 

Overall, this leads to a distinctive causal pathway with an increase of R decreasing the local background 
flow which fosters blocks. This could be related to the findings of Nakamura and Huang (2017), who 
found that transient wave trains in a diffluent, decelerating flow can lead to wavey flow and blocking 
like patterns, explaining the link between R and blocks as well as the modulating effect of the decreased 
background flow. This is further complemented by Huang and Nakamura (2017) who find that 
advection of large LWA, as is the case in RRWPs, and the deceleration and diffluence of the background 
flow can reinforce each other. This might explain the feedback between R and the background flow. 

RW forcing from deep convection was not found as a major driver of RRWPs. Despite some links from 
OLR actors to R, no links could be detected consistently across time scales. Whilst convection in the 
eastern Pacific and eastern North Pacific showed some direct links to 𝑅𝑅𝑁𝑁𝑁𝑁−𝑃𝑃𝑃𝑃𝑃𝑃 (Figs. 22 and 24), 
convection in the Philippine Sea did not drive 𝑅𝑅𝑁𝑁𝑁𝑁−𝑃𝑃𝑃𝑃𝑃𝑃, nor was OLR over the Maritime Continent 
connected to 𝑅𝑅𝑁𝑁−𝐴𝐴𝐴𝐴𝐴𝐴. However, the forcing from (tropical) deep convection on the extratropical 
atmosphere in general, and RW dynamics specifically, is well established (Jin and Hoskins, 1995; 
Wheeler and Hendon, 2004; Cassou, 2008; Moore et al., 2010; Röthlisberger et al., 2018) and the 
connection to RRWPs has been established in case studies (Davies, 2015; Barton et al., 2016). It is 
possible that no links were found because the OLR drivers in this study did not fully represent the effect 
of forcing from deep convection. Nonetheless, these results provide some evidence that dynamical 
processes within the extratropics, rather than tropical forcing through deep convection, drive RRWPs. 

In both basins, R is a driver of deep convection in the tropics. This is clearest in the North Atlantic 
where 𝑅𝑅𝑁𝑁−𝐴𝐴𝐴𝐴𝐴𝐴 drives convection over the Gulf of Guinea (Figs. 14 and 15). In the eastern North Pacific, 
the links are less consistent and change or disappear depending on the investigated time scale. 
Nevertheless, 𝑅𝑅𝑁𝑁𝑁𝑁−𝑃𝑃𝑃𝑃𝑃𝑃 directly increases convection over the Philippine Sea (Figs. 23 and 24) and 
indirectly influences convection in the eastern Pacific and eastern North Pacific.  

With few recent exceptions (Saggioro and Shepherd, 2019; Hirt et al., 2020; Samarasinghe et al., 2020), 
most studies in climate sciences using causal inference methods investigated lower frequency 
interactions, e.g., monthly teleconnections (Kretschmer et al., 2016; Di Capua et al., 2020a), where 
interactions are more linear, and autocorrelation is lower. This study provides further evidence that 
linear causal inference algorithms can capture synoptic-scale links. Finally, deriving causal networks 
for multiple time scales can be treated as a sensitivity test for the robustness of links. Here, links were 
mostly consistent across time scales, showing that the investigated causal links are robust. Where this 
was not the case, different time scales can reveal links which would otherwise have been missed, as the 
negative link 𝑅𝑅𝑁𝑁𝑁𝑁−𝑃𝑃𝑃𝑃𝑃𝑃  

𝜏𝜏 = 3
�⎯�  𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘𝑠𝑠𝑁𝑁𝐴𝐴−𝑙𝑙𝑃𝑃𝑙𝑙𝑃𝑃𝑤𝑤𝐴𝐴 in the 3-daily model. 
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3.3.2 Limitations and outlook 
Although the detection power of PCMCI increased when using coarser resolution time-averaged data, 
many instantaneous links with no direction of causality were detected (Figs. 15 and 24), as PCMCI uses 
information on time order to derive the direction of causality (Runge et al., 2019b). The newest working 
version of PCMCI, PCMCI+ (Runge, 2020), could be used here. It can detect the direction of 
instantaneous relationships and has improved handling of autocorrelation. Additionally, PCMCI rests 
on the assumption of causal sufficiency, which means that all common drivers are included in the 
network (Runge et al., 2019b). This assumption is always violated to a varying degree in complex 
systems like the climate system. In this work, certain links, e.g., 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘𝑠𝑠𝑊𝑊𝐹𝐹−𝐺𝐺𝐺𝐺  →  𝑅𝑅𝑁𝑁𝑁𝑁−𝑃𝑃𝑃𝑃𝑃𝑃, were also 
speculated to be due to a common or mediating driver, but no quantitative statements on the presence 
or magnitude of this missing driver can be made. A novel adaptation to PCMCI, Latent-PCMCI 
(LPCMCI; Gerhardus and Runge, 2020), can quantify this contribution from unknown drivers (and 
detect instantaneous relationships as PCMCI+ does). Quantifying the contribution of unknown drivers 
can help to understand links for which no well-established physical mechanism exists and validate how 
well the constructed causal networks explain the observed variability in the investigated variables. 
However, at the time of writing LPCMCI is not yet publicly available. 

The topic of missing drivers was especially relevant to this work, as the drivers of RRWPs have not 
been firmly established in previous studies. Recent studies have shown that the assumption of Causal 
Sufficiency, i.e., that no unobserved drivers exist, can be relaxed (Runge et al., 2019a). Applying 
PCMCI nevertheless necessitates strong knowledge of the system to select appropriate time series, or 
actors, so that robust and established hypotheses can be tested (Kretschmer et al., 2016; Runge et al., 
2019b), which was not fully given in this case. Therefore, the results of this more exploratory analysis 
should be treated with a certain caution. Whilst some potential drivers of RRWPs could be identified 
and their contributions quantified, the completeness of the causal network is not given, as RRWPs are 
not yet well understood. Specifically, the process of defining latitude-longitude boxes over which to 
average variables to create actors, whilst based on the results of the composites and regression analysis, 
is somewhat subjective. Therefore, future investigations on the drivers of RRWPs might very well lead 
to a slightly different set of actors and links. An interesting alternative to selecting areas of interest 
manually is response guided causal precursor detection (RG-CPD). It can identify relevant (i.e., 
correlating) and spatially coherent areas in gridded data as causal parents of a process, whilst 
considering autocorrelation, common drivers, or mediated links (Di Capua et al., 2020a). Thus, it allows 
for a more accurate definition of precursor areas than manually defining a latitude-longitude box as 
done in this work. PCMCI can then be applied to time series generated from spatial averages over these 
regions. 

A further issue faced in this work is the high autocorrelation of the time series, leading to generally low 
detection power of PCMCI (Runge, 2020), as much of the variance in the time series can be explained 
by autocorrelation rather than cross correlation. Note that the autocorrelation path coefficient is 
generally higher than the path coefficient (Figs. 13-15 and 22-14). Link strength increased with 
decreasing temporal resolution, i.e., it is lowest in the daily model. Variability in links is also largest in 
the daily model, where links of the opposite sign were detected at subsequent time lags. Time-averaging 
to 3-daily or 6-daily scales removes this effect and produces more robust causal networks with the 
downside of more instantaneous links. This shows the synoptic nature of RRWPs and the other studied 
actors and highlights two connected issues: (1) Capturing links well within the synoptic time scale (e.g., 
daily or 3-daily in this work) could be of interest to better understand what causes RRWPs. This is 
difficult due to the large autocorrelation inherent to variables in the climate system, and especially for 
R, which is a time-averaged variable. Here, time series modelling approaches might be used to reduce 
autocorrelation. Alternatively, time-averaging leads to higher detection power, but with the downside 
of increased instantaneous links. (2) Thus, whilst investigations into precursors of RRWPs on larger 
timescales (sub-seasonal or seasonal) are also of interest from a forecasting perspective, simply time-
averaging the actors, e.g., using 30-day means, will not produce good results. In a causal network for 
𝑅𝑅𝑁𝑁−𝐴𝐴𝐴𝐴𝐴𝐴 at the monthly scale (Appendix. A3.8) all links are instantaneous, except for links between OLR 
actors, which can act on these lower frequency time scales (Wheeler and Hendon, 2004; Moore et al., 
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2010). Thus, for the seasonal to sub-seasonal scale, different techniques to transform the dynamical 
actors (R, blocks, background flow) into time series at lower temporal resolution must be investigated. 

Moreover, the composite and regression analysis only capture changes over a mean state. Neither can 
consider separate pathways leading to RRWPs, e.g., for an individual event, high values in 𝑅𝑅𝑁𝑁−𝐴𝐴𝐴𝐴𝐴𝐴 
might be entirely related to Atlantic blocking, with no influence from Scandinavian blocking. Case 
studies can complement climatological analyses (Moore et al., 2010) and further case studies on RRWPs 
could illuminate the causal pathways discovered in this work. Alternatively to case studies, separating 
contributions to the observed variance in RRWPs explained by different variables using principal 
component analysis or maximum covariance analysis would be interesting. This has been used in 
conjunction with causal inference methods before (Di Capua et al., 2020a and 2020b). Finally, some 
very concrete limitations are the focus on DJF and the two basins in the northern hemisphere only. 
Other potential drivers of RRWPs could be studied (Röthlisberger et al., 2019). Despite no robust results 
on RW forcing from deep convection, this should be further investigated, as the actors derived from 
OLR anomalies do most likely not capture the full RW forcing exercised by deep convection and 
RRWPs have been shown to be forced by deep convection (Barton et al., 2016). 
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4. Conclusion 
In this work, potential causal drivers of boreal winter recurrent Rossby wave packets (RRWPs) in the 
North Atlantic and eastern North Pacific basins are investigated using the causal inference method 
PCMCI. RRWPs were measured using the R-metric (R) and the investigated drivers are atmospheric 
blocking, changes in the zonal background flow, and forcing from deep convection measured by 
anomalous outgoing longwave radiation (OLR). Concretely, the goals of this thesis were (1) to identify 
regions where these potential drivers might modulate R and (2) to quantify these links in terms of time 
lag and strength using causal networks created with PCMCI. 

Anomalous patterns in the investigated drivers during RRWP events, defined as days with high R 
values, were investigated using composite maps. Hereby, mean anomalies of the drivers during and 
leading up to days with high R were studied. Furthermore, regressions of R on the various drivers were 
carried out to quantify and map the mean change of R over a basin associated with changes in the drivers 
at each gridpoint and at different time lags. From the composite and regression maps, areas and time 
lags where changes in potential drivers are linked to high R days or changes in R could be derived. The 
causal inference method PCMCI uses two phases of iterative partial correlation tests to establish and 
quantify statistically significant links between time series as well as their time lags. In other words, it 
derives (lagged) correlations between variables which cannot be explained by any other confounding 
variable included in the analysis and are therefore assumed causal in nature. The variables in areas 
identified as relevant from the composites and regression analysis were spatially averaged to time series 
and PCMCI applied to them. To investigate the different time scales at which processes act, PCMCI 
was applied to daily, 3-daily, and 6-daily data resulting in three different causal networks. 

R in the North Atlantic (𝑅𝑅𝑁𝑁−𝐴𝐴𝐴𝐴𝐴𝐴) is increased within one week after co-located or slightly upstream 
blocking in the central North Atlantic, which is partially driven by a decrease in the central North 
Atlantic background flow. Furthermore, a more zonally oriented state over north-western Europe and 
Scandinavia, with a stronger zonal background flow over north-western Europe and a decrease in 
Scandinavian blocking, can increase 𝑅𝑅𝑁𝑁−Atl one week later. An increase in 𝑅𝑅𝑁𝑁−Atl  in turn has a negative 
effect on the strength of the background flow. Moreover, 𝑅𝑅𝑁𝑁−Atl directly drives an increase in blocking 
and a decrease in the background flow in the central North Atlantic and drives a decrease in the 
background flow over north-western Europe, thus also increasing blocking over Scandinavia. 
Anomalous deep convection could not be identified as a direct driver of 𝑅𝑅𝑁𝑁−Atl. However, an increase 
in 𝑅𝑅𝑁𝑁−𝐴𝐴𝐴𝐴𝐴𝐴 causes increased tropical convection, indicated by lower OLR values, over the Gulf of Guinea 
at a lag of one week. This is hypothesized to be explainable by eddy-mean flow interactions, where the 
wave energy from breaking RRWPs drives an increased meridional circulation in the tropics. 

R in the eastern North Pacific (𝑅𝑅𝑁𝑁𝑁𝑁−𝑃𝑃𝑃𝑃𝑃𝑃) is increased with a lag of one week by an increase in blocking 
over Greenland. The physical mechanism behind this link is unclear. It is speculated that the Greenland 
blocking could initiate disturbances on the Arctic waveguide, which can propagate into the Pacific, or 
that the Greenland blocking influences 𝑅𝑅𝑁𝑁𝑁𝑁−𝑃𝑃𝑃𝑃𝑃𝑃 via the diffluent background flow upstream of the 
block, or that an unobserved driver mediates the link or drives both variables. An increase in the local 
background flow causes an increase in 𝑅𝑅𝑁𝑁𝑁𝑁−𝑃𝑃𝑃𝑃𝑃𝑃 which, as in the North Atlantic, has a negative effect 
on the strength of the background flow. Furthermore, an increase in 𝑅𝑅𝑁𝑁𝑁𝑁−𝑃𝑃𝑃𝑃𝑃𝑃 causes increased blocking 
over the west coast of North America at lag of 1 week. At higher lag this positive link is reversed and 
𝑅𝑅𝑁𝑁𝑁𝑁−𝑃𝑃𝑃𝑃𝑃𝑃 has a negative effect on blocking over the west coast of North America. A decrease in OLR, 
signifying increased convection, in areas of the eastern and north-eastern Pacific can increase 𝑅𝑅𝑁𝑁𝑁𝑁−𝑃𝑃𝑃𝑃𝑃𝑃, 
but these links are inconsistent across the different temporal resolutions studied. Finally, despite OLR 
signals in the composites and regression analysis, anomalous deep convection in the Philippine Sea 
could not be identified as a direct driver of 𝑅𝑅𝑁𝑁𝑁𝑁−𝑃𝑃𝑃𝑃𝑃𝑃. 

Applying PCMCI to high resolution synoptic-scale data showed that most links are robust across the 
different (synoptic) timescales investigated here (daily, 3-daily, and 6-daily). However, a few links did 
change and show different causal connections, highlighting the advantage of investigating one causal 
network across multiple time scales. At the 6-daily time scale, many links became instantaneous, 
confirming that RRWPs and the investigated drivers act largely within the weekly time scale. 
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In conclusion, in both studied basins, an increase in R is driven by a prominent blocking feature. 
Meanwhile, increasing R increases blocking downstream, although this effect is not necessarily direct, 
but through the negative influence of R on the local background flow. Furthermore, a conspicuous 
pattern of a more zonal flow before an increase in R emerges, which subsequently decreases due to the 
increase in R. Deep convection could not robustly be identified as a driver of R, although links are 
present in some time lags. However, R was found to drive tropical OLR changes. Overall, this work 
could identify and confirm atmospheric blocking and changes in the local background flow as drivers 
of RRWPs which should be investigated in future research to improve the prediction of RRWPs. 



 
 

45 
 

Appendix 
A1 Supplementary material – Introduction 
A1.1 – Basic Rossby wave theory 
RWs exist due to the meridional gradient of potential vorticity (PV) and can be viewed as perturbations 
of PV propagating eastwards (Hoskins et al., 1985) along an area of enhanced PV gradient, often 
described as the (Rossby) waveguide (Martius et al., 2010). RWs adhere the following dispersion 
relation 

𝑤𝑤 =  𝑢𝑢0𝑘𝑘 −  
𝑘𝑘 𝛽𝛽

𝑘𝑘2  + 𝑏𝑏2
 

(Eq. 16) 

, where w is the angular frequency, 𝑢𝑢0 the constant zonal mean background flow, k and l the zonal and 
meridional wavenumbers, and 𝛽𝛽 is the northward gradient of planetary vorticity (Rossby, 1945). The 
amplitude of Rossby waves can vary across longitude and time. Local maxima of Rossby wave 
amplitudes are termed a Rossby wave packet (Fig. 1; Wirth et al., 2018). From the dispersion relation 
(Eq. 16) two terms can be derived: The zonal phase speed, 𝑏𝑏 =  𝑤𝑤/𝑘𝑘, describing the propagation of the 
individual troughs and ridges forming the waves, and the zonal group velocity, 𝑏𝑏𝑖𝑖  =  𝜕𝜕𝑤𝑤/𝜕𝜕𝑘𝑘, 
describing the propagation of the envelope of the waves, i.e., the RWP. As 𝛽𝛽 is positive, it follows that 
𝑏𝑏𝑖𝑖  >  𝑏𝑏, and hence the envelope of Rossby waves, or RWP, moves eastwards faster than the Rossby 
waves. Troughs and ridges at the upstream end of the envelope dissipate, whilst new troughs and ridges 
form at the downstream end, giving rise to the notion of “downstream development” (Fig. 1; Wirth et 
al., 2018). 

A1.2 – 2002 extreme precipitation over Switzerland described in Barton et al. (2016) 

  
Fig. A1.2: a) Hovmöller Diagram showing the 35° N to 65° N averaged meridional wind Vma at 250 hPa 
and b) R during the 2002 clustered extreme precipitation event over Switzerland described by Barton et 
al. (2016). 
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A2 Supplementary material – Data and Methods 
A2.1 – Atlantic European weather regimes 
The 7 Atlantic European weather regimes (AE wr) are calculated using empirical orthogonal function 
(EOF) analysis and k-means clustering (Grams et al., 2017). This process is briefly outlined below. For 
an in-depth description, consult Grams et al. (2017). Anomalies of 10-day-low-pass-filtered 
geopotential height at 500 hPa (Z500) with regard to a 90-day running mean centred on the respective 
day are derived. EOF analysis is then applied to these anomalies within 30° N to 90° N and 80° W to 
40° E. These anomalies are corrected for a seasonal cycle. This is done by calculating a 30-day running 
window standard deviation at each gridpoint and for each time step. Then the spatial average, within 
the domain specified above, of the 30-day running window standard deviation is calculated per timestep 
and every anomaly is corrected using this spatial average for the respective date. EOF analysis is applied 
and the first 7 EOFs, which explain 74,4 % of variance, and k-mean-clustering is applied to them. This 
results in 7 clusters, which correspond to the 7 AE wr: Atlantic trough, Zonal regime, Scandinavian 
trough, Atlantic ridge, European blocking, Scandinavian blocking, Greenland blocking, and no regime. 

A daily weather regime index is calculated by projecting the daily Z500 anomaly field (as derived 
above) onto the clusters (Michel and Rivière, 2011). Higher (positive) values indicate that the spatial 
correlation of the Z500 anomaly field on a given day to the Z500 field of a given AE wr is high, e.g., 
that day is similar to the Z500 field of a given AE wr. Values around 0 indicate that a day is similar to 
the mean conditions, and lower (negative) values correspond to an opposite pattern. Note that the AR 
wr are valid year-round. 

 
Fig. A2.1: The 7 Atlantic European weather regimes and associated Z500 anomalies as defined by Grams 
et al. (2017). 
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A2.2 – Sensitivity tests for  𝜶𝜶𝑷𝑷𝑪𝑪 in the eastern North Pacific causal network 
In this section an insight into the choice of  𝛼𝛼𝑃𝑃𝑃𝑃 should be given by presenting causal networks for the 
eastern North Pacific for  𝛼𝛼𝑃𝑃𝑃𝑃  =  0.025 and  𝛼𝛼𝑃𝑃𝑃𝑃 =  0.05. These values can be compared to section 
A4, which shows the final results used in this work for the causal models in Figs. 13-15 and Figs. 22-
24. 

This chapter contains the output of PCMCI after the MCI stage and FDR correction of p-values. 
Presented are the uncorrected p-values from the significance tests of MCI stage (pval), the FDR 
corrected p-values (qval), and the link strength (val). 

Notation is as follows: 

 

    Variable R has 12 link(s): 

        (R -1): pval = 0.00000 | qval = 0.00000 | val =  0.887 

        (R -2): pval = 0.00000 | qval = 0.00000 | val = -0.580 

          

 

means that R has 12 statistically significant links and that the strongest 2 links (the other 10 are not 
shown here) of the actor R are R at lag 1 (R -1) and lag 2 (R -2) with pval, qval, val defined as above. 

 

 𝜶𝜶𝑷𝑷𝑪𝑪 = 0.025 
 

Daily 3-daily 6-daily 

   
## Significant links at alpha = 0.025: 
 
    Variable R NE-Pac has 12 link(s): 
        (R NE-Pac -1): pval = 0.00000 | qval = 0.00000 | val 
=  0.887 
        (R NE-Pac -2): pval = 0.00000 | qval = 0.00000 | val 
= -0.580 
        (R NE-Pac -3): pval = 0.00000 | qval = 0.00000 | val 
=  0.351 
        (R NE-Pac -4): pval = 0.00000 | qval = 0.00000 | val 
= -0.216 
        (R NE-Pac -14): pval = 0.00000 | qval = 0.00000 | val 
= -0.136 
        (R NE-Pac -5): pval = 0.00000 | qval = 0.00000 | val 
=  0.118 
        (OLR E-Pac -6): pval = 0.00000 | qval = 0.00001 | val 
= -0.087 
        (blocks WR-GL -7): pval = 0.00004 | qval = 0.00105 
| val =  0.069 
        (R NE-Pac -6): pval = 0.00005 | qval = 0.00118 | val 
= -0.068 
        (R NE-Pac -7): pval = 0.00005 | qval = 0.00124 | val 
= -0.068 
        (U250 NE-Pac -7): pval = 0.00011 | qval = 0.00252 | 
val =  0.065 
        (U250 NE-Pac -9): pval = 0.00110 | qval = 0.02165 | 
val = -0.055 
 
    Variable blocks NA-wcoast has 4 link(s): 
        (blocks NA-wcoast -1): pval = 0.00000 | qval = 
0.00000 | val =  0.761 

## Significant links at alpha = 0.025: 
 
    Variable R NE-Pac has 6 link(s): 
        (R NE-Pac -1): pval = 0.00000 | qval = 0.00000 | val 
=  0.792 
        (R NE-Pac -2): pval = 0.00000 | qval = 0.00000 | val 
= -0.354 
        (R NE-Pac -6): pval = 0.00001 | qval = 0.00013 | val 
=  0.130 
        (R NE-Pac -3): pval = 0.00010 | qval = 0.00154 | val 
=  0.112 
        (U250 NE-Pac -3): pval = 0.00078 | qval = 0.00918 | 
val =  0.097 
        (OLR NE-Pac -5): pval = 0.00174 | qval = 0.01709 | 
val = -0.091 
 
    Variable blocks NA-wcoast has 5 link(s): 
        (blocks NA-wcoast -1): pval = 0.00000 | qval = 
0.00000 | val =  0.395 
        (U250 NE-Pac  0): pval = 0.00000 | qval = 0.00000 | 
val = -0.297 
        (OLR Philip-Sea -1): pval = 0.00003 | qval = 0.00044 
| val = -0.121 
        (R NE-Pac -3): pval = 0.00035 | qval = 0.00450 | val 
= -0.104 
        (OLR NE-Pac -1): pval = 0.00037 | qval = 0.00457 | 
val = -0.103 
 
    Variable blocks WR-GL has 8 link(s): 
        (blocks WR-GL -1): pval = 0.00000 | qval = 0.00000 
| val =  0.912 

## Significant links at alpha = 0.025: 
 
    Variable R NE-Pac has 10 link(s): 
        (R NE-Pac -1): pval = 0.00000 | qval = 0.00000 | val 
=  0.713 
        (R NE-Pac -2): pval = 0.00000 | qval = 0.00000 | val 
= -0.428 
        (R NE-Pac -3): pval = 0.00000 | qval = 0.00000 | val 
=  0.285 
        (OLR Philip-Sea  0): pval = 0.00001 | qval = 0.00001 
| val = -0.184 
        (U250 NE-Pac  0): pval = 0.00007 | qval = 0.00007 | 
val = -0.162 
        (OLR NE-Pac  0): pval = 0.00034 | qval = 0.00034 | 
val = -0.147 
        (blocks WR-GL -1): pval = 0.00047 | qval = 0.00432 
| val =  0.143 
        (OLR Philip-Sea -2): pval = 0.00173 | qval = 0.01338 
| val =  0.129 
        (OLR NE-Pac -3): pval = 0.00214 | qval = 0.01576 | 
val = -0.126 
        (U250 NE-Pac -1): pval = 0.00355 | qval = 0.02267 | 
val =  0.120 
 
    Variable blocks NA-wcoast has 6 link(s): 
        (U250 NE-Pac  0): pval = 0.00000 | qval = 0.00000 | 
val = -0.306 
        (blocks NA-wcoast -1): pval = 0.00000 | qval = 
0.00000 | val =  0.303 
        (R NE-Pac -1): pval = 0.00000 | qval = 0.00005 | val 
=  0.189 
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        (blocks NA-wcoast -2): pval = 0.00000 | qval = 
0.00000 | val = -0.324 
        (U250 NE-Pac  0): pval = 0.00000 | qval = 0.00000 | 
val = -0.188 
        (U250 NE-Pac -1): pval = 0.00000 | qval = 0.00000 | 
val = -0.092 
 
    Variable blocks WR-GL has 14 link(s): 
        (blocks WR-GL -1): pval = 0.00000 | qval = 0.00000 
| val =  0.978 
        (blocks WR-GL -2): pval = 0.00000 | qval = 0.00000 
| val = -0.882 
        (blocks WR-GL -3): pval = 0.00000 | qval = 0.00000 
| val =  0.628 
        (blocks WR-GL -4): pval = 0.00000 | qval = 0.00000 
| val = -0.175 
        (blocks WR-GL -7): pval = 0.00000 | qval = 0.00000 
| val =  0.151 
        (blocks WR-GL -5): pval = 0.00000 | qval = 0.00000 
| val = -0.141 
        (blocks WR-GL -6): pval = 0.00000 | qval = 0.00000 
| val =  0.100 
        (blocks WR-GL -19): pval = 0.00000 | qval = 0.00001 
| val = -0.087 
        (blocks WR-GL -9): pval = 0.00000 | qval = 0.00001 
| val = -0.086 
        (OLR NE-Pac -1): pval = 0.00000 | qval = 0.00005 | 
val =  0.081 
        (OLR NE-Pac -2): pval = 0.00000 | qval = 0.00010 | 
val = -0.078 
        (blocks WR-GL -8): pval = 0.00008 | qval = 0.00196 
| val = -0.066 
        (OLR NE-Pac -3): pval = 0.00009 | qval = 0.00212 | 
val =  0.066 
        (R NE-Pac -12): pval = 0.00084 | qval = 0.01719 | val 
= -0.056 
 
    Variable U250 NE-Pac has 8 link(s): 
        (U250 NE-Pac -1): pval = 0.00000 | qval = 0.00000 | 
val =  0.781 
        (U250 NE-Pac -2): pval = 0.00000 | qval = 0.00000 | 
val = -0.347 
        (blocks NA-wcoast  0): pval = 0.00000 | qval = 
0.00000 | val = -0.188 
        (U250 NE-Pac -3): pval = 0.00000 | qval = 0.00000 | 
val =  0.155 
        (OLR NE-Pac -2): pval = 0.00000 | qval = 0.00000 | 
val =  0.095 
        (U250 NE-Pac -4): pval = 0.00004 | qval = 0.00111 | 
val = -0.069 
        (OLR Philip-Sea -4): pval = 0.00081 | qval = 0.01683 
| val = -0.056 
        (blocks WR-GL -9): pval = 0.00108 | qval = 0.02151 
| val = -0.055 
 
    Variable OLR Philip-Sea has 4 link(s): 
        (OLR Philip-Sea -1): pval = 0.00000 | qval = 0.00000 
| val =  0.700 
        (OLR Philip-Sea -2): pval = 0.00000 | qval = 0.00000 
| val = -0.303 
        (OLR Philip-Sea -3): pval = 0.00000 | qval = 0.00000 
| val =  0.141 
        (OLR Philip-Sea -4): pval = 0.00023 | qval = 0.00504 
| val = -0.062 
 
    Variable OLR NE-Pac has 6 link(s): 
        (OLR NE-Pac -1): pval = 0.00000 | qval = 0.00000 | 
val =  0.677 
        (OLR NE-Pac -2): pval = 0.00000 | qval = 0.00000 | 
val = -0.241 
        (OLR NE-Pac -3): pval = 0.00000 | qval = 0.00000 | 
val =  0.091 
        (U250 NE-Pac -1): pval = 0.00001 | qval = 0.00017 | 
val =  0.076 
        (OLR Philip-Sea -3): pval = 0.00005 | qval = 0.00119 
| val =  0.068 
        (OLR E-Pac  0): pval = 0.00029 | qval = 0.00029 | val 
= -0.061 
 
    Variable OLR E-Pac has 6 link(s): 
        (OLR E-Pac -1): pval = 0.00000 | qval = 0.00000 | val 
=  0.738 
        (OLR E-Pac -2): pval = 0.00000 | qval = 0.00000 | val 
= -0.360 
        (OLR E-Pac -3): pval = 0.00000 | qval = 0.00000 | val 
=  0.169 
        (OLR Philip-Sea -5): pval = 0.00023 | qval = 0.00511 
| val = -0.062 
        (OLR NE-Pac  0): pval = 0.00029 | qval = 0.00029 | 
val = -0.061 
        (OLR NE-Pac -3): pval = 0.00030 | qval = 0.00633 | 
val =  0.061 

        (blocks WR-GL -2): pval = 0.00000 | qval = 0.00000 
| val = -0.774 
        (blocks WR-GL -3): pval = 0.00000 | qval = 0.00000 
| val =  0.669 
        (blocks WR-GL -4): pval = 0.00000 | qval = 0.00000 
| val = -0.567 
        (blocks WR-GL -5): pval = 0.00000 | qval = 0.00000 
| val =  0.495 
        (blocks WR-GL -6): pval = 0.00000 | qval = 0.00000 
| val =  0.322 
        (U250 NE-Pac  0): pval = 0.00047 | qval = 0.00047 | 
val =  0.101 
        (U250 NE-Pac -5): pval = 0.00154 | qval = 0.01561 | 
val = -0.092 
 
    Variable U250 NE-Pac has 10 link(s): 
        (U250 NE-Pac -1): pval = 0.00000 | qval = 0.00000 | 
val =  0.600 
        (blocks NA-wcoast  0): pval = 0.00000 | qval = 
0.00000 | val = -0.297 
        (U250 NE-Pac -2): pval = 0.00000 | qval = 0.00000 | 
val = -0.172 
        (OLR NE-Pac  0): pval = 0.00000 | qval = 0.00000 | 
val =  0.137 
        (R NE-Pac -1): pval = 0.00001 | qval = 0.00013 | val 
= -0.129 
        (blocks WR-GL  0): pval = 0.00047 | qval = 0.00047 
| val =  0.101 
        (R NE-Pac -3): pval = 0.00109 | qval = 0.01228 | val 
=  0.095 
        (OLR NE-Pac -1): pval = 0.00208 | qval = 0.01973 | 
val =  0.089 
        (blocks WR-GL -3): pval = 0.00261 | qval = 0.02396 
| val =  0.087 
        (OLR E-Pac  0): pval = 0.01180 | qval = 0.01180 | val 
= -0.073 
 
    Variable OLR Philip-Sea has 4 link(s): 
        (OLR Philip-Sea -1): pval = 0.00000 | qval = 0.00000 
| val =  0.366 
        (R NE-Pac -1): pval = 0.00000 | qval = 0.00006 | val 
= -0.135 
        (blocks WR-GL -3): pval = 0.00000 | qval = 0.00009 
| val = -0.132 
        (R NE-Pac -2): pval = 0.00142 | qval = 0.01491 | val 
=  0.093 
 
    Variable OLR NE-Pac has 3 link(s): 
        (OLR NE-Pac -1): pval = 0.00000 | qval = 0.00000 | 
val =  0.399 
        (U250 NE-Pac  0): pval = 0.00000 | qval = 0.00000 | 
val =  0.137 
        (OLR E-Pac  0): pval = 0.00001 | qval = 0.00001 | val 
= -0.130 
 
    Variable OLR E-Pac has 6 link(s): 
        (OLR E-Pac -1): pval = 0.00000 | qval = 0.00000 | val 
=  0.407 
        (OLR NE-Pac  0): pval = 0.00001 | qval = 0.00001 | 
val = -0.130 
        (U250 NE-Pac -2): pval = 0.00011 | qval = 0.00159 | 
val = -0.112 
        (OLR NE-Pac -1): pval = 0.00024 | qval = 0.00324 | 
val =  0.106 
        (R NE-Pac -2): pval = 0.00115 | qval = 0.01247 | val 
= -0.094 
        (U250 NE-Pac  0): pval = 0.01180 | qval = 0.01180 | 
val = -0.073 

        (OLR Philip-Sea -1): pval = 0.00069 | qval = 0.00600 
| val = -0.139 
        (OLR NE-Pac -1): pval = 0.00267 | qval = 0.01784 | 
val = -0.123 
        (OLR E-Pac  0): pval = 0.00598 | qval = 0.00598 | val 
= -0.113 
 
    Variable blocks WR-GL has 3 link(s): 
        (blocks WR-GL -1): pval = 0.00000 | qval = 0.00000 
| val =  0.620 
        (blocks WR-GL -2): pval = 0.00000 | qval = 0.00000 
| val = -0.217 
        (blocks WR-GL -3): pval = 0.00257 | qval = 0.01784 
| val =  0.124 
 
    Variable U250 NE-Pac has 7 link(s): 
        (U250 NE-Pac -1): pval = 0.00000 | qval = 0.00000 | 
val =  0.351 
        (blocks NA-wcoast  0): pval = 0.00000 | qval = 
0.00000 | val = -0.306 
        (OLR NE-Pac  0): pval = 0.00000 | qval = 0.00000 | 
val =  0.240 
        (R NE-Pac -1): pval = 0.00000 | qval = 0.00001 | val 
= -0.200 
        (R NE-Pac  0): pval = 0.00007 | qval = 0.00007 | val 
= -0.162 
        (R NE-Pac -2): pval = 0.00017 | qval = 0.00168 | val 
=  0.154 
        (OLR E-Pac  0): pval = 0.00241 | qval = 0.00241 | val 
= -0.124 
 
    Variable OLR Philip-Sea has 4 link(s): 
        (blocks WR-GL -1): pval = 0.00000 | qval = 0.00002 
| val = -0.198 
        (R NE-Pac  0): pval = 0.00001 | qval = 0.00001 | val 
= -0.184 
        (OLR Philip-Sea -1): pval = 0.00001 | qval = 0.00015 
| val =  0.178 
        (OLR NE-Pac  0): pval = 0.01119 | qval = 0.01119 | 
val =  0.104 
 
    Variable OLR NE-Pac has 6 link(s): 
        (OLR NE-Pac -1): pval = 0.00000 | qval = 0.00000 | 
val =  0.341 
        (U250 NE-Pac  0): pval = 0.00000 | qval = 0.00000 | 
val =  0.240 
        (R NE-Pac  0): pval = 0.00034 | qval = 0.00034 | val 
= -0.147 
        (OLR E-Pac  0): pval = 0.00118 | qval = 0.00118 | val 
= -0.133 
        (U250 NE-Pac -1): pval = 0.00130 | qval = 0.01062 | 
val =  0.132 
        (OLR Philip-Sea  0): pval = 0.01119 | qval = 0.01119 
| val =  0.104 
 
    Variable OLR E-Pac has 5 link(s): 
        (OLR E-Pac -1): pval = 0.00000 | qval = 0.00000 | val 
=  0.314 
        (U250 NE-Pac -1): pval = 0.00002 | qval = 0.00020 | 
val = -0.175 
        (OLR NE-Pac  0): pval = 0.00118 | qval = 0.00118 | 
val = -0.133 
        (U250 NE-Pac  0): pval = 0.00241 | qval = 0.00241 | 
val = -0.124 
        (blocks NA-wcoast  0): pval = 0.00598 | qval = 
0.00598 | val = -0.113 
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 𝜶𝜶𝑷𝑷𝑪𝑪 = 0.05 
 

Daily 3-daily 6-daily 

   
## Significant links at alpha = 0.05: 
 
    Variable R NE-Pac has 13 link(s): 
        (R NE-Pac -1): pval = 0.00000 | qval = 0.00000 | val 
=  0.887 
        (R NE-Pac -2): pval = 0.00000 | qval = 0.00000 | val 
= -0.580 
        (R NE-Pac -3): pval = 0.00000 | qval = 0.00000 | val 
=  0.349 
        (R NE-Pac -4): pval = 0.00000 | qval = 0.00000 | val 
= -0.216 
        (R NE-Pac -14): pval = 0.00000 | qval = 0.00000 | val 
= -0.135 
        (R NE-Pac -5): pval = 0.00000 | qval = 0.00000 | val 
=  0.119 
        (blocks WR-GL -7): pval = 0.00003 | qval = 0.00073 
| val =  0.071 
        (R NE-Pac -6): pval = 0.00004 | qval = 0.00108 | val 
= -0.069 
        (R NE-Pac -7): pval = 0.00005 | qval = 0.00120 | val 
= -0.068 
        (OLR E-Pac -6): pval = 0.00009 | qval = 0.00211 | val 
= -0.066 
        (U250 NE-Pac -7): pval = 0.00010 | qval = 0.00216 | 
val =  0.066 
        (U250 NE-Pac -9): pval = 0.00123 | qval = 0.02297 | 
val = -0.054 
        (blocks WR-GL -11): pval = 0.00188 | qval = 0.03286 
| val =  0.052 
 
    Variable blocks NA-wcoast has 5 link(s): 
        (blocks NA-wcoast -1): pval = 0.00000 | qval = 
0.00000 | val =  0.760 
        (blocks NA-wcoast -2): pval = 0.00000 | qval = 
0.00000 | val = -0.324 
        (U250 NE-Pac  0): pval = 0.00000 | qval = 0.00000 | 
val = -0.189 
        (U250 NE-Pac -1): pval = 0.00000 | qval = 0.00000 | 
val = -0.093 
        (blocks NA-wcoast -3): pval = 0.00175 | qval = 
0.03125 | val =  0.053 
 
    Variable blocks WR-GL has 17 link(s): 
        (blocks WR-GL -1): pval = 0.00000 | qval = 0.00000 
| val =  0.978 
        (blocks WR-GL -2): pval = 0.00000 | qval = 0.00000 
| val = -0.882 
        (blocks WR-GL -3): pval = 0.00000 | qval = 0.00000 
| val =  0.628 
        (blocks WR-GL -4): pval = 0.00000 | qval = 0.00000 
| val = -0.175 
        (blocks WR-GL -7): pval = 0.00000 | qval = 0.00000 
| val =  0.151 
        (blocks WR-GL -5): pval = 0.00000 | qval = 0.00000 
| val = -0.141 
        (blocks WR-GL -6): pval = 0.00000 | qval = 0.00000 
| val =  0.100 
        (blocks WR-GL -19): pval = 0.00000 | qval = 0.00001 
| val = -0.087 
        (blocks WR-GL -9): pval = 0.00000 | qval = 0.00001 
| val = -0.086 
        (OLR NE-Pac -1): pval = 0.00000 | qval = 0.00004 | 
val =  0.081 
        (OLR NE-Pac -2): pval = 0.00001 | qval = 0.00017 | 
val = -0.076 
        (OLR NE-Pac -3): pval = 0.00006 | qval = 0.00154 | 
val =  0.067 
        (blocks WR-GL -8): pval = 0.00008 | qval = 0.00191 
| val = -0.066 
        (R NE-Pac -12): pval = 0.00115 | qval = 0.02244 | val 
= -0.055 
        (blocks WR-GL -11): pval = 0.00140 | qval = 0.02545 
| val =  0.054 
        (OLR Philip-Sea -13): pval = 0.00240 | qval = 
0.03979 | val =  0.051 
        (R NE-Pac -2): pval = 0.00290 | qval = 0.04665 | val 
= -0.050 

## Significant links at alpha = 0.05: 
 
    Variable R NE-Pac has 7 link(s): 
        (R NE-Pac -1): pval = 0.00000 | qval = 0.00000 | val 
=  0.791 
        (R NE-Pac -2): pval = 0.00000 | qval = 0.00000 | val 
= -0.352 
        (R NE-Pac -6): pval = 0.00001 | qval = 0.00016 | val 
=  0.128 
        (R NE-Pac -3): pval = 0.00012 | qval = 0.00183 | val 
=  0.111 
        (OLR NE-Pac -5): pval = 0.00206 | qval = 0.02085 | 
val = -0.090 
        (U250 NE-Pac -3): pval = 0.00225 | qval = 0.02190 | 
val =  0.089 
        (OLR E-Pac  0): pval = 0.03558 | qval = 0.03558 | val 
=  0.061 
 
    Variable blocks NA-wcoast has 5 link(s): 
        (blocks NA-wcoast -1): pval = 0.00000 | qval = 
0.00000 | val =  0.395 
        (U250 NE-Pac  0): pval = 0.00000 | qval = 0.00000 | 
val = -0.296 
        (OLR Philip-Sea -1): pval = 0.00004 | qval = 0.00057 
| val = -0.120 
        (OLR NE-Pac -1): pval = 0.00040 | qval = 0.00513 | 
val = -0.103 
        (R NE-Pac -3): pval = 0.00045 | qval = 0.00557 | val 
= -0.102 
 
    Variable blocks WR-GL has 8 link(s): 
        (blocks WR-GL -1): pval = 0.00000 | qval = 0.00000 
| val =  0.912 
        (blocks WR-GL -2): pval = 0.00000 | qval = 0.00000 
| val = -0.774 
        (blocks WR-GL -3): pval = 0.00000 | qval = 0.00000 
| val =  0.669 
        (blocks WR-GL -4): pval = 0.00000 | qval = 0.00000 
| val = -0.567 
        (blocks WR-GL -5): pval = 0.00000 | qval = 0.00000 
| val =  0.495 
        (blocks WR-GL -6): pval = 0.00000 | qval = 0.00000 
| val =  0.322 
        (U250 NE-Pac  0): pval = 0.00057 | qval = 0.00057 | 
val =  0.100 
        (U250 NE-Pac -5): pval = 0.00087 | qval = 0.01023 | 
val = -0.097 
 
    Variable U250 NE-Pac has 9 link(s): 
        (U250 NE-Pac -1): pval = 0.00000 | qval = 0.00000 | 
val =  0.592 
        (blocks NA-wcoast  0): pval = 0.00000 | qval = 
0.00000 | val = -0.296 
        (U250 NE-Pac -2): pval = 0.00000 | qval = 0.00000 | 
val = -0.175 
        (OLR NE-Pac  0): pval = 0.00000 | qval = 0.00000 | 
val =  0.137 
        (R NE-Pac -1): pval = 0.00001 | qval = 0.00014 | val 
= -0.129 
        (blocks WR-GL  0): pval = 0.00057 | qval = 0.00057 
| val =  0.100 
        (blocks WR-GL -3): pval = 0.00231 | qval = 0.02190 
| val =  0.089 
        (OLR NE-Pac -1): pval = 0.00300 | qval = 0.02677 | 
val =  0.086 
        (OLR E-Pac  0): pval = 0.00968 | qval = 0.00968 | val 
= -0.075 
 
    Variable OLR Philip-Sea has 6 link(s): 
        (OLR Philip-Sea -1): pval = 0.00000 | qval = 0.00000 
| val =  0.359 
        (R NE-Pac -1): pval = 0.00000 | qval = 0.00006 | val 
= -0.135 
        (blocks WR-GL -3): pval = 0.00000 | qval = 0.00009 
| val = -0.132 
        (blocks WR-GL -4): pval = 0.00109 | qval = 0.01232 
| val =  0.095 

## Significant links at alpha = 0.05: 
 
    Variable R NE-Pac has 10 link(s): 
        (R NE-Pac -1): pval = 0.00000 | qval = 0.00000 | val 
=  0.712 
        (R NE-Pac -2): pval = 0.00000 | qval = 0.00000 | val 
= -0.426 
        (R NE-Pac -3): pval = 0.00000 | qval = 0.00000 | val 
=  0.275 
        (OLR Philip-Sea  0): pval = 0.00001 | qval = 0.00001 
| val = -0.184 
        (U250 NE-Pac  0): pval = 0.00004 | qval = 0.00004 | 
val = -0.169 
        (OLR NE-Pac  0): pval = 0.00035 | qval = 0.00035 | 
val = -0.146 
        (blocks WR-GL -1): pval = 0.00046 | qval = 0.00422 
| val =  0.144 
        (OLR NE-Pac -3): pval = 0.00214 | qval = 0.01659 | 
val = -0.126 
        (OLR Philip-Sea -2): pval = 0.00234 | qval = 0.01717 
| val =  0.125 
        (blocks NA-wcoast  0): pval = 0.02097 | qval = 
0.02097 | val =  0.095 
 
    Variable blocks NA-wcoast has 9 link(s): 
        (U250 NE-Pac  0): pval = 0.00000 | qval = 0.00000 | 
val = -0.323 
        (blocks NA-wcoast -1): pval = 0.00000 | qval = 
0.00000 | val =  0.257 
        (R NE-Pac -2): pval = 0.00007 | qval = 0.00071 | val 
= -0.164 
        (R NE-Pac -1): pval = 0.00027 | qval = 0.00263 | val 
=  0.150 
        (U250 NE-Pac -2): pval = 0.00382 | qval = 0.02554 | 
val =  0.119 
        (OLR Philip-Sea -1): pval = 0.00780 | qval = 0.04776 
| val = -0.109 
        (OLR E-Pac  0): pval = 0.01172 | qval = 0.01172 | val 
= -0.104 
        (R NE-Pac  0): pval = 0.02097 | qval = 0.02097 | val 
=  0.095 
        (OLR Philip-Sea  0): pval = 0.04293 | qval = 0.04293 
| val = -0.083 
 
    Variable blocks WR-GL has 3 link(s): 
        (blocks WR-GL -1): pval = 0.00000 | qval = 0.00000 
| val =  0.620 
        (blocks WR-GL -2): pval = 0.00000 | qval = 0.00000 
| val = -0.217 
        (blocks WR-GL -3): pval = 0.00257 | qval = 0.01799 
| val =  0.124 
 
    Variable U250 NE-Pac has 8 link(s): 
        (U250 NE-Pac -1): pval = 0.00000 | qval = 0.00000 | 
val =  0.341 
        (blocks NA-wcoast  0): pval = 0.00000 | qval = 
0.00000 | val = -0.323 
        (OLR NE-Pac  0): pval = 0.00000 | qval = 0.00000 | 
val =  0.237 
        (R NE-Pac -1): pval = 0.00000 | qval = 0.00001 | val 
= -0.205 
        (R NE-Pac  0): pval = 0.00004 | qval = 0.00004 | val 
= -0.169 
        (R NE-Pac -2): pval = 0.00065 | qval = 0.00559 | val 
=  0.140 
        (OLR E-Pac  0): pval = 0.00440 | qval = 0.00440 | val 
= -0.117 
        (OLR NE-Pac -2): pval = 0.00656 | qval = 0.04191 | 
val = -0.112 
 
    Variable OLR Philip-Sea has 5 link(s): 
        (blocks WR-GL -1): pval = 0.00000 | qval = 0.00002 
| val = -0.198 
        (R NE-Pac  0): pval = 0.00001 | qval = 0.00001 | val 
= -0.184 
        (OLR Philip-Sea -1): pval = 0.00001 | qval = 0.00017 
| val =  0.178 
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    Variable U250 NE-Pac has 8 link(s): 
        (U250 NE-Pac -1): pval = 0.00000 | qval = 0.00000 | 
val =  0.781 
        (U250 NE-Pac -2): pval = 0.00000 | qval = 0.00000 | 
val = -0.345 
        (blocks NA-wcoast  0): pval = 0.00000 | qval = 
0.00000 | val = -0.189 
        (U250 NE-Pac -3): pval = 0.00000 | qval = 0.00000 | 
val =  0.155 
        (OLR NE-Pac -2): pval = 0.00000 | qval = 0.00000 | 
val =  0.098 
        (U250 NE-Pac -4): pval = 0.00004 | qval = 0.00096 | 
val = -0.069 
        (OLR Philip-Sea -4): pval = 0.00081 | qval = 0.01621 
| val = -0.056 
        (blocks WR-GL -9): pval = 0.00123 | qval = 0.02297 
| val = -0.054 
 
    Variable OLR Philip-Sea has 7 link(s): 
        (OLR Philip-Sea -1): pval = 0.00000 | qval = 0.00000 
| val =  0.700 
        (OLR Philip-Sea -2): pval = 0.00000 | qval = 0.00000 
| val = -0.304 
        (OLR Philip-Sea -3): pval = 0.00000 | qval = 0.00000 
| val =  0.142 
        (R NE-Pac -2): pval = 0.00004 | qval = 0.00104 | val 
= -0.069 
        (OLR Philip-Sea -4): pval = 0.00023 | qval = 0.00498 
| val = -0.062 
        (OLR Philip-Sea -9): pval = 0.00196 | qval = 0.03375 
| val = -0.052 
        (blocks WR-GL -12): pval = 0.00206 | qval = 0.03485 
| val = -0.052 
 
    Variable OLR NE-Pac has 7 link(s): 
        (OLR NE-Pac -1): pval = 0.00000 | qval = 0.00000 | 
val =  0.676 
        (OLR NE-Pac -2): pval = 0.00000 | qval = 0.00000 | 
val = -0.240 
        (OLR NE-Pac -3): pval = 0.00000 | qval = 0.00000 | 
val =  0.091 
        (U250 NE-Pac -1): pval = 0.00000 | qval = 0.00006 | 
val =  0.080 
        (OLR Philip-Sea -3): pval = 0.00003 | qval = 0.00090 
| val =  0.070 
        (OLR E-Pac  0): pval = 0.00018 | qval = 0.00018 | val 
= -0.063 
        (OLR E-Pac -11): pval = 0.00269 | qval = 0.04393 | 
val =  0.050 
 
    Variable OLR E-Pac has 8 link(s): 
        (OLR E-Pac -1): pval = 0.00000 | qval = 0.00000 | val 
=  0.735 
        (OLR E-Pac -2): pval = 0.00000 | qval = 0.00000 | val 
= -0.359 
        (OLR E-Pac -3): pval = 0.00000 | qval = 0.00000 | val 
=  0.168 
        (OLR NE-Pac  0): pval = 0.00018 | qval = 0.00018 | 
val = -0.063 
        (OLR NE-Pac -3): pval = 0.00025 | qval = 0.00522 | 
val =  0.062 
        (OLR Philip-Sea -5): pval = 0.00043 | qval = 0.00905 
| val = -0.059 
        (R NE-Pac -6): pval = 0.00069 | qval = 0.01418 | val 
= -0.057 
        (OLR NE-Pac -4): pval = 0.00124 | qval = 0.02297 | 
val =  0.054 

        (R NE-Pac -2): pval = 0.00146 | qval = 0.01583 | val 
=  0.092 
        (OLR NE-Pac  0): pval = 0.03414 | qval = 0.03414 | 
val =  0.062 
 
    Variable OLR NE-Pac has 5 link(s): 
        (OLR NE-Pac -1): pval = 0.00000 | qval = 0.00000 | 
val =  0.399 
        (U250 NE-Pac  0): pval = 0.00000 | qval = 0.00000 | 
val =  0.137 
        (OLR E-Pac  0): pval = 0.00000 | qval = 0.00000 | val 
= -0.133 
        (OLR Philip-Sea -3): pval = 0.00351 | qval = 0.03037 
| val = -0.085 
        (OLR Philip-Sea  0): pval = 0.03414 | qval = 0.03414 
| val =  0.062 
 
    Variable OLR E-Pac has 8 link(s): 
        (OLR E-Pac -1): pval = 0.00000 | qval = 0.00000 | val 
=  0.407 
        (OLR NE-Pac  0): pval = 0.00000 | qval = 0.00000 | 
val = -0.133 
        (OLR NE-Pac -1): pval = 0.00028 | qval = 0.00397 | 
val =  0.105 
        (U250 NE-Pac -2): pval = 0.00040 | qval = 0.00513 | 
val = -0.103 
        (R NE-Pac -2): pval = 0.00151 | qval = 0.01583 | val 
= -0.092 
        (OLR Philip-Sea -1): pval = 0.00244 | qval = 0.02238 
| val =  0.088 
        (U250 NE-Pac  0): pval = 0.00968 | qval = 0.00968 | 
val = -0.075 
        (R NE-Pac  0): pval = 0.03558 | qval = 0.03558 | val 
=  0.061 

        (OLR NE-Pac  0): pval = 0.01119 | qval = 0.01119 | 
val =  0.104 
        (blocks NA-wcoast  0): pval = 0.04293 | qval = 
0.04293 | val = -0.083 
 
    Variable OLR NE-Pac has 6 link(s): 
        (OLR NE-Pac -1): pval = 0.00000 | qval = 0.00000 | 
val =  0.341 
        (U250 NE-Pac  0): pval = 0.00000 | qval = 0.00000 | 
val =  0.237 
        (R NE-Pac  0): pval = 0.00035 | qval = 0.00035 | val 
= -0.146 
        (OLR E-Pac  0): pval = 0.00064 | qval = 0.00064 | val 
= -0.140 
        (U250 NE-Pac -1): pval = 0.00135 | qval = 0.01104 | 
val =  0.132 
        (OLR Philip-Sea  0): pval = 0.01119 | qval = 0.01119 
| val =  0.104 
 
    Variable OLR E-Pac has 5 link(s): 
        (OLR E-Pac -1): pval = 0.00000 | qval = 0.00000 | val 
=  0.308 
        (U250 NE-Pac -1): pval = 0.00002 | qval = 0.00028 | 
val = -0.173 
        (OLR NE-Pac  0): pval = 0.00064 | qval = 0.00064 | 
val = -0.140 
        (U250 NE-Pac  0): pval = 0.00440 | qval = 0.00440 | 
val = -0.117 
        (blocks NA-wcoast  0): pval = 0.01172 | qval = 
0.01172 | val = -0.104 
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A3 – Supplementary material – Results and Discussion 
A3.1 – R anomalies during high and extremely high R days in the North Atlantic 

 
Fig. A3.1: R anomalies during high (85th percentile; solid line) and extremely high (99th percentile; dashed 
line) R values in the North Atlantic basin (50° W to 10° E; longitudes marked in vertical dotted lines). The 
approximate location of the two blocking features examined in this work (𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝑵𝑵−𝑨𝑨𝑨𝑨𝒃𝒃 at 40° W and 
𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝑺𝑺𝒃𝒃𝑺𝑺𝑺𝑺𝑺𝑺 at 40° E) are marked by orange crosses. This shows that 𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝑵𝑵−𝑨𝑨𝑨𝑨𝒃𝒃 is to a large degree 
upstream of the highest R anomalies during high R events in the North Atlantic. 
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A3.2 – R anomalies during high and extremely high R days in studied basins 
To test whether using the GL weather regime instead of an actor based on anomaly of fraction of area 
blocked would provide similar results, PCMCI models for the eastern North Pacific using both options 
were run. These smaller models included 𝑅𝑅𝑁𝑁𝑁𝑁−𝑃𝑃𝑃𝑃𝑃𝑃, 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘𝑠𝑠𝑁𝑁𝐴𝐴−𝑙𝑙𝑃𝑃𝑙𝑙𝑃𝑃𝑤𝑤𝐴𝐴, and either 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘𝑠𝑠𝑊𝑊𝐹𝐹−𝐺𝐺𝐺𝐺 or 
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘𝑠𝑠𝐺𝐺𝐺𝐺, which is an actor derived from anomaly of fraction of area blocked over 58° N to 75° N, 
70° W to 25° W. All PCMCI runs used 𝛼𝛼𝑃𝑃𝑃𝑃 = 0.01, 𝛼𝛼𝐹𝐹𝐹𝐹𝐹𝐹 = 0.01, and 𝜏𝜏𝑚𝑚𝑃𝑃𝑥𝑥 = 20, 6, or 3 for the daily, 
3-daily, or 6-daily model respectively. 

The causal networks based on the fraction of area blocked actor (𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘𝑠𝑠𝐺𝐺𝐺𝐺) and the Greenland blocking 
weather regime (𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘𝑠𝑠𝑊𝑊𝐹𝐹−𝐺𝐺𝐺𝐺) are very similar. The main differences are the higher autocorrelation in 
the GL weather regime and that in the daily model with 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘𝑠𝑠𝑊𝑊𝐹𝐹−𝐺𝐺𝐺𝐺 the link 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘𝑠𝑠𝑊𝑊𝐹𝐹−𝐺𝐺𝐺𝐺 to 𝑅𝑅𝑁𝑁𝑁𝑁−𝑃𝑃𝑃𝑃𝑃𝑃 
is at 7 days with strength 0.070 (compared to 15 days and 0.064 using 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘𝑠𝑠𝐺𝐺𝐺𝐺). There is also the 
absence of a link from 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘𝑠𝑠𝑊𝑊𝐹𝐹−𝐺𝐺𝐺𝐺 to 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘𝑠𝑠𝑁𝑁𝐴𝐴−𝑙𝑙𝑃𝑃𝑙𝑙𝑃𝑃𝑤𝑤𝐴𝐴 in the 6-daily model. The 6-daily model using 
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘𝑠𝑠𝑊𝑊𝐹𝐹−𝐺𝐺𝐺𝐺 shows a negative link 𝑅𝑅𝑁𝑁𝑁𝑁−𝑃𝑃𝑃𝑃𝑃𝑃→ 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘𝑠𝑠𝑁𝑁𝐴𝐴−𝑙𝑙𝑃𝑃𝑙𝑙𝑃𝑃𝑤𝑤𝐴𝐴 at lag 2 (-0.184). This agrees with 
the negative links at lags 3,4 detected in the 3-daily model. Therefore, for further analyses the GL 
weather regime was used instead of the fraction of area blocked anomalies over Greenland. Using a 
defined index should facilitate comparisons to other studies using the weather regimes and helps to 
explore their use in causal inference methods. 

Models using fraction of area blocked anomalies (𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝑮𝑮𝑶𝑶) 

   

Daily 3-daily 6-daily 

Models using GL weather regime (𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝑾𝑾𝑹𝑹−𝑮𝑮𝑶𝑶) 

   

Daily 3-daily 6-daily 

Figure A3.3: Comparison of causal models using 𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝑮𝑮𝑶𝑶 (top row) and 𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝑾𝑾𝑹𝑹−𝑮𝑮𝑶𝑶 
(bottom row) for daily (1st column), 3-daily (2nd column), and 6-daily (3rd column) models. 
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A3.3 – Preliminary testing of 𝑶𝑶𝑶𝑶𝑹𝑹𝑪𝑪𝑺𝑺𝑴𝑴𝑮𝑮𝒃𝒃 in smaller models 
To examine whether an actor should be considered in the full model of PCMCI, preliminary 
examination in PCMCI using only 𝑅𝑅𝑁𝑁𝑁𝑁−𝑃𝑃𝑃𝑃𝑃𝑃, the blocking actors, and the investigated actor was carried 
out. In this section a preliminary analysis of OLR in the Caribbean, 𝑂𝑂𝑂𝑂𝑅𝑅𝑃𝑃𝑃𝑃𝑀𝑀𝑖𝑖𝐶𝐶, is shown to support the 
decision of not including it in the full causal model presented in Figs. 22 – 24. Coordinates over which 
OLR was averaged to derive 𝑂𝑂𝑂𝑂𝑅𝑅𝑃𝑃𝑃𝑃𝑀𝑀𝑖𝑖𝐶𝐶 are 13° N - 23° N, 105° W - 75° W. All PCMCI runs used 𝛼𝛼𝑃𝑃𝑃𝑃 
= 0.01, 𝛼𝛼𝐹𝐹𝐹𝐹𝐹𝐹 = 0.01, and 𝜏𝜏𝑚𝑚𝑃𝑃𝑥𝑥 = 20, 6, or 3 for the daily, 3-daily, or 6-daily model respectively. Notation 
is as in A2.2. 

 
Daily model 

## Significant links at alpha = 0.01: 
 
    Variable R NE-Pac has 10 link(s): 
        (R NE-Pac -1): pval = 0.00000 | qval = 0.00000 | val =  0.888 
        (R NE-Pac -2): pval = 0.00000 | qval = 0.00000 | val = -0.580 
        (R NE-Pac -3): pval = 0.00000 | qval = 0.00000 | val =  0.352 
        (R NE-Pac -4): pval = 0.00000 | qval = 0.00000 | val = -0.216 
        (R NE-Pac -14): pval = 0.00000 | qval = 0.00000 | val = -0.142 
        (R NE-Pac -5): pval = 0.00000 | qval = 0.00000 | val =  0.119 
        (OLR_carib  0): pval = 0.00000 | qval = 0.00000 | val = -0.083 
        (R NE-Pac -7): pval = 0.00003 | qval = 0.00037 | val = -0.070 
        (blocks WR-GL -7): pval = 0.00003 | qval = 0.00037 | val =  0.070 
        (R NE-Pac -6): pval = 0.00005 | qval = 0.00052 | val = -0.068 
 
    Variable blocks NA-wcoast has 4 link(s): 
        (blocks NA-wcoast -1): pval = 0.00000 | qval = 0.00000 | val =  0.765 
        (blocks NA-wcoast -2): pval = 0.00000 | qval = 0.00000 | val = -0.325 
        (R NE-Pac -7): pval = 0.00000 | qval = 0.00000 | val =  0.089 
        (R NE-Pac -6): pval = 0.00001 | qval = 0.00010 | val =  0.075 
 
    Variable blocks WR-GL has 14 link(s): 
        (blocks WR-GL -1): pval = 0.00000 | qval = 0.00000 | val =  0.978 
        (blocks WR-GL -2): pval = 0.00000 | qval = 0.00000 | val = -0.882 
        (blocks WR-GL -3): pval = 0.00000 | qval = 0.00000 | val =  0.628 
        (OLR_carib -2): pval = 0.00000 | qval = 0.00000 | val =  0.216 
        (blocks WR-GL -4): pval = 0.00000 | qval = 0.00000 | val = -0.175 
        (blocks WR-GL -7): pval = 0.00000 | qval = 0.00000 | val =  0.151 
        (OLR_carib -1): pval = 0.00000 | qval = 0.00000 | val = -0.148 
        (blocks WR-GL -5): pval = 0.00000 | qval = 0.00000 | val = -0.141 
        (OLR_carib -3): pval = 0.00000 | qval = 0.00000 | val = -0.109 
        (blocks WR-GL -6): pval = 0.00000 | qval = 0.00000 | val =  0.100 
        (blocks WR-GL -19): pval = 0.00000 | qval = 0.00000 | val = -0.087 
        (blocks WR-GL -9): pval = 0.00000 | qval = 0.00000 | val = -0.086 
        (OLR_carib  0): pval = 0.00001 | qval = 0.00001 | val =  0.075 
        (blocks WR-GL -8): pval = 0.00008 | qval = 0.00090 | val = -0.066 
 
    Variable OLR_carib has 6 link(s): 
        (OLR_carib -1): pval = 0.00000 | qval = 0.00000 | val =  0.731 
        (OLR_carib -2): pval = 0.00000 | qval = 0.00000 | val = -0.269 
        (OLR_carib -3): pval = 0.00000 | qval = 0.00000 | val =  0.119 
        (R NE-Pac  0): pval = 0.00000 | qval = 0.00000 | val = -0.083 
        (blocks WR-GL  0): pval = 0.00001 | qval = 0.00001 | val =  0.075 
        (R NE-Pac -9): pval = 0.00090 | qval = 0.00957 | val = -0.056 

 

 

 
 

3-daily model 
## Significant links at alpha = 0.01: 
 
    Variable R NE-Pac has 5 link(s): 
        (R NE-Pac -1): pval = 0.00000 | qval = 0.00000 | val =  0.792 
        (R NE-Pac -2): pval = 0.00000 | qval = 0.00000 | val = -0.354 
        (R NE-Pac -6): pval = 0.00001 | qval = 0.00006 | val =  0.130 
        (R NE-Pac -3): pval = 0.00010 | qval = 0.00077 | val =  0.112 
        (OLR_carib  0): pval = 0.00020 | qval = 0.00020 | val = -0.108 
 
    Variable blocks NA-wcoast has 3 link(s): 
        (blocks NA-wcoast -1): pval = 0.00000 | qval = 0.00000 | val =  0.410 
        (R NE-Pac -3): pval = 0.00031 | qval = 0.00213 | val = -0.105 
        (R NE-Pac -4): pval = 0.00158 | qval = 0.00945 | val = -0.092 
 
    Variable blocks WR-GL has 6 link(s): 
        (blocks WR-GL -1): pval = 0.00000 | qval = 0.00000 | val =  0.913 
        (blocks WR-GL -2): pval = 0.00000 | qval = 0.00000 | val = -0.775 
        (blocks WR-GL -3): pval = 0.00000 | qval = 0.00000 | val =  0.668 
        (blocks WR-GL -4): pval = 0.00000 | qval = 0.00000 | val = -0.566 
        (blocks WR-GL -5): pval = 0.00000 | qval = 0.00000 | val =  0.495 
        (blocks WR-GL -6): pval = 0.00000 | qval = 0.00000 | val =  0.324 
 
    Variable OLR_carib has 4 link(s): 
        (OLR_carib -1): pval = 0.00000 | qval = 0.00000 | val =  0.579 
        (OLR_carib -2): pval = 0.00000 | qval = 0.00000 | val = -0.151 
        (R NE-Pac  0): pval = 0.00020 | qval = 0.00020 | val = -0.108 
        (blocks WR-GL -4): pval = 0.00059 | qval = 0.00377 | val = -0.100 
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6-daily model 
## Significant links at alpha = 0.01: 
 
    Variable R NE-Pac has 5 link(s): 
        (R NE-Pac -1): pval = 0.00000 | qval = 0.00000 | val =  0.712 
        (R NE-Pac -2): pval = 0.00000 | qval = 0.00000 | val = -0.438 
        (R NE-Pac -3): pval = 0.00000 | qval = 0.00000 | val =  0.289 
        (blocks WR-GL -1): pval = 0.00022 | qval = 0.00104 | val =  0.151 
        (OLR_carib  0): pval = 0.00181 | qval = 0.00181 | val = -0.128 
 
    Variable blocks NA-wcoast has 3 link(s): 
        (blocks NA-wcoast -1): pval = 0.00000 | qval = 0.00000 | val =  0.278 
        (R NE-Pac -1): pval = 0.00000 | qval = 0.00001 | val =  0.196 
        (R NE-Pac -2): pval = 0.00001 | qval = 0.00004 | val = -0.184 
 
    Variable blocks WR-GL has 3 link(s): 
        (blocks WR-GL -1): pval = 0.00000 | qval = 0.00000 | val =  0.623 
        (blocks WR-GL -2): pval = 0.00000 | qval = 0.00000 | val = -0.225 
        (blocks WR-GL -3): pval = 0.00184 | qval = 0.00802 | val =  0.128 
 
    Variable OLR_carib has 2 link(s): 
        (OLR_carib -1): pval = 0.00000 | qval = 0.00000 | val =  0.431 
        (R NE-Pac  0): pval = 0.00181 | qval = 0.00181 | val = -0.128 

 

 

A3.4 – Preliminary testing of 𝑶𝑶𝑶𝑶𝑹𝑹𝑩𝑩𝑺𝑺𝑩𝑩−𝑩𝑩𝑮𝑮𝑺𝑺𝑩𝑩𝑺𝑺𝒃𝒃 in smaller models 
To examine whether an actor should be considered in the full model of PCMCI, preliminary 
examination in PCMCI using only 𝑅𝑅𝑁𝑁𝑁𝑁−𝑃𝑃𝑃𝑃𝑃𝑃, the blocking actors, and the investigated actor was carried 
out. In this section a preliminary analysis of OLR over the Bay of Bengal, 𝑂𝑂𝑂𝑂𝑅𝑅𝐵𝐵𝑃𝑃𝐵𝐵−𝐵𝐵𝐺𝐺𝑆𝑆𝑖𝑖𝑃𝑃𝐴𝐴, is shown to 
support the decision of not including it in the full causal model presented in Figs. 22 – 24. Coordinates 
over which OLR was averaged to derive 𝑂𝑂𝑂𝑂𝑅𝑅𝐵𝐵𝑃𝑃𝐵𝐵−𝐵𝐵𝐺𝐺𝑆𝑆𝑖𝑖𝑃𝑃𝐴𝐴 are 3° N – 13° N, 80° E – 115° E. All PCMCI 
runs used 𝛼𝛼𝑃𝑃𝑃𝑃 = 0.01, 𝛼𝛼𝐹𝐹𝐹𝐹𝐹𝐹 = 0.01, and 𝜏𝜏𝑚𝑚𝑃𝑃𝑥𝑥  = 20, 6, or 3 for the daily, 3-daily, or 6-daily model 
respectively. Notation is as in A2.2. 

Daily model 
## Significant links at alpha = 0.01: 
 
    Variable R NE-Pac has 9 link(s): 
        (R NE-Pac -1): pval = 0.00000 | qval = 0.00000 | val =  0.888 
        (R NE-Pac -2): pval = 0.00000 | qval = 0.00000 | val = -0.580 
        (R NE-Pac -3): pval = 0.00000 | qval = 0.00000 | val =  0.352 
        (R NE-Pac -4): pval = 0.00000 | qval = 0.00000 | val = -0.216 
        (R NE-Pac -14): pval = 0.00000 | qval = 0.00000 | val = -0.142 
        (R NE-Pac -5): pval = 0.00000 | qval = 0.00000 | val =  0.119 
        (R NE-Pac -7): pval = 0.00003 | qval = 0.00038 | val = -0.070 
        (blocks WR-GL -7): pval = 0.00003 | qval = 0.00038 | val =  0.070 
        (R NE-Pac -6): pval = 0.00005 | qval = 0.00054 | val = -0.068 
 
    Variable blocks NA-wcoast has 4 link(s): 
        (blocks NA-wcoast -1): pval = 0.00000 | qval = 0.00000 | val =  0.765 
        (blocks NA-wcoast -2): pval = 0.00000 | qval = 0.00000 | val = -0.325 
        (R NE-Pac -7): pval = 0.00000 | qval = 0.00000 | val =  0.086 
        (R NE-Pac -6): pval = 0.00002 | qval = 0.00021 | val =  0.073 
 
    Variable blocks WR-GL has 14 link(s): 
        (blocks WR-GL -1): pval = 0.00000 | qval = 0.00000 | val =  0.978 
        (blocks WR-GL -2): pval = 0.00000 | qval = 0.00000 | val = -0.882 
        (blocks WR-GL -3): pval = 0.00000 | qval = 0.00000 | val =  0.628 
        (OLR_BayBengal -2): pval = 0.00000 | qval = 0.00000 | val =  0.180 
        (blocks WR-GL -4): pval = 0.00000 | qval = 0.00000 | val = -0.175 
        (blocks WR-GL -7): pval = 0.00000 | qval = 0.00000 | val =  0.151 
        (blocks WR-GL -5): pval = 0.00000 | qval = 0.00000 | val = -0.141 
        (OLR_BayBengal -1): pval = 0.00000 | qval = 0.00000 | val = -0.127 
        (blocks WR-GL -6): pval = 0.00000 | qval = 0.00000 | val =  0.100 
        (OLR_BayBengal -3): pval = 0.00000 | qval = 0.00000 | val = -0.090 
        (blocks WR-GL -19): pval = 0.00000 | qval = 0.00000 | val = -0.087 
        (blocks WR-GL -9): pval = 0.00000 | qval = 0.00000 | val = -0.086 
        (blocks WR-GL -8): pval = 0.00008 | qval = 0.00094 | val = -0.066 
        (OLR_BayBengal  0): pval = 0.00059 | qval = 0.00059 | val =  0.058 
 
    Variable OLR_BayBengal has 4 link(s): 
        (OLR_BayBengal -1): pval = 0.00000 | qval = 0.00000 | val =  0.746 
        (OLR_BayBengal -2): pval = 0.00000 | qval = 0.00000 | val = -0.185 
        (blocks WR-GL  0): pval = 0.00059 | qval = 0.00059 | val =  0.058 
        (OLR_BayBengal -3): pval = 0.00082 | qval = 0.00908 | val =  0.056 
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3-daily model 
 
## Significant links at alpha = 0.01: 
 
    Variable R NE-Pac has 4 link(s): 
        (R NE-Pac -1): pval = 0.00000 | qval = 0.00000 | val =  0.792 
        (R NE-Pac -2): pval = 0.00000 | qval = 0.00000 | val = -0.354 
        (R NE-Pac -6): pval = 0.00001 | qval = 0.00006 | val =  0.130 
        (R NE-Pac -3): pval = 0.00010 | qval = 0.00077 | val =  0.112 
 
    Variable blocks NA-wcoast has 2 link(s): 
        (blocks NA-wcoast -1): pval = 0.00000 | qval = 0.00000 | val =  0.410 
        (R NE-Pac -3): pval = 0.00031 | qval = 0.00213 | val = -0.105 
 
    Variable blocks WR-GL has 6 link(s): 
        (blocks WR-GL -1): pval = 0.00000 | qval = 0.00000 | val =  0.913 
        (blocks WR-GL -2): pval = 0.00000 | qval = 0.00000 | val = -0.775 
        (blocks WR-GL -3): pval = 0.00000 | qval = 0.00000 | val =  0.668 
        (blocks WR-GL -4): pval = 0.00000 | qval = 0.00000 | val = -0.566 
        (blocks WR-GL -5): pval = 0.00000 | qval = 0.00000 | val =  0.495 
        (blocks WR-GL -6): pval = 0.00000 | qval = 0.00000 | val =  0.324 
 
    Variable OLR_BayBengal has 2 link(s): 
        (OLR_BayBengal -1): pval = 0.00000 | qval = 0.00000 | val =  0.702 
        (OLR_BayBengal -2): pval = 0.00000 | qval = 0.00000 | val = -0.185 

 

 

 

6-daily model 
## Significant links at alpha = 0.01: 
 
    Variable R NE-Pac has 4 link(s): 
        (R NE-Pac -1): pval = 0.00000 | qval = 0.00000 | val =  0.712 
        (R NE-Pac -2): pval = 0.00000 | qval = 0.00000 | val = -0.438 
        (R NE-Pac -3): pval = 0.00000 | qval = 0.00000 | val =  0.289 
        (blocks WR-GL -1): pval = 0.00022 | qval = 0.00104 | val =  0.151 
 
    Variable blocks NA-wcoast has 4 link(s): 
        (blocks NA-wcoast -1): pval = 0.00000 | qval = 0.00000 | val =  0.278 
        (R NE-Pac -1): pval = 0.00001 | qval = 0.00004 | val =  0.185 
        (R NE-Pac -2): pval = 0.00001 | qval = 0.00005 | val = -0.181 
        (OLR_BayBengal -2): pval = 0.00101 | qval = 0.00442 | val = -0.135 
 
    Variable blocks WR-GL has 3 link(s): 
        (blocks WR-GL -1): pval = 0.00000 | qval = 0.00000 | val =  0.623 
        (blocks WR-GL -2): pval = 0.00000 | qval = 0.00000 | val = -0.225 
        (blocks WR-GL -3): pval = 0.00184 | qval = 0.00735 | val =  0.128 
 
    Variable OLR_BayBengal has 3 link(s): 
        (OLR_BayBengal -1): pval = 0.00000 | qval = 0.00000 | val =  0.625 
        (R NE-Pac -1): pval = 0.00201 | qval = 0.00742 | val =  0.127 
        (OLR_BayBengal -2): pval = 0.00260 | qval = 0.00891 | val = -0.123 
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A3.5 – Composites of blocking frequency anomalies leading up to, during, and after high 
R days in the eastern North Pacific 

 

Figure A3.6: As Figure 16, but for time lags a) 20, b) 15, c) 10, d) 5, e) 3 before high R days, f) during high 
R days, and g) 5, h) 10, i) 15 days after high R days. 
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A3.6 – R anomalies during high and extremely high R days in the eastern North Pacific 

 
Fig. A3.7: As figure A3.1, but for high and extremely high R in the eastern North Pacific. The approximate 
locations of the two blocking features (𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝑵𝑵𝑨𝑨−𝒘𝒘𝒃𝒃𝒃𝒃𝑺𝑺𝒃𝒃𝑨𝑨 at 120° W and 𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝑾𝑾𝑹𝑹−𝑮𝑮𝑶𝑶 at 60° W) are marked 
by orange crosses. 

 

A3.7 – OLR and VP composite during high R days in the western North Pacific 

 
Fig. A3.8: As Figure 11 but OLR and VP anomalies during (lag 0) high R days in the western North Pacific 
(115° E to 175° E). 
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A3.8 – North Atlantic causal network using 1 monthly data 

 
Figure A3.8: As figure 13, but using 30-day mean data with 𝝉𝝉𝒎𝒎𝑺𝑺𝒎𝒎 = 𝒌𝒌, 𝜶𝜶𝑷𝑷𝑪𝑪 = 𝟏𝟏.𝟏𝟏𝟏𝟏, and  𝜶𝜶𝑭𝑭𝑭𝑭𝑹𝑹 = 𝟏𝟏.𝟏𝟏𝟏𝟏. 

  



 
 

59 
 

A4 p-values, q-values, and test statistics of PCMCI analyses 
The table outputs of PCMCI for the “main” causal networks showed in this work (Figs. 13-15 for North 
Atlantic and Figs. 22-24 for eastern North Pacific). Notation is as in section A2.2. 

A4.1 – North Atlantic causal network 
Daily timescale 

## Significant links at alpha = 0.01: 
 
    Variable R has 9 link(s): 
        (R -1): pval = 0.00000 | qval = 0.00000 | val =  0.871 
        (R -2): pval = 0.00000 | qval = 0.00000 | val = -0.533 
        (R -3): pval = 0.00000 | qval = 0.00000 | val =  0.302 
        (R -4): pval = 0.00000 | qval = 0.00000 | val = -0.173 
        (R -5): pval = 0.00000 | qval = 0.00000 | val =  0.100 
        (U250 N Eu -7): pval = 0.00001 | qval = 0.00019 | val =  0.076 
        (Blocks N atl -7): pval = 0.00001 | qval = 0.00032 | val =  0.074 
        (Blocks Scand -7): pval = 0.00004 | qval = 0.00101 | val = -0.069 
        (Blocks N atl -8): pval = 0.00009 | qval = 0.00227 | val = -0.066 
 
    Variable Blocks N atl has 7 link(s): 
        (Blocks N atl -1): pval = 0.00000 | qval = 0.00000 | val =  0.742 
        (Blocks N atl -2): pval = 0.00000 | qval = 0.00000 | val = -0.336 
        (U250 N Atl  0): pval = 0.00000 | qval = 0.00000 | val = -0.190 
        (U250 N Atl -1): pval = 0.00000 | qval = 0.00000 | val = -0.165 
        (U250 N Atl -2): pval = 0.00000 | qval = 0.00000 | val =  0.096 
        (Blocks N atl -3): pval = 0.00000 | qval = 0.00000 | val =  0.092 
        (R -8): pval = 0.00001 | qval = 0.00035 | val = -0.073 
 
    Variable Blocks Scand has 8 link(s): 
        (Blocks Scand -1): pval = 0.00000 | qval = 0.00000 | val =  0.799 
        (Blocks Scand -2): pval = 0.00000 | qval = 0.00000 | val = -0.365 
        (U250 N Eu -1): pval = 0.00000 | qval = 0.00000 | val = -0.126 
        (U250 N Eu  0): pval = 0.00000 | qval = 0.00000 | val = -0.125 
        (Blocks Scand -3): pval = 0.00000 | qval = 0.00000 | val =  0.099 
        (U250 N Eu -2): pval = 0.00001 | qval = 0.00025 | val =  0.075 
        (Blocks N atl -2): pval = 0.00022 | qval = 0.00580 | val =  0.062 
        (Blocks N atl -3): pval = 0.00027 | qval = 0.00668 | val =  0.061 
 
Variable OLR Gulf Guinea has 5 link(s): 
        (OLR Gulf Guinea -1): pval = 0.00000 | qval = 0.00000 | val =  0.716 

        (OLR Gulf Guinea -2): pval = 0.00000 | qval = 0.00000 | val = -0.245 
        (OLR Marit Cont  0): pval = 0.00000 | qval = 0.00000 | val = -0.095 
        (OLR Gulf Guinea -3): pval = 0.00000 | qval = 0.00004 | val =  0.081 
        (U250 N Eu -7): pval = 0.00039 | qval = 0.00921 | val =  0.060 
 
    Variable OLR Marit Cont has 4 link(s): 
        (OLR Marit Cont -1): pval = 0.00000 | qval = 0.00000 | val =  0.763 
        (OLR Marit Cont -2): pval = 0.00000 | qval = 0.00000 | val = -0.169 
        (U250 N Atl  0): pval = 0.00000 | qval = 0.00000 | val = -0.118 
        (OLR Gulf Guinea  0): pval = 0.00000 | qval = 0.00000 | val = -0.095 
 
    Variable U250 N Atl has 10 link(s): 
        (U250 N Atl -1): pval = 0.00000 | qval = 0.00000 | val =  0.781 
        (U250 N Atl -2): pval = 0.00000 | qval = 0.00000 | val = -0.321 
        (Blocks N atl  0): pval = 0.00000 | qval = 0.00000 | val = -0.190 
        (U250 N Atl -3): pval = 0.00000 | qval = 0.00000 | val =  0.160 
        (U250 N Eu -1): pval = 0.00000 | qval = 0.00000 | val =  0.138 
        (U250 N Eu -2): pval = 0.00000 | qval = 0.00000 | val = -0.131 
        (OLR Marit Cont  0): pval = 0.00000 | qval = 0.00000 | val = -0.118 
        (Blocks N atl -1): pval = 0.00000 | qval = 0.00008 | val = -0.079 
        (U250 N Eu  0): pval = 0.00022 | qval = 0.00022 | val = -0.062 
        (U250 N Atl -4): pval = 0.00033 | qval = 0.00810 | val = -0.060 
 
    Variable U250 N Eu has 9 link(s): 
        (U250 N Eu -1): pval = 0.00000 | qval = 0.00000 | val =  0.807 
        (U250 N Eu -2): pval = 0.00000 | qval = 0.00000 | val = -0.383 
        (U250 N Eu -3): pval = 0.00000 | qval = 0.00000 | val =  0.187 
        (Blocks Scand  0): pval = 0.00000 | qval = 0.00000 | val = -0.125 
        (R -7): pval = 0.00000 | qval = 0.00000 | val = -0.108 
        (U250 N Eu -4): pval = 0.00000 | qval = 0.00000 | val = -0.101 
        (Blocks N atl -1): pval = 0.00000 | qval = 0.00000 | val = -0.091 
        (U250 N Atl  0): pval = 0.00022 | qval = 0.00022 | val = -0.062 
        (Blocks N atl -2): pval = 0.00039 | qval = 0.00921 | val =  0.059 

3-daily timescale 
## Significant links at alpha = 0.01: 
 
    Variable R has 5 link(s): 
        (R -1): pval = 0.00000 | qval = 0.00000 | val =  0.779 
        (R -2): pval = 0.00000 | qval = 0.00000 | val = -0.339 
        (R -6): pval = 0.00010 | qval = 0.00141 | val =  0.113 
        (Blocks N atl -2): pval = 0.00019 | qval = 0.00256 | val =  0.108 
        (Blocks Scand -2): pval = 0.00047 | qval = 0.00575 | val = -0.101 
 
    Variable Blocks N atl has 5 link(s): 
        (Blocks N atl -1): pval = 0.00000 | qval = 0.00000 | val =  0.416 
        (U250 N Atl  0): pval = 0.00000 | qval = 0.00000 | val = -0.371 
        (U250 N Atl -1): pval = 0.00000 | qval = 0.00000 | val = -0.193 
        (Blocks N atl -2): pval = 0.00000 | qval = 0.00001 | val = -0.143 
        (R -1): pval = 0.00001 | qval = 0.00010 | val =  0.131 
 
    Variable Blocks Scand has 6 link(s): 
        (Blocks Scand -1): pval = 0.00000 | qval = 0.00000 | val =  0.589 
        (U250 N Eu  0): pval = 0.00000 | qval = 0.00000 | val = -0.296 
        (Blocks Scand -2): pval = 0.00000 | qval = 0.00000 | val = -0.215 
        (U250 N Eu -1): pval = 0.00002 | qval = 0.00029 | val = -0.124 
        (Blocks Scand -3): pval = 0.00014 | qval = 0.00193 | val =  0.110 
        (Blocks N atl -1): pval = 0.00021 | qval = 0.00272 | val =  0.107 
    Variable OLR Gulf Guinea has 4 link(s): 

        (OLR Gulf Guinea -1): pval = 0.00000 | qval = 0.00000 | val =  0.466 
        (U250 N Eu  0): pval = 0.00000 | qval = 0.00000 | val =  0.142 
        (R -2): pval = 0.00004 | qval = 0.00058 | val = -0.120 
        (U250 N Eu -1): pval = 0.00054 | qval = 0.00608 | val =  0.100 
 
    Variable OLR Marit Cont has 3 link(s): 
        (OLR Marit Cont -1): pval = 0.00000 | qval = 0.00000 | val =  0.735 
        (OLR Marit Cont -2): pval = 0.00000 | qval = 0.00000 | val = -0.215 
        (U250 N Atl  0): pval = 0.00132 | qval = 0.00132 | val = -0.093 
 
    Variable U250 N Atl has 6 link(s): 
        (U250 N Atl -1): pval = 0.00000 | qval = 0.00000 | val =  0.650 
        (Blocks N atl  0): pval = 0.00000 | qval = 0.00000 | val = -0.371 
        (U250 N Atl -2): pval = 0.00000 | qval = 0.00000 | val = -0.186 
        (R -1): pval = 0.00005 | qval = 0.00083 | val = -0.117 
        (R -3): pval = 0.00054 | qval = 0.00608 | val =  0.100 
        (OLR Marit Cont  0): pval = 0.00132 | qval = 0.00132 | val = -0.093 
 
    Variable U250 N Eu has 5 link(s): 
        (U250 N Eu -1): pval = 0.00000 | qval = 0.00000 | val =  0.639 
        (Blocks Scand  0): pval = 0.00000 | qval = 0.00000 | val = -0.296 
        (U250 N Eu -2): pval = 0.00000 | qval = 0.00000 | val = -0.171 
        (OLR Gulf Guinea  0): pval = 0.00000 | qval = 0.00000 | val =  0.142 
        (R -2): pval = 0.00000 | qval = 0.00004 | val = -0.138 

6-daily timescale 
## Significant links at alpha = 0.01: 
 
    Variable R has 6 link(s): 
        (R -1): pval = 0.00000 | qval = 0.00000 | val =  0.643 
        (R -2): pval = 0.00000 | qval = 0.00000 | val = -0.326 
        (R -3): pval = 0.00000 | qval = 0.00002 | val =  0.198 
        (Blocks N atl  0): pval = 0.00005 | qval = 0.00005 | val =  0.166 
        (U250 N Eu -1): pval = 0.00063 | qval = 0.00552 | val =  0.140 
        (U250 N Atl  0): pval = 0.00085 | qval = 0.00085 | val = -0.137 
 
    Variable Blocks N atl has 4 link(s): 
        (U250 N Atl  0): pval = 0.00000 | qval = 0.00000 | val = -0.495 
        (Blocks N atl -1): pval = 0.00004 | qval = 0.00055 | val =  0.167 
        (R  0): pval = 0.00005 | qval = 0.00005 | val =  0.166 
        (U250 N Atl -1): pval = 0.00010 | qval = 0.00125 | val = -0.159 
 
    Variable Blocks Scand has 3 link(s): 
        (U250 N Eu  0): pval = 0.00000 | qval = 0.00000 | val = -0.347 
        (Blocks Scand -1): pval = 0.00000 | qval = 0.00000 | val =  0.345 
        (Blocks N atl -1): pval = 0.00038 | qval = 0.00370 | val =  0.145 
 
    Variable OLR Gulf Guinea has 5 link(s): 
        (OLR Gulf Guinea -1): pval = 0.00000 | qval = 0.00000 | val =  0.292 

        (U250 N Eu  0): pval = 0.00000 | qval = 0.00000 | val =  0.214 
        (OLR Marit Cont -3): pval = 0.00000 | qval = 0.00001 | val =  0.201 
        (U250 N Eu -1): pval = 0.00016 | qval = 0.00184 | val =  0.154 
        (R -1): pval = 0.00064 | qval = 0.00552 | val = -0.140 
    
 Variable OLR Marit Cont has 3 link(s): 
        (OLR Marit Cont -1): pval = 0.00000 | qval = 0.00000 | val =  0.647 
        (OLR Marit Cont -2): pval = 0.00000 | qval = 0.00001 | val = -0.205 
        (OLR Gulf Guinea -2): pval = 0.00072 | qval = 0.00558 | val =  0.139 
 
    Variable U250 N Atl has 4 link(s): 
        (Blocks N atl  0): pval = 0.00000 | qval = 0.00000 | val = -0.495 
        (U250 N Atl -1): pval = 0.00000 | qval = 0.00000 | val =  0.487 
        (R  0): pval = 0.00085 | qval = 0.00085 | val = -0.137 
        (U250 N Eu  0): pval = 0.00914 | qval = 0.00914 | val =  0.107 
 
    Variable U250 N Eu has 6 link(s): 
        (U250 N Eu -1): pval = 0.00000 | qval = 0.00000 | val =  0.472 
        (Blocks Scand  0): pval = 0.00000 | qval = 0.00000 | val = -0.347 
        (OLR Gulf Guinea  0): pval = 0.00000 | qval = 0.00000 | val =  0.214 
        (R -1): pval = 0.00026 | qval = 0.00278 | val = -0.149 
        (U250 N Eu -2): pval = 0.00072 | qval = 0.00558 | val = -0.139 
        (U250 N Atl  0): pval = 0.00914 | qval = 0.00914 | val =  0.107 
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A4.2 – Eastern North Pacific causal network 
Daily timescale 

## Significant links at alpha = 0.01: 
 
    Variable R NE-Pac has 11 link(s): 
        (R NE-Pac -1): pval = 0.00000 | qval = 0.00000 | val =  0.887 
        (R NE-Pac -2): pval = 0.00000 | qval = 0.00000 | val = -0.581 
        (R NE-Pac -3): pval = 0.00000 | qval = 0.00000 | val =  0.351 
        (R NE-Pac -4): pval = 0.00000 | qval = 0.00000 | val = -0.216 
        (R NE-Pac -14): pval = 0.00000 | qval = 0.00000 | val = -0.135 
        (R NE-Pac -5): pval = 0.00000 | qval = 0.00000 | val =  0.118 
        (OLR E-Pac -6): pval = 0.00000 | qval = 0.00001 | val = -0.087 
        (blocks WR-GL -7): pval = 0.00005 | qval = 0.00109 | val =  0.068 
        (R NE-Pac -6): pval = 0.00005 | qval = 0.00109 | val = -0.068 
        (R NE-Pac -7): pval = 0.00005 | qval = 0.00113 | val = -0.068 
        (U250 NE-Pac -7): pval = 0.00011 | qval = 0.00226 | val =  0.065 
 
    Variable blocks NA-wcoast has 7 link(s): 
        (blocks NA-wcoast -1): pval = 0.00000 | qval = 0.00000 | val =  0.764 
        (blocks NA-wcoast -2): pval = 0.00000 | qval = 0.00000 | val = -0.324 
        (U250 NE-Pac  0): pval = 0.00000 | qval = 0.00000 | val = -0.189 
        (U250 NE-Pac -1): pval = 0.00000 | qval = 0.00000 | val = -0.094 
        (R NE-Pac -7): pval = 0.00000 | qval = 0.00001 | val =  0.085 
        (R NE-Pac -6): pval = 0.00003 | qval = 0.00073 | val =  0.070 
        (OLR Philip-Sea -3): pval = 0.00023 | qval = 0.00457 | val = -0.062 
 
    Variable blocks WR-GL has 13 link(s): 
        (blocks WR-GL -1): pval = 0.00000 | qval = 0.00000 | val =  0.978 
        (blocks WR-GL -2): pval = 0.00000 | qval = 0.00000 | val = -0.882 
        (blocks WR-GL -3): pval = 0.00000 | qval = 0.00000 | val =  0.628 
        (blocks WR-GL -4): pval = 0.00000 | qval = 0.00000 | val = -0.175 
        (blocks WR-GL -7): pval = 0.00000 | qval = 0.00000 | val =  0.151 
        (blocks WR-GL -5): pval = 0.00000 | qval = 0.00000 | val = -0.141 
        (blocks WR-GL -6): pval = 0.00000 | qval = 0.00000 | val =  0.100 
        (blocks WR-GL -19): pval = 0.00000 | qval = 0.00001 | val = -0.087 
        (blocks WR-GL -9): pval = 0.00000 | qval = 0.00001 | val = -0.086 
        (OLR NE-Pac -2): pval = 0.00001 | qval = 0.00028 | val = -0.074 

        (OLR NE-Pac -1): pval = 0.00002 | qval = 0.00055 | val =  0.071 
        (blocks WR-GL -8): pval = 0.00008 | qval = 0.00179 | val = -0.066 
        (OLR NE-Pac -3): pval = 0.00013 | qval = 0.00264 | val =  0.064 
 
    Variable U250 NE-Pac has 8 link(s): 
        (U250 NE-Pac -1): pval = 0.00000 | qval = 0.00000 | val =  0.784 
        (U250 NE-Pac -2): pval = 0.00000 | qval = 0.00000 | val = -0.347 
        (blocks NA-wcoast  0): pval = 0.00000 | qval = 0.00000 | val = -0.189 
        (U250 NE-Pac -3): pval = 0.00000 | qval = 0.00000 | val =  0.156 
        (OLR NE-Pac -2): pval = 0.00000 | qval = 0.00000 | val =  0.098 
        (R NE-Pac -4): pval = 0.00002 | qval = 0.00054 | val = -0.071 
        (U250 NE-Pac -4): pval = 0.00004 | qval = 0.00099 | val = -0.069 
        (R NE-Pac -6): pval = 0.00047 | qval = 0.00895 | val = -0.059 
 
    Variable OLR Philip-Sea has 4 link(s): 
        (OLR Philip-Sea -1): pval = 0.00000 | qval = 0.00000 | val =  0.700 
        (OLR Philip-Sea -2): pval = 0.00000 | qval = 0.00000 | val = -0.303 
        (OLR Philip-Sea -3): pval = 0.00000 | qval = 0.00000 | val =  0.143 
        (OLR Philip-Sea -4): pval = 0.00034 | qval = 0.00655 | val = -0.060 
 
    Variable OLR NE-Pac has 7 link(s): 
        (OLR NE-Pac -1): pval = 0.00000 | qval = 0.00000 | val =  0.681 
        (OLR NE-Pac -2): pval = 0.00000 | qval = 0.00000 | val = -0.239 
        (OLR NE-Pac -3): pval = 0.00000 | qval = 0.00000 | val =  0.095 
        (U250 NE-Pac -1): pval = 0.00000 | qval = 0.00002 | val =  0.084 
        (OLR NE-Pac -4): pval = 0.00001 | qval = 0.00040 | val =  0.073 
        (OLR Philip-Sea -3): pval = 0.00002 | qval = 0.00044 | val =  0.072 
        (OLR E-Pac  0): pval = 0.00041 | qval = 0.00041 | val = -0.059 
 
    Variable OLR E-Pac has 6 link(s): 
        (OLR E-Pac -1): pval = 0.00000 | qval = 0.00000 | val =  0.737 
        (OLR E-Pac -2): pval = 0.00000 | qval = 0.00000 | val = -0.360 
        (OLR E-Pac -3): pval = 0.00000 | qval = 0.00000 | val =  0.168 
        (OLR NE-Pac -3): pval = 0.00018 | qval = 0.00374 | val =  0.063 
        (OLR Philip-Sea -5): pval = 0.00033 | qval = 0.00638 | val = -0.060 
        (OLR NE-Pac  0): pval = 0.00041 | qval = 0.00041 | val = -0.059 

 

3-daily timescale 
## Significant links at alpha = 0.01: 
 
    Variable R NE-Pac has 5 link(s): 
        (R NE-Pac -1): pval = 0.00000 | qval = 0.00000 | val =  0.792 
        (R NE-Pac -2): pval = 0.00000 | qval = 0.00000 | val = -0.354 
        (R NE-Pac -6): pval = 0.00001 | qval = 0.00014 | val =  0.130 
        (R NE-Pac -3): pval = 0.00010 | qval = 0.00154 | val =  0.112 
        (U250 NE-Pac -3): pval = 0.00078 | qval = 0.00956 | val =  0.097 
 
    Variable blocks NA-wcoast has 4 link(s): 
        (blocks NA-wcoast -1): pval = 0.00000 | qval = 0.00000 | val =  0.399 
        (U250 NE-Pac  0): pval = 0.00000 | qval = 0.00000 | val = -0.290 
        (OLR Philip-Sea -1): pval = 0.00004 | qval = 0.00059 | val = -0.119 
        (R NE-Pac -3): pval = 0.00067 | qval = 0.00856 | val = -0.099 
 
    Variable blocks WR-GL has 7 link(s): 
        (blocks WR-GL -1): pval = 0.00000 | qval = 0.00000 | val =  0.913 
        (blocks WR-GL -2): pval = 0.00000 | qval = 0.00000 | val = -0.775 
        (blocks WR-GL -3): pval = 0.00000 | qval = 0.00000 | val =  0.668 
        (blocks WR-GL -4): pval = 0.00000 | qval = 0.00000 | val = -0.566 
        (blocks WR-GL -5): pval = 0.00000 | qval = 0.00000 | val =  0.495 
        (blocks WR-GL -6): pval = 0.00000 | qval = 0.00000 | val =  0.324 
        (U250 NE-Pac  0): pval = 0.00116 | qval = 0.00116 | val =  0.094 

    Variable U250 NE-Pac has 6 link(s): 
        (U250 NE-Pac -1): pval = 0.00000 | qval = 0.00000 | val =  0.600 
        (blocks NA-wcoast  0): pval = 0.00000 | qval = 0.00000 | val = -0.290 
        (U250 NE-Pac -2): pval = 0.00000 | qval = 0.00000 | val = -0.172 
        (OLR NE-Pac  0): pval = 0.00000 | qval = 0.00000 | val =  0.137 
        (R NE-Pac -1): pval = 0.00001 | qval = 0.00014 | val = -0.129 
        (blocks WR-GL  0): pval = 0.00116 | qval = 0.00116 | val =  0.094 
 
    Variable OLR Philip-Sea has 3 link(s): 
        (OLR Philip-Sea -1): pval = 0.00000 | qval = 0.00000 | val =  0.366 
        (R NE-Pac -1): pval = 0.00000 | qval = 0.00006 | val = -0.135 
        (blocks WR-GL -3): pval = 0.00002 | qval = 0.00028 | val = -0.124 
 
    Variable OLR NE-Pac has 3 link(s): 
        (OLR NE-Pac -1): pval = 0.00000 | qval = 0.00000 | val =  0.400 
        (U250 NE-Pac  0): pval = 0.00000 | qval = 0.00000 | val =  0.137 
        (OLR E-Pac  0): pval = 0.00001 | qval = 0.00001 | val = -0.129 
 
    Variable OLR E-Pac has 4 link(s): 
        (OLR E-Pac -1): pval = 0.00000 | qval = 0.00000 | val =  0.407 
        (OLR NE-Pac  0): pval = 0.00001 | qval = 0.00001 | val = -0.129 
        (U250 NE-Pac -2): pval = 0.00011 | qval = 0.00159 | val = -0.112 
        (OLR NE-Pac -1): pval = 0.00021 | qval = 0.00282 | val =  0.107 

 

6-daily timescale 
## Significant links at alpha = 0.01: 
 
    Variable R NE-Pac has 8 link(s): 
        (R NE-Pac -1): pval = 0.00000 | qval = 0.00000 | val =  0.712 
        (R NE-Pac -2): pval = 0.00000 | qval = 0.00000 | val = -0.438 
        (R NE-Pac -3): pval = 0.00000 | qval = 0.00000 | val =  0.289 
        (OLR Philip-Sea  0): pval = 0.00002 | qval = 0.00002 | val = -0.173 
        (U250 NE-Pac  0): pval = 0.00007 | qval = 0.00007 | val = -0.162 
        (blocks WR-GL -1): pval = 0.00022 | qval = 0.00198 | val =  0.151 
        (OLR NE-Pac  0): pval = 0.00034 | qval = 0.00034 | val = -0.147 
        (OLR NE-Pac -3): pval = 0.00095 | qval = 0.00819 | val = -0.136 
 
    Variable blocks NA-wcoast has 4 link(s): 
        (U250 NE-Pac  0): pval = 0.00000 | qval = 0.00000 | val = -0.308 
        (blocks NA-wcoast -1): pval = 0.00000 | qval = 0.00000 | val =  0.303 
        (R NE-Pac -1): pval = 0.00000 | qval = 0.00002 | val =  0.196 
        (OLR E-Pac  0): pval = 0.00441 | qval = 0.00441 | val = -0.117 
 
    Variable blocks WR-GL has 2 link(s): 
        (blocks WR-GL -1): pval = 0.00000 | qval = 0.00000 | val =  0.623 
        (blocks WR-GL -2): pval = 0.00000 | qval = 0.00000 | val = -0.225 
 
    Variable U250 NE-Pac has 7 link(s): 
        (U250 NE-Pac -1): pval = 0.00000 | qval = 0.00000 | val =  0.349 

        (blocks NA-wcoast  0): pval = 0.00000 | qval = 0.00000 | val = -0.308 
        (OLR NE-Pac  0): pval = 0.00000 | qval = 0.00000 | val =  0.240 
        (R NE-Pac -1): pval = 0.00000 | qval = 0.00000 | val = -0.211 
        (R NE-Pac -2): pval = 0.00005 | qval = 0.00053 | val =  0.165 
        (R NE-Pac  0): pval = 0.00007 | qval = 0.00007 | val = -0.162 
        (OLR E-Pac  0): pval = 0.00105 | qval = 0.00105 | val = -0.134 
 
    Variable OLR Philip-Sea has 3 link(s): 
        (OLR Philip-Sea -1): pval = 0.00000 | qval = 0.00002 | val =  0.193 
        (blocks WR-GL -1): pval = 0.00001 | qval = 0.00009 | val = -0.181 
        (R NE-Pac  0): pval = 0.00002 | qval = 0.00002 | val = -0.173 
 
    Variable OLR NE-Pac has 4 link(s): 
        (OLR NE-Pac -1): pval = 0.00000 | qval = 0.00000 | val =  0.341 
        (U250 NE-Pac  0): pval = 0.00000 | qval = 0.00000 | val =  0.240 
        (R NE-Pac  0): pval = 0.00034 | qval = 0.00034 | val = -0.147 
        (OLR E-Pac  0): pval = 0.00127 | qval = 0.00127 | val = -0.132 
 
    Variable OLR E-Pac has 5 link(s): 
        (OLR E-Pac -1): pval = 0.00000 | qval = 0.00000 | val =  0.322 
        (U250 NE-Pac -1): pval = 0.00000 | qval = 0.00002 | val = -0.194 
        (U250 NE-Pac  0): pval = 0.00105 | qval = 0.00105 | val = -0.134 
        (OLR NE-Pac  0): pval = 0.00127 | qval = 0.00127 | val = -0.132 
        (blocks NA-wcoast  0): pval = 0.00441 | qval = 0.00441 | val = -0.117 
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