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Abstract

In general, only measurements of the global radiation are known, but for many applications
diffuse and direct fractions are also needed. For this reason, many models have been devel-
oped to establish correlations between the diffuse fraction and various predictors. However,
at present, no reliable model which could be applied to worldwide stations, in particular
to Swiss Alps, has been found.
The first purpose of this work is to gather radiation data from Swiss and worldwide sta-
tions with different geographical and climate conditions. The second goal is to present an
overview of the different decomposition models and their limitations. The third goal, the
most important part, is to test four models - Reindl-Helbig, Skartveit and Olseth, Boland-
Ridley-Lauret and Maxwell - on a dataset with one-hour time steps.
The model proposed by Skartveit and Olseth is overall performing best, especially on data
with a high clearness index.
It is shown that these models are poorly performing on three polar stations, where solar
elevations are constantly low. This behavior reflects the limitation of the models on the
estimation of the diffuse fraction for solar elevations lower than 30 ◦.
Furthermore, a model was developed by Perez on the basis of that of Maxwell. Applying
a completely new method, Dürr proposed a further model. An analysis on those two addi-
tional models was conducted.
Potential predictors and adequate model structures are discussed: the clearness index kt
and solar altitude have been found to be significant predictors. A candidate for a universal
model should include a variability index, because of the temporal weather evolution. Air
mass and and aerosols have also to be considered, as they contain information about the
atmospheric composition.
Finally, the models were performed on different time basis. For a smaller time interval,
there is an increased variability of the data, but the performance still remains acceptable.
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4.2.6 Dürr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.3 Time resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.1 Data representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.2 Model’s performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.3 Temporal Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.4 Universal model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6 Conclusions and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
i



Appendix
A Stations details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
B Astronomical equations and radiation definitions . . . . . . . . . . . . . . . . . . 79

B.1 The solar position . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
B.2 Solar radiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

C Look-up tables for Perez model . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
D Statistical methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
E Statistical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
F Additional graphics and tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
G Comparison graphics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
H Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

ii



List of Tables

3.1 Summary of the models, their type and the parameters on which are based. 14
3.2 Bins used for the function χ(k′t, θz,W,∆k

′
t) [Perez et al., 1991]. . . . . . . . 25

4.1 Statistical performance of the models Reindl-Helbig (Reindl*), Skartveit and
Olseth (S&O), BRL and Maxwell for all stations (all) and without the polar
stations (Dome C, von Neumayer Station, Summit Station). . . . . . . . . 35

4.2 Table listing the statistical results for the Reindl-Helbig model for a station
selection: the coefficient of determination (R2), the coefficient of efficiency
(E), the mean absolute error (MAE), the mean bias error (MBE), the number
of hourly integrated data (Nd) and the percentage of relevant estimated data
(Pd). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.3 Statistical results of the performance of the Reindl-Helbig model for all sta-
tions, for the three different clearness index-intervals. . . . . . . . . . . . . 38

4.4 Statistical results of the performance of the BRL model for all stations, for
three different clearness index-intervals. . . . . . . . . . . . . . . . . . . . . 42

4.5 Statistical results of the performance of the BRL model for station of South-
ern and Northern Hemisphere, respectively. . . . . . . . . . . . . . . . . . . 46

4.6 Statistical results for the BRL model on a selection of stations. . . . . . . . 49
4.7 Statistical results for the Maxwell model, for some stations. . . . . . . . . . 49
4.8 Statistical results for the Maxwell model, for three clearness index intervals. 49
4.9 Table listing the statistical results for the Perez model for a station selection:

the coefficient of determination (R2), the coefficient of efficiency (E), the
mean absolute error (MAE), the mean bias error (MBE), the number of
hourly integrated data (Nd) and the percentage of relevant estimated data
(Pd). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.10 Statistical performance of the models Reindl-Helbig (Reindl*), Skartveit and
Olseth (S&O), BRL and Maxwell for different time intervals. . . . . . . . . 56

A.1 Description of Swiss Stations (ASRB Network) . . . . . . . . . . . . . . . . 77
A.2 Description of Worldwide Stations (BSRN Network) . . . . . . . . . . . . . 78

C.1 Correction matrix χ(k′t, θz,W,∆k
′
t). . . . . . . . . . . . . . . . . . . . . . . 95

E.1 Statistical results for the Reindl-Helbig model. . . . . . . . . . . . . . . . . 100
E.2 Statistical results for the Skartveit and Olseth model. . . . . . . . . . . . . 101
E.3 Statistical results for the BRL model. . . . . . . . . . . . . . . . . . . . . . 102
E.4 Statistical results for the Maxwell model. . . . . . . . . . . . . . . . . . . . 103

F.1 Summary of statistic of Skartveit and Olseth depending on the solar elevation.108

iii



List of Figures

2.1 Diffuse fraction measured by SPN-1 against CM-21 measures. The red line
represents the best fit. Its equation and the coefficient of determination R2

are shown, as well. The line of measures parallel to the 1:1-line are from
Robbia, because of calibrations problems. Those data were consequently ex-
cluded from the dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Scatterplot of global radiation SPN-1 against CM21 for the station Robbia
(left) and for all stations measurements in February 2009 (right). The red
lines represent the best fit. Its equation and the coefficient of determination
R2 are shown, as well. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 BSRN Station in Payerne. . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 The horizon angle is the angle between the surface and the vector joining

the meteo station and the highest mountain in the sun direction. For a given
direction, it is calculated from a station situated at altitude h0 and mountain
with altitude hmax, situated at a distance d. . . . . . . . . . . . . . . . . . 11

2.5 Representation of the radiation data of Altdorf (left) and Visp (right). In
red, the measurements deleted by the horizon condition. . . . . . . . . . . 12

2.6 Comparison of diffuse fraction against clearness index with 1-minute (black),
10-minutes (red), 30-minutes (green) and hourly interval data (blue). . . . 13

3.1 Diffuse radiation estimated by Reindl* against clearness index for seven solar
elevations φ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Diffuse fraction estimated,by Skartveit and Olseth in function of the clearness
index, for seven solar elevations and a null variability index. . . . . . . . . 19

3.3 Diffuse fraction from Skartveit and Olseth for four index of variability and
a solar elevation of 5 ◦ (left) and 80 ◦ (right). . . . . . . . . . . . . . . . . . 20

3.4 Diffuse fraction from BRL-model for four 4 solar elevations φ , 6 AST values,
5 persistence factors and 5 daily clearness index. . . . . . . . . . . . . . . . 22

4.1 Representation of the global radiation and its diffuse part, on 1st May 2009
in Chasseral (NE). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2 diffuse fraction in function of clearness index for Chasseral (NE), for the
period 1st February 2009 to 31st January 2010, for a zenith angle ranging
from 0◦ to 85◦. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.3 Diffuse fraction against clearness index of Pilatus (LU), for the different sea-
sons: winter (top-left), spring (top-right), summer (bottom-left) and autumn
(bottom-right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.4 Diffuse fraction against clearness index of Pilatus (LU),for different solar
elevations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.5 Diffuse fraction against clearness index of Pilatus (LU), for the different
daytimes: morning (black), midday (red) and afternoon (green). . . . . . . 33

iv



4.6 Representation of the data for clear sky days in Alice Springs (Australia),
Geneva (Switzerland), Georg von Neumayer (Antarctica) and Concordia Sta-
tion (Antarctica) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.7 Representation of the measured (in black) and estimated from Reindl-Helbig
(in red) diffuse fraction against the clearness index for Chasseral (NE). . . 36

4.8 Representation of the measured (in black) and estimated from Reindl-Helbig
(in red) diffuse fraction against the clearness index for Toravere (left) and
von Neumayer Station (right). . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.9 Scatter plot of the estimated values from Reindl-Helbig against the measured
values for Altdorf (UR). The red line represents the best fit. Its equation is
shown with R2, as well. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.10 For Cabauw, measured (in black) and estimated by Reindl-Helbig (in red)
diffuse fraction plotted against the clearness index, on the left. On the right,
scatter plot of the modeled against the measured diffuse fraction, with the
best fit (red line). The equation of the best fit and R2 are also shown. . . . 40

4.11 For Izana, measured (in black) and estimated by Reindl-Helbig (in red) dif-
fuse fraction plotted against the clearness index, on the left. On the right,
scatter plot of the modeled against the measured diffuse fraction, with the
best fit (red line). The equation of the best fit and R2 are also shown. . . . 40

4.12 Representation of the observed (black) and estimated by Skartveit and Olseth
(red) diffuse fraction against the clearness index, for Chasseral (NE). . . . 41

4.13 For Toravere, measured (black) and estimated by Skartveit and Olseth (red)
diffuse fraction plotted against the clearness index, on the left. On the right,
for Georg von Neumeyer station. . . . . . . . . . . . . . . . . . . . . . . . 42

4.14 Scatter plot of the estimated diffuse fraction from Skartveit and Olseth vs.
the measured diffuse fraction for Chasseral (NE). The red line represents the
best fit. Its equation is shown with R2, as well. . . . . . . . . . . . . . . . . 43

4.15 Coefficient of determination R2 (black) and coefficient of efficiency E (red)
of Skartveit and Olseth for different solar elevations, for all stations. . . . . 44

4.16 Mean Absolute Error (black) and Mean Bias Error (red) of Skartveit and
Olseth for different solar elevations, for all stations. . . . . . . . . . . . . . 45

4.17 Scatter plot of the estimated values from Skartveit and Olseth against the
observed diffuse fraction for a solar elevation smaller than 10 ◦ (left) and
between 85 ◦ and 90 ◦ (right). . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.18 Representation of the observed diffuse radiation in function of the clear-
ness index, for Chasseral (NE). The estimated diffuse radiation from BRL is
overlaid. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.19 Dispersion diagram between the diffuse fraction estimated by the BRL model
and the observed, for the station of Chasseral (NE). The line represents the
best linear fit. The equation of this fit and the coefficient of determination
are illustrated, as well. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.20 Representation of the measured (in black) and estimated from Maxwell (in
red) against the clearness index for Chasseral (NE). . . . . . . . . . . . . . 50

v



4.21 Scatter plot of the estimated values from Maxwell against the measured val-
ues for Chasseral (NE). The best fit (red line), its equation and the coefficient
of determination are shown, as well. . . . . . . . . . . . . . . . . . . . . . . 51

4.22 For the stations Buchs (top) and Ilorin (bottom), representation of the mod-
eled by Maxwell and observed diffuse fraction against the clearness index
(left) and the estimated against the observed diffuse fraction (right). The
best fit (red line), its equation and the coefficient of determination are shown,
as well. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.23 Representation of the MBE (in black) and MAE (in green) in function of
the clearness index of the Maxwell model. . . . . . . . . . . . . . . . . . . 53

4.24 Coefficient of determination R2 (black) and coefficient of efficiency E (red)
in function of solar elevation of Maxwell model. . . . . . . . . . . . . . . . 54

4.25 For the stations Payerne (top) and Chasseral (bottom), representation of the
modeled by Perez (in red) and observed (in black) diffuse fraction against
the clearness index (left) and the estimated against the observed diffuse
fraction (right). The best fit (red line), its equation and the coefficient of
determination are shown, as well. . . . . . . . . . . . . . . . . . . . . . . . 55

4.26 For Payerne, R2 (left) and MAE (right) in function of the solar elevation. . 56
4.27 For Payerne, MAE (lined) and MBE (dashed) against the clearness index. . 57
4.28 Diffuse fraction (in black) against the clearness index for Payerne on the 2nd
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Chapter 1

Introduction

Solar radiation is a crucial component of the global energy balance which drives different
systems, such as the climate and hydrologic systems. In general, only measurements of the
global radiation, I, are known, but for many applications diffuse and direct fractions, Id
and Ib, respectively, are also needed. For this reason, many models have been developed to
establish correlations between the diffuse fraction and various predictors.

1.1 Background

The first studies on this subject were conducted by Liu and Jordan [1960]. They determined
a relationship between daily diffuse and global radiation on clear days on a horizontal
surface, by doing measurements on 98 sites in the US and Canada.
The portion of horizontal extraterrestrial radiation reaching the surface is defined as the
clearness index

kt =
I

I0 cos θz
,

where θz is the zenith angle. The diffuse fraction kd is the portion of diffuse radiation
composing the global radiation:

kd = Id/I.

Liu and Jordan found a correlation with kt as predictor variable: kd = Id/I0 = f (kt). The
extraterrestrial value used is changing with latitude and time of year [Boland et al., 2001].
They also estimated the long term average hourly and daily sums of diffuse radiation and
the daily sums of diffuse radiation for various categories of days for differing degrees of
cloudiness. However, it was clear that the hourly diffuse fraction was not only a function
of the clearness index.
Erbs et al. [1982] used a new database (from four US weather stations) composed of hourly
direct normal radiation, Ib,norm, measured normal to the direction of the rays of the sun,
global radiation to develop an estimation of the diffuse fraction of hourly, daily and monthly-
average global radiation. They also determined the degree to which those relationships are
dependent on season and location. A similar study has been conducted by Orgill and Hol-
lands [1977], in Toronto (Canada).
On the other hand, Iqbal [1980] and Skartveit and Olseth [1987] used two predictors for
their correlations, kt and the solar elevation, φ. Skartveit and Olseth [1998] introduced then
a new parameter: the hour-to-hour variability index, which considers the variation of the
clearness index of the previous and the following time interval. They used hourly data from
several European stations and avoided periods where a significant snow cover was present.
Moreover, Garrison [1985] proposed a dependency of the diffuse fraction on the surface

1



albedo, atmospheric precipitable water, atmospheric turbidity, solar elevation and global
horizontal radiation. But there was no further statistical analysis, so the importance of this
study is unknown.
The atmospheric turbidity is the haziness in the atmosphere and the large size of aerosols
is responsible for it. Aerosols can either absorb or scatter the radiation and, consequently,
alter the energy balance of the Earth, especially under clear skies Gueymard [2005]. They
also serve as condensation and freezing nuclei (see Appendix B.2).
Reindl et al. [1990] added two more significant predictors to the clearness index and the
solar elevation: ambient temperature and relative humidity. So, they achieved to reduce the
standard error of Liu- and Jordan- type models. They used stepwise regression to reduce a
set of 28 potential predictor variables down to four significant predictors.

On the other side, Maxwell [1987] developed an exponential model for the estimation of
the direct normal beam radiation from the global radiation. It is named the DISC model.
This model was then improved by Perez et al. [1991]. They presented two different models:
the first is a correction of the DISC-model and the second is composed of linear relation-
ships. Surface temperature and relative humidity are used when available. Like Skartveit
and Olseth, a hour-to-hour variability index was introduced. A four dimensional table of
numerical constants to adjust the estimated values was introduced as well. The database
was composed of records from 18 stations in the US and Europe. Other models were devel-
oped on the basis of the above mentioned ones. For example, Gonzalez and Calbo [1999]
introduced a model based on the ratio between the diffuse and the extraterrestrial radia-
tion, using data from Spanish stations.

Conversely, Boland et al. [2001] state that the predictability is not relevantly improved
when taking solar elevation as predictor. They also show that the model for a 15 minutes
interval is essentially the same as for hourly time intervals. In addition, they demonstrate
that the apparent solar time is a good second predictor. They conducted the study in Aus-
tralia, thus, it should be extended to other locations.
In 2009 a new model, named BRL-model (Boland-Ridley-Lauret-Model) was established,
based on a logistic function (Ridley et al. [2010], Lauret et al. [2010]).

Dürr [2004] developed a new method to separate global shortwave incoming radiation
into the diffuse and the direct fraction, in the context of the project APCADA (Automatic
Partial Cloud Amount Detection Algorithm). This project estimates actual sky cloud cover
with surface measurements of downward longwave radiation, temperature and relative hu-
midity. Longwave downward radiation is measured by pyrgeometers, which would have to
be permanently shaded to avoid influence of incoming shortwave radiation. The direct solar
radiation has to be estimated in real time: it can be calculated from the difference between
the measured global radiation and the estimated diffuse radiation. Marty [2000] developed
a cubic spline method using the value measured at solar noon at cloud free situations to
estimate the diffuse fraction. At present, the new method estimates the diffuse fraction
using the transmissivity, q, of the incoming global radiation compared to the extraterres-
trial radiation as the main parameter. It uses two-minutes interval data, which are then
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averaged over 30 minutes.

Helbig [2009] presented a model for the shortwave surface radiation balance in com-
plex terrain. For the diffuse radiation estimation, she applied a combination of two models
proposed by Reindl et al. [1990]. Reindl I uses both the clearness index, kt, and the solar
elevation, φ, while Reindl II only considers kt. The Reindl-Helbig model is an improvement
on the Erbs model [Erbs et al., 1982]. However, it could clearly be seen that this decom-
position model overestimates the measured sky-diffuse radiation. Therefore, Helbig stated
that ’no reliable decomposition model was found that can be applied for the Eastern Swiss
Alps. Thus, a statistical model valid at least for the Swiss Alps should be developed from
locally measured diffuse sky and global radiation values.’ [Helbig, 2009]
Nowadays, Reindl-Helbig is the model implemented in Alpine3D, which is a three dimen-
sional model o surface processes. To know the amount of direct radiation reaching a slope
o given exposition and incline, the horizontal global radiation measured by a nearby Auto-
matic Weather Station must be decomposed into its diffuse and direct components. Then
the direct radiation can be projected onto slopes [for snow and avalanche research), 2010].

The above mentioned models were compared to each other on different sites. As an
example, Notton et al. [2004] compared various models on Ajaccio, a seaside Mediterranean
site. A similar study was done by Gueymard [2005] and by Jacovides et al. [2006] in Cyprus.

1.2 Motivations

In order to have a complete overview on the existing decomposition models, this work is
presenting a selection of models, which are thought to be the most representative. A de-
tailed analysis and comparison of them is also reported.
To this end, this study is gathering radiation data from stations placed in different geo-
graphical and climatological sites.

This work is in particular focused on the answer of the following problems:

• What are the parameters, which are explaining the decomposition of the global radi-
ation into direct and diffuse radiation?

• Is it possible to create a universal decomposition model? And what characteristics
should a model candidate possess?

Furthermore, the performance of the model is investigated on data from Payerne for
different time resolutions of the input data.

The work is organized as follows: in Chapter 2 the new dataset and the data quality
control applied are described. Details of the stations can be found in Appendix A while a
short overview of the most relevant solar equations is given in Appendix B. Different classes
of models are presented and the most representative models selected in Chapter 3. Their
performance is analyzed in Chapter 4. Appendix D summarizes the statistical methods
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used while complementary figures and tables are in the Appendixes E, F and G. Results
are discussed in Chapter 5 and Chapter 6 is drawing the conclusions and gives an outlook.
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Chapter 2

Dataset

In order to develop an universal decomposition model, it is important to gather data of
worldwide stations, covering different climate, geographical and meteorological conditions.
For this reason, the dataset is composed by global and diffuse radiation for one-year time
period (mostly for 2009) of 39 stations covering different regions of the globe.
Sunlight measurement values are available on different networks. For this study, measure-
ments from 13 Swiss stations were offered by the Federal Office of Meteorology and Cli-
matology MeteoSwiss and the Baseline Surface Radiation Network (BSRN) made data
available data for 25 stations worldwide. Data from Greenland (Summit Station, BSRN
candidate) were received from the University of Colorado.

In this chapter, the measurement data are first described and their representation is
then explained. In order to have an homogeneous dataset, a data quality control is finally
applied.

2.1 Data collection

Different organizations established a range of stations in different locations of the world.
In Switzerland, the authorities require to record meteorological and climatological data
throughout the Swiss territory [Seiz and Foppa, 2007]. For the worldwide stations, high
quality data of solar radiation measurements are provided by the Baseline Surface Radiation
Network (BSRN), initiated by the World Climate Research Programme (WCRP), jointly
with the World Meteorological Organization (WMO), the International Council for Science
(ICSU) and the Intergovernmental Oceanographic commission (IOC) of UNESCO.

2.1.1 Swiss stations

SwissMetNet is a project conducted by MeteoSwiss, aiming at the renewal and unification
of ground measurements on the Swiss territory. 134 stations are going to be established by
the year 2013, forming a network of automatic ground stations.
The dataset from this network is composed of 10-minutes interval measurements of 13 Swiss
stations, which are listed in Table A.1. The period covered is one year, in general 2009, and
the parameters at disposal are the global and diffuse radiation.
Stations with different climate and geographical characteristics were chosen. For instance,
their altitude ranges from 413 m to 2 106 m. The stations are located in the Alps (e.g.
Montana-Vermala), in urban areas (e.g. Geneva) or on the Swiss Plateau (e.g. Buchs).
Two different instruments are used to measure radiations. The SPN-1 Sunshine Pyranome-
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ter 1 device measures diffuse and global radiation. Global radiation is detected by CM21 2,
as well.
In the ideal case, the two types of radiation should be recorded by the same instrument.
However, the measure of global radiation used in the further analysis is from the CM21,
because it covers the entire above mentioned time period. For the majority of the stations,
SPN-1 started to measure global radiation only from the 2nd July 2009 on.
Below, a comparison between the two instruments is made, in sort to justify the use of them.

Comparison instruments CM21 and SPN-1 for Global Radiation

Usually, CM21 is the official instrument for measuring the global radiation, while diffuse
radiation is measured by SPN-1.
The accuracy between the two instruments have been tested, by comparing all the global
radiation measurements for the entire period, as illustrated in Figure 2.1. The two mea-
surement sets are clearly linearly correlated, with a coefficient of determination R2 corre-
sponding to 0.9846.
Then, the representation of the global radiation recorded with SPN-1 against the measure-
ments with CM21 has been investigated for every station (see Figure 2.2, as an example).
It has been seen that, in general, the data have a linear relationship. It means that the
correlation is not location dependent. The station of Robiei has to be excluded from the
dataset, having problems in the calibration of the instruments. Its measurements corre-
sponds to the the line appearing parallel to the 1:1-representation in Figure 2.1.
Then, the same study has been done for the measurements comprised in every month.
Figure 2.2 illustrates the results for a month, February, as an example. The same behavior
is visible along all months, meaning no seasonal dependency.

It can be concluded that the two instruments are giving a similar result. For this reason,
diffuse radiation measurements are hereafter from SPN-1 and global radiation from K&Z
CM21.

2.1.2 Worldwide stations

The Baseline Surface Radiation Network (BSRN) is the global baseline network for moni-
toring the radiation field at the Earth’s surface. It provides a high quality of solar radiation
measurements. This network sets two principal objectives as follows [Lee, 2009]:

1. To provide data for calibration satellite-based estimates of the surface radiation bud-
get (SRB) and radiation transfer through the atmosphere.

2. To monitor regional trends in radiation fluxes at the Earth’s surface.

From the about 40 stations available, 26 where selected. Their description is listed in
Table A.2. As an example, Figure 2.3 shows the station in Payerne.

1manifactured by Delta T
2manufactured by K&Z (Kipp & Zonen)
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Figure 2.1: Diffuse fraction measured by SPN-1 against CM-21 measures. The red line
represents the best fit. Its equation and the coefficient of determination R2 are shown, as
well. The line of measures parallel to the 1:1-line are from Robbia, because of calibrations
problems. Those data were consequently excluded from the dataset.
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Figure 2.2: Scatterplot of global radiation SPN-1 against CM21 for the station Robbia (left)
and for all stations measurements in February 2009 (right). The red lines represent the best
fit. Its equation and the coefficient of determination R2 are shown, as well.

Figure 2.3: BSRN Station in Payerne.
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The dataset is composed of global and diffuse radiation measurements, for the 1-year
time periods. The records are 1-minute intervals and detected by different instruments,
depending on the individual choice of the station, observing BSRN standard requirements,
which are listed in a manual edited by Kipp & Zonen [Lee, 2009]. For the global and diffuse
solar radiation, the pyranometer must be ventilated and the body temperature monitored.
Furthermore, both radiations have to be measured by the same type of pyranometer. The
instruments have to be located on a place where the horizon is unobstructed in all directions.
All obstructions (like mountains, buildings,...) should not exceed an elevation angle of 5 ◦

[Lee, 2009]. In addition, regarding the diffuse radiation, the detector has to be completely
shaded by a ball or disk and the shading must correspond to a 5 ◦ field of view. The maximal
uncertainty should not exceed 2 % or 3 W m−2 (diffuse radiation) and 5 W m−2 (global
radiation).

2.2 Data quality control

The principal aim of this study is to determine a decomposition model where only the
global radiation is measured. As a consequence, data for night periods are excluded. To
have a positive global radiation I is, therefore, the first condition for the dataset:

I ≥ 0. (2.1)

Furthermore, for low solar elevations, instruments for the measurement of solar radiation
have some limitations, because of the cosine response. For this reason, a threshold for the
solar elevation φ has been set:

φ ≥ 5 ◦. (2.2)

The radiation measurements were also checked against the quality controls listed by
Jacovides et al. [2006] and proposed by the European Commission Daylight I, 1993:

Id
I
≤ 1.1 (2.3a)

I

I0,h

≤ 1.2 (2.3b)

Id
I0,h

≤ 0.8 (2.3c)

I ≥ 5 W m2 (2.3d)

Ib ≤ I0,h, (2.3e)

where I is the global radiation, the sum of horizontal direct Ib and diffuse Id radiation.
I0,h is the horizontal extraterrestrial radiation.
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Two additional conditions were introduced by Reindl et al. [1990] and lately used by Jaco-
vides et al. [2006]:

Id
I
≥ 0.90 , for kt < 0.20 (2.4)

Id
I
≤ 0.80 , for kt > 0.60 (2.5)

For instance, during overcast weather situations , it can be thought that a large fraction
of incoming radiation will be scattered by the clouds, resulting in a big diffuse fraction. By
clear sky situation, a limit for diffuse radiation should also be placed.
As an example, 5.05 % of the total data of Altdorf (UR) were deleted because of Equations
2.1 and 2.2. Further 20.81 % and 2.74 % were excluded because of Equations 2.3a-2.3e and
2.4-2.5, respectively.

Horizon problem

As the Sun is obscured by mountains, the monitored radiation is entirely diffuse and use-
less for the aim of this study. For this reason, it can be omitted from the dataset. As a
consequence, an additional condition for 10-minutes interval Swiss data was introduced:
solar elevation has to be greater than the horizon angle,

φ ≥ φhoriz. (2.6)

Horizon angle φhoriz is the angle formed between the surface and the line connecting
the meteorological station and the highest mountain located between the station and the
Sun (see Figure 2.4).

This procedure was not applied to the worldwide data, because, due to standards re-
quirements, BSRN stations are positioned in areas with no relevant problems of horizon
(see Section 2.1.2).
For this purpose, an algorithm included in ALPINE-3D has been modified in order to deter-
mine the horizon angle for every solar azimuth. GIS is a set of tools permitting the selection
of a desired area and to obtain its height profile for the chosen resolution. In this case, a
resolution of 25 m was chosen and an area around each station including the surrounding
mountains was selected. Then, for every station, the horizon angle φhoriz was computed in
each direction (1 ◦ interval) and defined as:

tanφhoriz =
hmax − h0

d
(2.7)

where, as illustrated in Figure 2.4, h0 is the altitude of the station, hmax the altitude of
the highest mountain laying on the solar azimuth direction and d the horizontal distance
between the meteorological instrument and the mountain peak.
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Figure 2.4: The horizon angle is the angle between the surface and the vector joining the
meteo station and the highest mountain in the sun direction. For a given direction, it is
calculated from a station situated at altitude h0 and mountain with altitude hmax, situated
at a distance d.

As predicted, only a small amount of data is deleted for stations located on the Swiss
Plateu. On the other hand, a consistent number of measures is excluded for stations located
at the bottom of a valley with determined characteristics. As an example, the stations of
Visp (VS) and Altdorf (UR) are considered. Both stations are situated at the bottom of
valleys, which have similar characteristics of depth but different orientations: Altdorf is
situated in a North to South valley. Instead, Visp is in a East to West valley. Normally,
the Sun is obscured when it has low elevation, i.e. in the morning and in the evening, when
its position is in the East and in the West. For this reason, the mountains surrounding the
stations have more influence for Altdorf than for Visp. Figure 2.5 illustrates the amount of
data (in red) deleted by this last quality condition. It can clearly be seen that the station of
Visp is barely perturbed by the surrounding mountains. Robbia (GR) had similar results
as Altdorf, as the two valleys have similar orientations.

Hourly integrated data

After applying the above conditions, a dataset composed by 222 311 10-minutes interval
Swiss data and 4 886 830 1-minute interval worldwide data is obtained. However, in order
to conduct an homogeneous comparison and analysis of the models, the above mentioned
dataset is transformed to a hourly integrated one. Figure 2.6 compares, for Payerne, the
diffuse fraction against the clearness index for 1, 10, 30 and 60 minutes time steps.

It can clearly be seen how the data variation is decreasing with a higher time step.
Furthermore, hourly data are obtained by the average of measures between the minutes
0 and 59. It is then recorded at the middle of the hour. The quality controls (Equations
2.3a-2.3e and 2.4-2.5) were then again applied to the integrated data.
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Figure 2.5: Representation of the radiation data of Altdorf (left) and Visp (right). In red,
the measurements deleted by the horizon condition.

After the integration, the new dataset is composed by 135 694 hourly-integrated data.
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Figure 2.6: Comparison of diffuse fraction against clearness index with 1-minute (black),
10-minutes (red), 30-minutes (green) and hourly interval data (blue).
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Chapter 3

Decomposition models

Nowadays, there is a general and continuous improvement of worldwide radiation networks
and the data collection quality. However, for a desired location, more often only measure-
ments of the global radiation I are known, but for many applications diffuse and direct
fractions, Id and Ib, respectively, are also needed. For instance, building engineering and
solar thermal panels. For this reason, many models are available to establish correlations
between the diffuse fraction and various predictors (e.g. Orgill and Hollands [1977], Boland
and Ridley [2007] and Skartveit and Olseth [1998]).
Different methods have been developed in order to decompose the global radiation into the
diffuse and direct fraction and several variables, as solar elevation and clearness index, are
taken into account.

It is deduced that a great fraction of the scattered radiation is scattered by the water
vapor molecules and it is shown that for the same direct radiation, the amount of diffuse
radiation on cloudy days is higher than that for clear sky. This is due to additional scat-
tering produced by clouds [Liu and Jordan, 1960].

In this chapter, four categories of models are established: polynomial, exponential, lo-
gistic and transmissivity models. Six models have been selected as representation of these
groups and have been then analyzed. The models are listed in Table 3.1.

3.1 Polynomial models

First studies on decomposition models were conducted by Liu and Jordan [1960]. Using a
data set of measurements from 98 sites in the US and Canada, they determined a relation-
ship between daily diffuse and global radiation on clear days on a horizontal surface. They
also estimated the long term average hourly and daily sums of diffuse radiation and the

Model Type Parameters
Reindl-Helbig polynomial kt, Φ
Skartveit and Olseth polynomial kt, Φ, ω3

BRL logistic function kt, φ, Kt, As, Ψ
Maxwell exponential kt, φ, mair

Perez exponential kt, φ, mair, χ(k′t,W,∆K
′
t, θz)

Dürr regression tree q(mair, θz, kt)

Table 3.1: Summary of the models, their type and the parameters on which are based.
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daily sums of diffuse radiation for various categories of days of differing degrees of cloudi-
ness. They found a correlation with one predictor variable, the clearness index kt, which is
the proportion of extraterrestrial radiation I0, reaching a location:

Id/I = f (kt) .

This equation can be applied to different locations, where albedo and dust contamination
are similar to those of the localities where it has been developed.
However, it was clear that the hourly diffuse fraction was not only a function of the clear-
ness index.
Erbs et al. [1982] used a new database of hourly data from four US weather stations to
develop an estimation of the diffuse fraction of hourly, daily and monthly-average global
radiation. They also determined the degree to which those relationships depend on season
and location. A similar study has been conducted by Orgill and Hollands [1977]. They de-
veloped a piecewise decomposition model, based on data from Toronto, Canada, depending
on the clearness index kt.
On the other hand, for their correlations, Iqbal [1980] and Skartveit and Olseth [1987]
used two predictors, kt and the solar altitude. Iqbal used data from three sites in Canada
and two in France. Moreover, Garrison [1985] proposed a dependency of diffuse fraction on
surface albedo, atmospheric precipitable moisture, atmospheric turbidity, solar elevation
and global horizontal radiation. However, no further statistical analysis was made, so the
significance of this study remains unknown.
Reindl et al. [1990] added other three significant predictors to the clearness index: solar al-
titude, surface temperature (2 m above the ground) and relative humidity. With this, they
achieved to reduce the standard error of Liu and Jordan type models. They used stepwise
regression on data from five locations in Europe and the US, to reduce a set of 28 potential
predictor variables to four significant predictors.
In addition, seasonal correlations (wet and dry season correlations) have been developed
by Jacovides et al. [2006] with a data set from a weather station in Cyprus.
Furthermore, Helbig et al. [2009] and Helbig [2009] presented a complet surface radiation
balance model, where it was stated that ’no reliable decomposition model was found that
can be applied for the Eastern Swiss Alps. Thus, a statistical model valid at least for the
Swiss Alps should be developed from locally measured diffuse sky and global radiation
values.’ She developed a piecewise regression model, based on that of Reindl et al..

3.1.1 Reindl-Helbig

In addition to the four-variables decomposition model, Reindl et al. [1990] developed one
additional model depending on solar altitude and clearness index and another depending on
the clearness index only. These models are purely statistical and based on linear regressions.
Helbig [2009] developed a new decomposition model modifying the last two models. She
then compared it to two other models, Erbs et al. and Reindl et al., demonstrating that
Reindl*, as the new model is named, is better representing the observed diffuse fractions.
The dataset is composed of measurements taken by two weather stations in Davos and at
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the Weissfluhjoch (Switzerland).
The decomposition model Reindl* is a piecewise regression model and is defined as it
follows:

Id/I = 0.1020− 0.248kt for kt ≤ 0.3, Id/I ≤ 1.0
Id/I = 1.400− 1.749kt + 0.177 sin(π/2− θz) for 0.3 < kt < 0.78, 0.1 ≤ Id/I ≤ 0.97
Id/I = 0.147 for kt ≥ 0.78

(3.1)
It is composed of three intervals. For overcast situations, where the clearness index is low,
it has a maximal diffuse fraction value and decreases linearly with an increasing clearness
index; clouds are decreasing, corresponding to less reflection and consequently less diffuse
radiation. It reaches a constant value for clear sky weather (high clearness index), where the
diffuse radiation is at minimum. In the middle interval (partly cloudy sky), an additional
variable is affecting the diffuse fraction: the solar elevation

φ = π/2− θz.

A high solar elevation (with a corresponding high sinus value) contributes to the increase
of the diffuse fraction. The diffuse fraction are plotted against the clearness index for seven
different solar elevation φ in Figure 3.1.

A great disadvantage of this model is its composition of three piece-wise fits, which
are not continue at the boundaries (for kt = 0.3 and kt = 0.78). Moreover, Reindl et al.
[1990] found the best four variables out of 28, by an elaborate regression analysis. Several
models were developed out of those variables. But Helbig was able to obtain a model, from
a combination of those of Reindl. This new model, Reindl*, resulted to perform better than
those of Reindl.

3.1.2 Skartveith and Holseth

In 1987, another polynomial model was developed by Skartveit and Olseth, also on the
basis of Liu and Jordan. However, this model tended to overestimate the diffuse fraction
under cloudless sky.

Lately, in 1998, a new model was established, based on hourly data and adding a new
parameter: a hour-to-hour variability index σ3. A variation of the model with the regional
surface albedo as further parameter was developed, as well [Skartveit and Olseth, 1998].
The model is developed by using data measured in Bergen, Norway over a period of 32
years. The data are for the season from April to November, where no snow cover is present
and a surface albedo of 0.15 is assumed. The model then was tested against other samples
of data measured in four European stations.
The hourly variability index σ3 is defined as the root mean squared deviation between the
clear sky index of a period θ(t) and those of the former θ(t− 1) and latter period θ(t+ 1):

σ3 =

{
[θ(t)− θ(t− 1)]2 + [θ(t)− θ(t+ 1)]2

2

}0.5

(3.2)

16



Figure 3.1: Diffuse radiation estimated by Reindl* against clearness index for seven solar
elevations φ.

σ3 = |θ(t)− θ(t± 1)| , (3.3)

where the clear sky index is defined as it follows:

θ =
kt
kt,1

, (3.4)

and kt,1 is the cloudless clearness index:

kt,1 = 0.83− 0.56 · exp(−0.06 · φ). (3.5)

A low σ3 corresponds to stable sky condition and is associated with overcast (θ ≈ 0)
or cloudless sky situations (0.9 < θ < 1.0). In this case, the model is separated in four
situations, depending on the value of the clearness index kt:

1. kt ≤ 0.22: solar elevation independent, no relevant direct radiation is observed,

kd = 1. (3.6)

2. 0.22 ≤ kt ≤ kt,2: presence of broken clouds which substantially obscure the Sun.
The diffuse fraction depends on the clearness index kt and the solar elevation φ; it is
defined as it follows:

kd = f(kt, φ) = 1− (1− kd,1)(0.11
√
K + 0.15K + 0.74K2) (3.7)
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where:

K = 0.5

{
1 + sin

[
π
kt − 0.22

k1 − 0.22
− π

2

]}
, (3.8)

kt,2 = 0.95kt,1, (3.9)

kd,1 = 0.07 + 0.046

(
90− φ
φ+ 3

)
. (3.10)

3. kt,2 ≤ kt ≤ kt,max, where it is assumed that the direct radiation does not exceed a
maximal value kb,max:

kt,max =
kb,max + kd,2kt,2

1− kt,2
, (3.11)

where:
kb,max = 0.81α, (3.12)

with

α = (
1

sin(φ)
)0.6, (3.13)

is fitted by an extreme beam transmittance. It was modeled by an Arctic winter atmo-
sphere with fixed precipitable water vapor and aerosols optical depth. It is assumed
that clear sky prevails. The diffuse radiation is fixed:

kd = kd,2kt,2
1− kt

kt(1− kt,2)
, (3.14)

where kd,2 is obtained from Equation 3.7:

kd,2 = f(kt,2, φ) (3.15)

4. kt ≥ kt,max: the diffuse radiation is assumed to be caused by clouds not obscuring the
Sun, while the direct radiation remains fixed by kt,max:

kd = 1− kt,max
1− kd,max

kt
(3.16)

The diffuse fraction from Skartveit and Olseth against the clearness index is illustrated
for a null variability index and for seven solar elevation in Figure 3.2.

On the other hand, high σ3 is associated with scattered clouds (intermediate or ex-
tremely high θ). Consequently, for σ3 > 0, an empirical term representing the variability
due to inhomogeneous clouds is added to Equations 3.6, 3.7, 3.14 and 3.16:

∆(kt, φ, σ3) = −3K2
L(1− kL)σ1.3

3 , for 0.14 ≤ kt ≤ kx (3.17a)

∆(kt, φ, σ3) = 3kR(1− kR)2σ0.6
3 , for kx ≤ kt ≤ (kx + 0.71) (3.17b)

∆(kt, φ, σ3) = 0 , for kt ≤ 0.14 and kt ≥ kx + 0.71 (3.17c)
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Figure 3.2: Diffuse fraction estimated,by Skartveit and Olseth in function of the clearness
index, for seven solar elevations and a null variability index.

where:
kx = 0.56− 0.32e−0.06φ (3.18a)

kL =
kt − 0.14

kx − 0.14
(3.18b)

kR =
kt − kx

0.71
(3.18c)

The estimated diffuse fraction is plotted against the clearness index for different variability
indexes and solar elevations in Figure 3.3.
For increasing σ3 and a low clearness index, the diffuse fraction is decreasing. In contrast,
it is increasing for high clearness indexes. Furthermore, for clear sky situations (high clear-
ness index), the variation of σ3 is having an enormous influence on the diffuse fraction.
Moreover, for partly cloudy and clear skies, the solar elevation is in general very important
for the diffuse fraction for an altitude of less than 30◦.

This new model takes into account the presence of clouds by including a variability
index as variable, which is derived from the global radiation only. However, as already
mentioned, this model was developed and then tested on data for a snow-free ground and
a surface albedo of 0.15 was set. Because of multiple reflections caused by a bigger surface

19



Figure 3.3: Diffuse fraction from Skartveit and Olseth for four index of variability and a
solar elevation of 5 ◦ (left) and 80 ◦ (right).

albedo, a correction term was proposed. However, the correction was not verified, since it
is extremely difficult to determine a precise value of albedo [Skartveit and Olseth, 1998].

3.2 Logistic function models

Models developed in North America and Europe seemed to be inefficient for the Southern
Hemisphere. For this reason, in Australia, a completely different approach has been taken.
Boland et al. [2001] developed a model for Australian conditions, using a logistic function.
The dataset was composed of hourly data from a station in Geelong, Victoria.
It is one of the first models developed from data of stations with a latitude greater than
40 ◦. A line is fitted on the transformed data, by using a statistical method to find an
estimation of the slope [Sen, 1968]. The fitted line is then back-transformed. Finally, a
logistical function is fitted on the back-transformed line of best fit (Boland et al. [2008],
Boland and Ridley [2007]). In 2008, statistical techniques were used to justify the use of a
logistic function as a model.
This model was also tested in Cyprus by Jacovides et al. [2006].
In addition, a method for identifying incorrect values was constructed, using a quadratic
programming, where outliers are eliminated [Boland and Ridley, 2007]. The algorithm has
been applied to various localities, in various parts of the world, showing satisfactory results.
Furthermore, the effect of adding further parameters to explain the data was investigated.
Consequently, in 2010 a multiple predictor model, was proposed as an universal model,
named Boland-Ridley-Lauret (BRL) Model (Ridley et al. [2010], Lauret et al. [2010]). It is
simpler than the models proposed previously by the same authors.

20



3.2.1 Boland-Ridley-Lauret (BRL)

First introduced by Ridley et al. [2010], the BRL model is based on hourly data from
stations of Australia and other worldwide stations. Hourly clearness index kt, daily clearness
index

Kt =

∑24
j=1 Ij∑24
j=1 I0,j

, (3.19)

the solar elevation φ, apparent solar time As and a measure of persistence of global ra-
diation level Ψ are the variables used in this model. It was assumed that the Apparent
Solar Time (AST) As, which is asymmetric with regard to the solar noon, could explain
differences between morning and afternoon.
Moreover, the persistence factor is defined as it follows :

Ψ =


kt−1+kt+1

2
sunrise < t < sunset

kt+1 t = sunrise
kt−1 t = sunset

(3.20)

Lauret et al. [2010] completed the work by determining the coefficients in a Bayesian frame-
work.
The extension of the single predictor model results then as follows [Lauret et al., 2010]:

kd =
1

1 + e−5.32+7.28kt−0.03As−0.0047φ+1.72Kt+1.08Ψ
(3.21)

The use of Kt, the daily clearness index, is necessary, because the whole day may have a
particular pattern.

Significant predictors should be independent from each other. However, even being
highly correlated, kt, Kt and Ψ are considered as good predictors. The Apparent Solar
Time has a small coefficient and is only slighly correlated to kt and is, therefore, considered
as a relevant parameter. The solar elevation φ is correlated with the other variables, but
was nonetheless considered as a significant predictor [Boland et al., 2008].

The estimated diffuse fraction is plotted against the clearness index in Figure 3.4, for
different values of the parameters. The influence of solar elevation and Apparent Solar Time
are relatively small and correspond to the magnitude of the coefficients in the model. For
a constant clearness index, the diffuse fraction is larger for small solar elevations. This is
physically possible, as it corresponds to sunset and sunrise times, where radiation is known
to have a great diffuse fraction. A similar behavior is observable for the Apparent Solar
Time, which, at constant clearness indexes, is decreasing for a smaller diffuse fraction.
The daily clearness index and the persistence factor prevalently have a great sensibility
for the middle interval of the clearness index, where the variation of the diffuse fraction is
relatively large and decreasing for an increasing daily clearness index and persistence factor.

An advantage of this model is that it is formed by a single equation, in contrast to the
previous model category. However, the time of computation of this model is extremely long
for 1-minute interval data.
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Figure 3.4: Diffuse fraction from BRL-model for four 4 solar elevations φ , 6 AST values, 5
persistence factors and 5 daily clearness index.
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3.3 Exponential Model

In contrast to the other statistical models, Maxwell [1987] tried to propose a quasi-physical
model to estimate the normal direct radiation Ib. Physical principles are used to develop
the model and this algorithm has been obtained by the development of a computer program
named the Direct Insolation Simulation Code (DISC) [Maxwell, 1987]. Later, two models
were developed by Perez et al.. The first has coefficients correcting the DISC-model; the
second is air mass dependent and includes a solar position-independent direct transmit-
tance. When available, the surface dew temperature Td is used. Moreover, two limitations
of the clearness index as a variable were emphasized: its solar elevation dependency and the
impossibility to differentiate two weather conditions with the same global radiation [Perez
et al., 1990b].

3.3.1 Maxwell

Maxwell [1987] developed a model which predicts hourly normal beam irradiation Ib from
hourly global irradiation values. It combines a physical clear sky model with empirical fits
for other weather conditions. An exponential function is used and the data are from four
US stations.

Air mass mair is the principal parameter, in order to detect diurnal variations in inso-
lation. The clearness index is the second parameter.

At first, a maximum for the clearness index for cloudless sky Kn,c is calculated (Maxwell
[1987], Perez et al. [1990c]):

Kn,c = 0.866− 0.122mair + 0.0121m2
air − 0.000653m3

air + 0.000014m4
air (3.22)

where mair is the air mass:

mair =
1

sin(φ) + 0.50572
(φ+6.07995)1.6364

, (3.23)

depending on the solar elevation φ.
Secondly, a reduction ∆Kn of this maximum is applied:

∆Kn = a+ bec mair , (3.24)

where a, b, c are determined for two ranges of clearness index:

if kt ≤ 0.6


a = 0.512− 1.560kt + 2.286k2

t − 2.222k3
t

b = 0.370 + 0.962kt
c = −0.280 + 0.932kt − 2.048k2

t

(3.25)

if kt > 0.6


a = −5.743 + 21.77kt − 27.49k2

t + 11.56k3
t

b = 41.4− 118.5kt + 66.05k2
t + 31.9k3

t

c = −47.01 + 184.2kt − 222k2
t + 73.81k3

t

(3.26)
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The direct radiation transmittance is then calculated:

Kn = Kn,c −∆Kn (3.27)

Finally, the direct normal radiance is determined and the diffuse radiation can be derived:

Ib,DISC = I0 ·Kn (3.28a)

Id = I − Ib,DISC (3.28b)

3.3.2 Perez

Perez et al. [1991] proposed two different models, developed with dataset composed of
hourly measurements from stations located in the US and Europe (Geneva included).
The first model is a correction of Maxwell [1987] and is defined as it follows:

Ib = Ib,DISC · χ(k′t, θz,W,∆k
′
t) (3.29)

where χ is a 6x6x5x7 matrix (see Appendix C) which corrects the DISC-model and is based
on the bins listed in Table 3.2 for each one of the four parameters: the solar zenith angle θz,
the normalized clearness index k′t, the precipitable water W and the stability index ∆k′t.
The normalized clearness index is defined as it follows:

k′t =
kt

1.031 · exp
−1.4

0.9+ 9.4
mair

+0.1
(3.30)

where mair is the air mass defined in Equation 3.23.
In Equation 3.30, the clearness index becomes zenith angle-independent, by dividing it by a
simple direct irradiance attenuation formula [Perez et al., 1990b]. The term 1.4 in Equation
3.30 corresponds to the Linke turbidity.
Similarly to Skartveit and Olseth [1998], a variability index is introduced. In fact, the third
dimension, the stability index ∆k′t, has low values for stable conditions and high values for
unstable conditions:

∆k′t =

[∣∣k′t,i − k′t,i+1

∣∣+
∣∣k′t,i − k′t,i−1

∣∣]
2

, (3.31)

where (i + 1) and (i − 1) are the former and latter hour interval. If one of the two points
is missing, Equation 3.31 becomes:

∆k′t =
∣∣k′t,i − k′t,i±1

∣∣ . (3.32)

This term should permit make a difference between partly cloudy conditions, where there
are jumps from one hour to the other, and stable conditions (such as overcast weather
situations or haze), where the jumps are subtiles.
The precipitable water W is expressed as it follows:

W = exp0.07·Td−0.075 (3.33)
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Bin nr. k′t θz ( ◦) W (cm) ∆k′t
1 0.00-0.24 00-25 0-1 0.000-0.015
2 0.24-0.40 25-40 1-2 0.015-0.035
3 0.40-0.56 40-55 2-3 0.035-0.070
4 0.56-0.70 55-70 3-∞ 0.070-0.150
5 0.70-0.80 70-80 0-∞1 0.150-0.300
6 0.80-1.002 80-903 0.399-1.000
7 0.000-1.0004

Table 3.2: Bins used for the function χ(k′t, θz,W,∆k
′
t) [Perez et al., 1991].

where Td is the surface dew temperature. It has small time or space gradients. Therefore,
data from neighboring weather stations could be applied. It is an estimator of precipitable
water, which influences absorption (direct vs. diffuse) and aerosol growth (scattering and
direct vs. diffuse) [Perez et al., 1991]. The influence of precipitable water is less marked but
not to be neglected.
In the absence of measurements, the dew temperature Td can be obtained from the relative
humidity Rh [WMO, 2008]:

Td =
243.12 H

17.62−H
(3.34)

with:

H = ln
(
Rh + e

17.62Tair
243.12+Tair

)
(3.35)

where Tair is the surface temperature, which is the air temperature measured 2 m above
ground.

A second model is a set of linear relationships, expressed in terms of solar position-
independent direct transmittance index K ′b:

Ib =
I0 K

′
b exp

−1.4

0.9+ 9.4
mair

0.87291
(3.36)

where, for k′t < 0.2, K ′b = 0, otherwise:

K ′b = a(Kt′, Z,W,∆Kt′) · k′t + b(k′t, Z,W,∆k
′
t) (3.37)

The coefficients a and b are determined for different bins. The diffuse radiation can then
be derived from Equation 3.28b.

Both models are considering the former and the latter time interval data, which permits
to have an overview on the weather stability. However, the models are complicated and not

1when W is not available.
2values of k′t superior to 0.87 should be treated like suspected for elevations above 1 000 m.
3the model was validated just for θz < 85 ◦.
4when ∆k′t is not available.
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easily transportable. Furthermore, not every station monitors Td and Rh with the same
frequency as solar radiation data.
For the present study, the first model is taken into consideration.

3.4 Transmissivity Model

The diffuse radiation can be measured by pyranometers, where the domes were previously
shadowed for 10 minutes at solar noon. Then, the diffuse radiation for the entire day was
estimated by applying a cubic spline interpolation on the measured values at solar noon at
cloud free situations. In 2000, a model was developed by Marty where internal and external
perturbations were considered. It was stated that solar transmittance varies with water
vapor content and solar altitude, which are season and location dependent. For instance,
there is a high solar transmittance for low water vapor content and high solar altitude.
Since the project APCADA (Automatic Partial Cloud Amount Detection Algorithm) needs
a real-time correction of the direct solar radiation, Dürr [2004] developed a new method to
separate the global shortwave incoming radiation into the diffuse and the direct fraction,
by estimating the diffuse fraction using the transmissivity q of the incoming global solar
radiation to solar radiation at the top of the atmosphere.

3.4.1 Dürr

APCADA needs real time correction of the direct solar radiation and allows to detect
the effect of direct solar radiation on Longwave Downward Radiation (LDR) at noon. A
fixed shadow band should be installed on PIR pyrgeometers. However, it is impossible to
permanently shade ASRB PIRs, because of the difficult weather conditions in the Alps.
This new approach estimates diffuse radiation Id from 2-minutes interval data of global
radiation. It is a regression model and was developed out of data from Swiss stations
located in Payerne, Davos and Versuchsfeld (Davos). It is based on the analysis of the
transmissivity q, which is defined as:

q = (
I

I0 · cosθz
)1/mair (3.38)

The distinction of different cloud situations is made, by comparing the transmissivity av-
erage qavg over 10 minutes to the lower limit of q for cloud-free conditions:

qdiff = qavg − qlim (3.39)

where:

qlim = ∆q + (0.98−∆q)(
ti − t̄
t̄− t0

)4. (3.40)

ti is the time between the sunrise (t0) and the sunset (tn) and t̄ is the time at solar noon:

t̄ = t0 +
tn − t0

2
.
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The limit of transmissivity is depending on a transmissivity offset ∆q which is altitude and
season dependent. In fact, the diffuse radiation is increasing in winter because of the low
solar elevation and the increased surface albedo. With the albedo offset ∆a, the transmis-
sivity offset is for every station separately calculated. Every parameter is station specific
and is empirically fitted on measurement data from free-clouds days (Dürr, personal com-
munication, 2010).
Furthermore, a nearly zero transmissivity difference (Equation 3.40) with a low variability
reflects a blue sky situation. Whereas, a difference going to infinity and a low variability
correspond to overcast weather situations.
The variability (within the past 30 minutes) is expressed with a standard deviation qstd
and a range qr. In order to determine the standard deviation, the previous 15 2-minutes
interval data of q are fitted and then the residuals are fitted as well. To reduce small fluc-
tuations of the global radiation, the difference between the minimal and maximal residual
is considered, as well.
Afterwards, the model has been simplified (Dürr, personal communication, 2010).

At first sight, this regression model appears complicated. It is covering all weather
situations considering the previous 30 minutes. However, parameters have to be calculated
for every single stations separately, which leads to a difficult transportability of the model.
Furthermore, it is demanding to apply such a model to data with a time interval greater
then that used for the development (e.g. 30-minutes, hourly data).
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Chapter 4

Results

Figure 4.1 shows the global and the diffuse radiation over one day for Chasseral (NE). If
the estimated diffuse radiation were represented on the same graphic, it would be difficult
to assess either qualitatively or quantitatively its ability to reproduce measurements.

The representation of the diffuse fraction as a function of the clearness index is thus used
in the literature (e.g. Boland and Ridley [2007], Helbig et al. [2009], Orgill and Hollands
[1977] and Perez et al. [1990a]) and gives a clearer and better understanding of the data.
An example is illustrated in Figure 4.2.

The diffuse fraction kd is the ratio of diffuse to global radiation:

kd =
Id
I
, (4.1)

and the clearness index kt the portion of extraterrestrial radiation reaching the surface:

kt =
I

I0 cos θz
. (4.2)

Both parameters range between 0 and 1 and their combinations describe different weather
situations. A low clearness index implies, for instance, a small portion of radiation reaching
the surface, reflecting an overcast weather situation and, therefore, a high diffuse fraction.
Whereas, a high clearness index represents a clear sky, with small diffuse radiation and,
for instance, a low diffuse fraction. The intermediate values of clearness index represents
a partly-cloudy sky. For this interval of the clearness index, the corresponding possible
values of the diffuse fraction is extremely hard to determine, because of possible multiple
reflections between the surroundings and the clouds. Erbs et al. [1982] stated that, normally,
90% of the data are included in the interval 0.2 ≤ kt ≤ 0.8. The dataset used for this work
only has the 78%.
Furthermore, clouds change the diffuse fraction. For example, extensive clouds (like in an
overcast weather situation) reduce the amount of beam radiation reaching the surface.
Broken clouds, instead, may enhance the diffuse fraction without affecting the intensity
of the beam radiation [Skartveit and Olseth, 1998]. The stratospheric sulphate aerosols
content is higher in the Northern than in the Southern Hemisphere. This fact produces,
in the Northern Hemisphere, a higher proportion of values with high clearness index and
corresponding high values of diffuse fraction. Gueymard [2005] says that turbidity is the
most important extinction affecting the direct and diffuse radiation under clear sky [Boland
et al., 2008].
In 1991, there was an enormous eruption event of Mt Pinatubo. An important amount of
sulphate was injected into the stratosphere, which resulted in a could covering most of the
Earth, affecting the amount of diffuse fraction [Molineaux and Ineichen, 1996]. Moreover, an
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Figure 4.1: Representation of the global radiation and its diffuse part, on 1st May 2009 in
Chasseral (NE).

extremely high clearness index with a corresponding intermediate diffuse fraction could be
produced by unobstructed Sun and the presence of scattered clouds [Skartveit and Olseth,
1998].

The data do not present any seasonal dependency. As an example, Figure 4.3 shows the
usual data representation for Pilatus (LU) for the different seasons. For an increasing solar
elevation, high and extremely high clearness indexes are becoming rare (see Figure 4.4).

The majority of the data with a high clearness index (kt > 0.8) were measured at morn-
ing times, showing a pronounced forenoon-afternoon dependence (see Figure 4.5). In the
morning, there is less water vapor content in the atmosphere and lower turbulent mixing.
The surface needs time to become warmer and drive turbulences. Moreover, the boundary
layer is usually shallower in the morning. As a consequence, the air is clearer at this time
of the day, the path through through the boundary layer can be shorter and the scattering
is then reduced.

4.1 Clear days representation

In order to investigate clear day situations, five stations with different climate and geograph-
ical characteristics were selected: Geneva (Switzerland, urban area), Georg von Neumayer
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Figure 4.2: diffuse fraction in function of clearness index for Chasseral (NE), for the period
1st February 2009 to 31st January 2010, for a zenith angle ranging from 0◦ to 85◦.

and Concordia Station (Antarctica, iceshelf and glacial area, respectively), Summit Station
(Arctic, glacial area) and Alice Springs (Australia, desert). Clear days were manually se-
lected, looking to the daily evolution of the direct radiation: 36 days in Geneva, 23 days in
Georg von Neumayer, 20 days in Concordia Station (Dome C), 7 days in Summit Station
and 110 days in Alice Springs. The low number of clear days in Geneva is due to the often
unstable cloud conditions.

Looking at clear days only, multiple reflection might be avoided. In fact, the graphical
representation over these days is mostly composed by high clearness indexes with a low
diffuse fraction, which is typical for this day type.

In Figure 4.6, the diffuse fraction on clear days for the five stations is illustrated. It
can clearly be noticed that Geneva presents a quite large portion of high diffuse fraction
even for clear days. This could be due to the urban location of the station, which implies a
higher content of aerosol in the atmosphere (due to the pollution of the city). Alice Springs
has a lower diffuse fraction for the same clearness index when compared to Geneva. It could
be attributed to the dry atmosphere (due to the desert area where the station is located),
which corresponds to less water vapor content in the atmosphere. In addition, pollution is
not relevant in that area.
A similar behavior was stated by Ridley et al. [2010] for stations from both Hemispheres.
The tropospheric part enhances the backscatter of solar radiation. The anthropogenic in-
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Figure 4.3: Diffuse fraction against clearness index of Pilatus (LU), for the different seasons:
winter (top-left), spring (top-right), summer (bottom-left) and autumn (bottom-right).
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Figure 4.4: Diffuse fraction against clearness index of Pilatus (LU),for different solar eleva-
tions.

put goes into the lower part of the atmosphere: it has an enormous dispersion potential
(because of the wind) and can reach an elevation of 3 100 m. There is a declination of the
stratospheric sulfate. However, there is still an increase of the tropospheric sulfate, which
is almost confined in the Northern Hemisphere.

The two antarctic stations, Concordia Station and Georg von Neumayer, have a sim-
ilar radiation pattern compared to Summit Station. First, their maximal clearness index
is higher than the two stations previously compared. This could be associated to the ex-
treme clean atmosphere, which permits a greater amount of radiation to reach the surface.
However, this radiation is more scattered than in Geneva and Alice Springs. When the
solar elevation is always low, the solar radiation has a longer path through the atmosphere,
which implies a higher diffuse radiation production. In addition, the elevated content of
ice crystals in the atmosphere produces further multiple reflections between the snowy and
icy surface and the atmosphere. For this reason, the two Antarctic and the Arctic stations
have a higher diffuse fraction compared to the others.

4.2 Models performance evaluation

Six models representing four classes were presented in Chapter 3. They were tested on data
of 39 stations, which are listed in Tables A.1 and A.2. A statistical analysis was conducted
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Figure 4.5: Diffuse fraction against clearness index of Pilatus (LU), for the different day-
times: morning (black), midday (red) and afternoon (green).

in order to evaluate the performance of each single model. Four statistical instruments were
used to quantify the performance of the models: the coefficient of determination R2, the
coefficient of efficiency E, the Mean Absolute Error and the Mean Bias Error. They are
described in Appendix D.

Models of Reindl-Helbig, Skartveit and Olseth, BRL and Maxwell presented some similar
pattern and are illustrated in Appendix G. As Table 4.1 shows, the model of Skartveit and
Olseth overall performs better than the other models. The model proposed by Maxwell
seems to have more limitations than the others. Furthermore, the two Antarctic and the
Arctic stations seems to have an enormous influence on the limited performance of the
models. In fact, Table 4.1 also shows the results without accounting those three stations
and the performance appears definitively improved. Pd is the number of data Nd whose
estimated diffuse fraction k̂d is within ±10 % of the observed value kd:

Pd =
Nd[
∣∣∣k̂d − kd∣∣∣ ≤ 0.1]

Nd

· 100 % (4.3)

The effect of different geographical conditions was investigated. No relevant dependency
on station altitude is visible. No particular dependency on latitude and longitude is present
(Figures G.1 - G.6). As already mentioned by Miguel et al. [2001], there is a seasonal
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Figure 4.6: Representation of the data for clear sky days in Alice Springs (Australia),
Geneva (Switzerland), Georg von Neumayer (Antarctica) and Concordia Station (Antarc-
tica)

variation of the error. For this type of analysis, data have been divided into two groups
depending on the hemisphere where the meteo station is located. Data have also divided in
four groups corresponding to the four seasons: winter (December, January and February),
spring (March, April and May), summer (June, July and August), autumn (September, Oc-
tober and November). For the Southern Hemisphere, seasons were inverted. Spring presents
an increased error, with respect to the winter period (see Figures G.7 and G.8) . It can be
attributed to a clearer atmosphere in winter months. Furthermore, the four models present
a limitation in the estimation of the data for a solar elevation smaller than 30 ◦ (see Figures
G.12 and G.13).

Previous studies underlined the necessity of a model able to especially give a better
estimation for intermediate 1 values of clearness index. It is the interval which is more af-
fected by atmospheric and solar effects, as solar elevation and weather variability. However,
the models present a more pronounced limitation on the estimation of data for extremely
clearness index values.

1Notation for the different clearness index intervals is used: low ( kt ≤ 0.30), intermediate (0.30 < kt ≤
0.80), high (0.80 < kt ≤ 1.00) and extreme high (kt > 1.00).
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Model MBE MAE R2 E Pd

Reindl*
all 0.2078 0.2485 0.6861 -0.6820 7.83

no pol.stat. 0.0489 0.0983 0.8735 0.8416 35.36

S&O
all 0.2014 0.2304 0.5188 -1.2902 10.28

no pol.stat. 0.0386 0.0987 0.8773 0.8159 34.70

BRL
all 0.2910 0.2239 0.6576 -1.1790 1.23

no pol.stat. 0.0431 0.0991 0.8672 0.8402 35.47

Maxwell
all 0.2406 0.2747 0.3764 -2.4930 7.31

no pol.stat. 0.0541 0.0913 0.8694 0.8446 38.14

Table 4.1: Statistical performance of the models Reindl-Helbig (Reindl*), Skartveit and
Olseth (S&O), BRL and Maxwell for all stations (all) and without the polar stations (Dome
C, von Neumayer Station, Summit Station).

Here below, a description of the performance of every model, their advantages and
limitations is presented.

4.2.1 Reindl - Helbig

Initially, Reindl et al. [1990] developed different regression models.
This piecewise-regression pattern of the model is still clearly visible in the Reindl-Helbig

model. The diffuse fraction is not supposed to exceed a maximal value of unity, but this
is not the case. The model assumes that, for a low clearness index (overcast weather situ-
ation) the incoming radiation is entirely diffuse and then the ratio linearly decreases. For
a high clearness index (clear sky situation), the diffuse fraction is constant for clearness
indexes included in the interval. However, these two assumptions are too simple and, as
shown in Figure 4.7, a relevant number of data is not efficiently estimated by the model. In
particular, for high clearness index, the diffuse fraction is clearly not constant and presents
many higher values than those estimated.
In the intermediate interval (partly cloudy sky), the diffuse fraction decreases with an
increasing clearness index and depends on the solar elevation. This explains the band
structure. However, the model is underestimating the measurements. Furthermore, as il-
lustrated in Figure 4.8, the pattern of the model is the same for every location (Toravere
and von Neumayer Station, as examples), but measurements do not present this behavior.
This demonstrates that additional parameters have to be considered and that the diffuse
fraction is not only clearness index and solar elevation dependent. In the representation of
the diffuse fraction against the clearness index for clear days shown in Figure 4.6, it was
pointed out that the minimum of diffuse radiation has a different correspondent clearness
index depending on the location of the station. This is also visible in Figure 4.8, where von
Neumayer Station presents a higher minimal diffuse fraction than Toravere and a higher
corresponding clearness index. Nevertheless, the Reindl-Helbig model is not able to repro-
duce this behavior.

Scatter plots permit to have a better understanding of the performance of the model.
They are the representation of the estimated values against the observations. In an ideal
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Figure 4.7: Representation of the measured (in black) and estimated from Reindl-Helbig
(in red) diffuse fraction against the clearness index for Chasseral (NE).

case, all points would lay on a 1:1 line. A scatter plot was established for the data of every
station. As an example, Figure 4.9 illustrates the modeled against the measured diffuse
fraction for Altdorf (UR).

The coefficient of determination R2 corresponds to 0.7530, which can represent the val-
ues of the other Swiss stations, which are listed in Table E.1. BSRN stations have in average
a R2 10 % higher than Swiss stations. This could be attributed to the different procedure
to calculate the hourly integrated data (see Chapter 2).
In that table, the number of hourly data Nd is reported, and the percentage of well repre-
sented data Pd, as well. Generally, less than 50 % of the measured points are well estimated
by the model having a maximal absolute error of 10 %. 55.31 % of the measurements at
Cabauw are well represented by the model. At the opposite case, Izana has only 14.97 %”¿of
the measurements covered. An illustration of both stations is shown in Figure 4.10 and Fig-
ure 4.11.

The coefficient of efficiency is giving the goodness of the performance of a model. Sta-
tistical results for a selection of stations are listed in Table 4.2. The Dome C station has
a negative E (-2.6282), which means that the model is not appropriate to the estimation
of the points. The other Antarctic station, Neumayer Station, also has a low value of E
(-0.1732). A negative value is obtained for the Arctic station at the Summit (-0.6820). The
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Figure 4.8: Representation of the measured (in black) and estimated from Reindl-Helbig
(in red) diffuse fraction against the clearness index for Toravere (left) and von Neumayer
Station (right).

number of points covered by the model is poor and the MBE and MAE are more elevated
compared to the others.

Additionally, an investigation of the performance of the Reindl-Helbig model was made
in function of the clearness index. The data of all stations were separated in three intervals
(as chosen for the model), depending on the clearness index values and the results are
listed in Table 4.3. The intermediate interval contains the majority of the number of points
(about 60%). The choice of the fit, depending on the solar elevation, seems to be appropriate
because of an coefficient of efficiency E of 0.644. However, the enormous spread of data
results in a poor explanation of the points and elevated values of MBE and MAE. It can
be deduced that the choice of the solar elevation is appropriate, but should not be taken
as single explanatory parameter.
On the other hand, for low clearness indexes (kt ≤ 0.30), the majority of the data is
explained by the model within an error of ±10 %. However, the coefficient of determination
R2 is only 0.0730, which corresponds to a non-correlation between the modeled and observed
diffuse fractions. As already observed in the studied graphics above, in the last interval of
clearness indexes, for clear sky situations, the number of data explained is extremely poor
(14.44 %). Consequently, the choice of a constant diffuse fraction is inappropriate for clear
sky situations: other phenomena are contributing to the more elevated values of diffuse
fraction.

As support of the above mentioned explanation, Figure F.1 is showing the residuals for
the first two clearness index intervals.
The standardized residuals plotted against the standardized modeled diffuse fraction shows
that low and intermediate diffuse fraction values are overestimated and high values of dif-
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Station R2 E MAE MBE Pd Nd

Altdorf 0.7531478 0.7404422 0.12105326 0.04928409 42.129246 2414
Chasseral 0.7598021 0.6600968 0.13118180 0.09341299 32.940830 3397
Cabauw 0.8850711 0.8688919 0.07143916 0.04867081 55.313634 3858
Dome C 0.5653018 -2.6281581 0.11898770 0.09185393 21.090132 2807
Neumayer Station 0.7485279 -0.1731673 0.23317960 0.20953988 15.601266 3160
Toravere 0.9047302 0.8776950 0.07155062 0.02471932 56.541678 3707
Izana 0.8314110 0.7230235 0.08531861 0.04424831 14.968999 3387

Table 4.2: Table listing the statistical results for the Reindl-Helbig model for a station
selection: the coefficient of determination (R2), the coefficient of efficiency (E), the mean
absolute error (MAE), the mean bias error (MBE), the number of hourly integrated data
(Nd) and the percentage of relevant estimated data (Pd).

kt interval R2 E MAE MBE Nd Pd
kt ≤ 0.3 0.072966564 0.0695353 0.04854994 0.01903916 27710 90.71093
0.3 < kt ≤ 0.78 0.658582212 0.6445940 0.13125325 0.05973583 88152 22.94446
kt > 0.78 0.001373691 -0.2092628 0.09751887 0.01598817 20219 14.43692

Table 4.3: Statistical results of the performance of the Reindl-Helbig model for all stations,
for the three different clearness index-intervals.

fuse fraction are mainly underestimated. Furthermore, the histograms of the standardized
residuals show that they are not normally distributed for a low clearness index. A better
normal distribution is present in the intermediate interval.
For high clearness index, the modeled values are underestimating the observed diffuse frac-
tion and the residuals are not normally distributed. However, a standardized residual rep-
resentation was not possible because of the null standard deviation value obtained because
of the constant modeled value of diffuse fraction.

A summary of the statistical parameters for the Reindl-Helbig model is reported in
Table E.1.

4.2.2 Skartveit and Olseth

This model has also a piece-wise regression pattern. However, contrary to the Reindl-Helbig
model, a totally new variable is introduced: the variability index σ. This new parameter
considers the former and the latter time-period, in an attempt to detect the presence of
changing cloudiness.

A graphical representation of the estimated data overlaid on the measured data for
Chasseral (NE) is shown in Figure 4.12. A relative good fit is visible, especially for low
diffuse fraction values. For low clearness indexes, the global radiation is assumed to be
completely diffuse. For an increasing clearness index, the diffuse fraction is decreasing, but
it has a wider interval of possible values.

However, the model is generally underestimating the diffuse fraction and seems to be
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Figure 4.9: Scatter plot of the estimated values from Reindl-Helbig against the measured
values for Altdorf (UR). The red line represents the best fit. Its equation is shown with R2,
as well.

unable to account for multiple reflections, where the clearness index has intermediate values
and a high corresponding diffuse fraction.
Only by looking the graphics, the Skartveit and Olseth model has a great capacity to
reproduce the points for high clearness index, i.e. kt ≥ 0.8. However, it still presents some
limitations in the estimation of the minimal kd for every station. As an example, Figure
4.13 shows the data for Toravere. On the other hand, the data of the Georg von Neumayer
station, as illustrated in Figure 4.13, underestimated both the diffuse fraction minimum
and the corresponding clearness index.
The corresponding scatter plot of the modeled against the observed values of the diffuse
fraction for the data of Chasseral, illustrated in Figure 4.14, shows a good correlation
between the two variables. In fact, the R2 underlies the presence of a linear dependency. It
is worthy to note that the low diffuse fraction is visibly well estimated.

A summary of all statistic results are listed in Table E.2.
Furthermore, BSRN stations have again a higher R2 than Swiss stations. This could be due
to the more elevated number of points, because of the smaller interval of measure. However,
the number of data covered (with a 10 % of error) are oscillating between 4.06 % (Dome

39



Figure 4.10: For Cabauw, measured (in black) and estimated by Reindl-Helbig (in red)
diffuse fraction plotted against the clearness index, on the left. On the right, scatter plot of
the modeled against the measured diffuse fraction, with the best fit (red line). The equation
of the best fit and R2 are also shown.

Figure 4.11: For Izana, measured (in black) and estimated by Reindl-Helbig (in red) diffuse
fraction plotted against the clearness index, on the left. On the right, scatter plot of the
modeled against the measured diffuse fraction, with the best fit (red line). The equation of
the best fit and R2 are also shown.
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Figure 4.12: Representation of the observed (black) and estimated by Skartveit and Olseth
(red) diffuse fraction against the clearness index, for Chasseral (NE).

C) and 16.92 % (Tamanrasset) to 57.24 % (Torovere).
In general, the coefficient of determination R2 has elevated values, except for Dome C.
This reflects the negative coefficient of efficiency, which corresponds to -2.4589. The second
Antarctic station, Georg von Neumayer Station, has a negative E, as well.
The low performance of the model on the Antarctic data could be correlated to the low
solar elevation present at the two stations.
For this purpose, the performance of the Skartveit and Olseth model was studied for dif-
ferent solar elevations. The results summary is shown in Table F.1.
In Figure 4.15, the R2 and E are illustrated in function of the solar elevation. It can be
observed that both parameters are increasing for an increasing solar angle, which results in
an enhancement of the performance of the model. This supposition is confirmed by look-
ing to the MAE and the MBE illustrated in Figure 4.16, where they both decrease for an
increasing solar elevation. The Skarveit and Holseth model results in being a good choice
of model, especially for solar elevations greater than 30 ◦. Figure G.12 shows that the other
models have the same behavior.
This is nevertheless contradictory to the number of points covered (see Table F.1), which is
decreasing from 35.74 % (φ ≤ 10 ◦) to 31.23 % (85 ◦ < φ ≤ 90 ◦). The scatter plot for these
two extremes are illustrated in Figure 4.17 and show that for a high solar elevation, there is
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Figure 4.13: For Toravere, measured (black) and estimated by Skartveit and Olseth (red)
diffuse fraction plotted against the clearness index, on the left. On the right, for Georg von
Neumeyer station.

kt interval R2 E MAE MBE Nd Pd
kt ≤ 0.8 0.763717911 0.7938526 0.1027369 0.04782207 120908 37.863500
0.8 < kt ≤ 1.0 0.002208062 -0.7507364 0.1266305 0.01078300 14481 8.638906
kt > 1.0 0.017805841 -3.2627993 0.2731075 0.02286230 692 0.000000

Table 4.4: Statistical results of the performance of the BRL model for all stations, for three
different clearness index-intervals.

a low amount of data which is well modeled. In contradiction, for a low solar elevation, the
number of data is high and homogeneously distributed over all the graphic, which results
in a large number of good modeled data, but also a relevant number of poorly estimated
data, which produces a low value of R2.

4.2.3 BRL

The model developed by Boland, Ridley and Lauret is based on a logistic function, which
is characterizing the shape of the estimated data. As an example, Figure 4.18 is illustrating
the modeled diffuse fraction, for Chasseral (NE), against the clearness index. The estimated
diffuse fraction is ranging from 0 to 1, which corresponds to a good agreement in the fitting
for low and intermediate clearness indexes. As the other models, BRL supposes that for
overcast situations (low clearness index), the radiation is completely diffuse. However, for
a high clearness index, the model assumes that the diffuse radiation is completely disap-
pearing and the incoming radiation is entirely direct. This is, however, not reflecting the
observations, which show that after having reached a minimum point the diffuse radiation
is increasing again. To reinforce this supposition, Table 4.4 is showing the statistics for
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Figure 4.14: Scatter plot of the estimated diffuse fraction from Skartveit and Olseth vs.
the measured diffuse fraction for Chasseral (NE). The red line represents the best fit. Its
equation is shown with R2, as well.

low and intermediate clearness indexes, for a high clearness index and for a extremely high
clearness index. For a clearness index belonging to the first interval, the performance of the
model is good. The coefficient of efficiency is 0.7938. Whereas, it has a negative value for
the second and third interval, meaning that the model is not adequate for points belonging
to those intervals. Furthermore, for kt ≤ 0.8, 37.86 % of the points are covered by the model
with an error of ±10 %, in contrast to the 8.64 % for the other clearness index. Studies of
Boland and Ridley [2007], Boland et al. [2008] and Ridley et al. [2010] were not showing
this problem and were showing graphics with data belonging only to the first interval (low
and intermediate clearness index). It might be possible that their use of hourly data can-
celed data with an extremely high clearness index. In fact, also in this study the number of
points belonging to an extremely high clearness index represent 0.51 % of the total amount
of data, only.

The residual analysis for the two clearness index intervals is illustrated in Figure F.2.
In the case the error would be random, in the representations of the standardized

residuals against the standardized estimated diffuse fractions, the points would randomly
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Figure 4.15: Coefficient of determination R2 (black) and coefficient of efficiency E (red) of
Skartveit and Olseth for different solar elevations, for all stations.

be situated next to the horizontal line. However, this is clearly not the case for the data
of both clearness index intervals, as shown by the two graphics on the left of Figure F.2.
The residuals of both intervals are clearly not normally distributed, especially those for
an extremely high clearness index. The model overestimates the diffuse fraction for both
intervals, especially for high clearness indexes.
In addition, the correlation between the estimated and the observed diffuse fraction can
be visualized by a dispersion plot, as illustrated in Figure 4.19. This is for the station of
Chasseral (NE) and is based on 3 397 pairs of points. A linear correlation between the
estimated and the observed diffuse fraction is visible and reflected in a high coefficient of
determination, which corresponds to 0.7096. Furthermore, the coefficient of efficiency is
0.6904, which reflects a good choice of the model.
This correlation was investigated for all stations and can be seen in Table E.3. The results
for a selection of stations is reported in Table 4.6. In general, the model performs better on
BSRN stations. However, the worst results are given by Georg von Neumayer Station and
Concordia Station, both located in Antarctica. As already mentioned, there might be some
problems with the representation of radiation data, because of the local time calculation
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Figure 4.16: Mean Absolute Error (black) and Mean Bias Error (red) of Skartveit and
Olseth for different solar elevations, for all stations.
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Figure 4.17: Scatter plot of the estimated values from Skartveit and Olseth against the
observed diffuse fraction for a solar elevation smaller than 10 ◦ (left) and between 85 ◦ and
90 ◦ (right).

Hemisphere R2 E MAE Nd Pd
Northern 0.7555864 0.7705345 0.1060534 103087 35.18969
Southern 0.8000939 0.7657510 0.1064351 32994 29.34776
Northern (no Arctic) 0.7681762 0.7876107 0.1021697 100967 35.90282
Southern (no Antarctica) 0.8849301 0.8658314 0.0830090 27027 34.82813

Table 4.5: Statistical results of the performance of the BRL model for station of Southern
and Northern Hemisphere, respectively.

and low solar elevations.
The purpose of the development of this new category of models was based on the need

of models applicable to stations of the Southern Hemisphere. Table 4.5 lists the statistics
for data divided into the two hemispheres. Ridley et al. [2010] stated that the newly de-
veloped model was better performing in the Southern Hemisphere than in the Northern.
However, the model tested in this study is covering the 29.35 % of the Southern Hemi-
sphere data, against the 35.19 % of the Northern Hemisphere with a maximal error of
±10 %. Considering that the two Antarctic and the one Arctic stations are giving poor
performances of the model and eliminating the data of these two stations, the amount of
covered points increases to 34.83 % for the Southern Hemisphere, but still remains infe-
rior to the performance on Northern Hemisphere stations (35.90 %). On the other hand
the model performes qualitatively better on the Southern Hemisphere, for which stations
the coefficients of dermination and efficiency are more elevated than those for the other
Hemisphere.
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Figure 4.18: Representation of the observed diffuse radiation in function of the clearness
index, for Chasseral (NE). The estimated diffuse radiation from BRL is overlaid.

The analysis of the residuals confirms the above observations. Figure F.3 shows a non-
normality of the errors, especially for the Northern Hemisphere. Furthermore, the errors
are not randomly distributed.

4.2.4 Maxwell

Exponential models is a further approach, initially developed in the context of the DISC
project by Maxwell [1987]. As an example, Figure 4.20 shows, for the station Chasseral
(NE), the estimated diffuse fraction against the clearness index. An upper limit (set to 1)
of the diffuse fraction is set: it is assumed that for low clearness indexes the diffuse radiation
can not exceed the global radiation. Then, the diffuse fraction is decreasing for an increasing
clearness index. It reaches a minimum, which partly corresponds to the observation. For
extremely clear sky situations (high clearness index), the diffuse fraction is increasing again,
similarly to the observations. However, this model, as the others, is limited in the modeling
of high diffuse fraction for intermediate clearness indexes. Moreover, Chasseral does not
present a relevant amount of data with a clearness index exceeding the unity and the
model seems to be a good fit. The scatter plot of the estimated against the observed diffuse
fraction confirms these observations and is shown in Figure 4.21.
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Figure 4.19: Dispersion diagram between the diffuse fraction estimated by the BRL model
and the observed, for the station of Chasseral (NE). The line represents the best linear fit.
The equation of this fit and the coefficient of determination are illustrated, as well.

There is a correlation between the two variables, which is demonstrated by the coefficient
of determination R2 equal to 0.7495.

However, when stations present a large amount of data with a high clearness index,
the performance of that interval is limited. The statistical results for the Maxwell model
are represented in Table E.4 and it can be seen that in many stations the performance of
the model is poor. A selection of those stations is represented in Table 4.7, where a Swiss
station and three BSRN stations are listed.
The Mean Absolute Error of Buchs and Ilorin is double with respect to De Aar and

Toravere. Furthermore, the coefficient of determination and the coefficient of efficiency
would suggest a limited performance of the model on these data. The representations of
the observed and modeled data for Buchs (AG) and Ilorin (Nigeria) are shown in Figure
4.22. It can be seen that Buchs, similarly to the other Swiss stations, presents a large
number of data with an extremely high clearness index. Ilorin, instead, presents a large
number of data with an high value of diffuse fraction for intermediate clearness index.

For both stations, the minimum of diffuse fraction is well estimated, but, being an ex-
ponential function, for extremely high clearness indexes, the estimations strongly increase,
overestimating the observations. Such overestimation is also visible in the corresponding
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Station R2 E MAE MBE Pd Nd

Alice Springs 0.8810923 0.8566982 0.07197961 0.02994504 21.111678 3922
Comprovasco 0.6707144 0.7620895 0.10455593 0.03317614 34.805195 2695
Cabauw 0.8676571 0.8642308 0.07042890 0.03326044 59.020218 3858
Dome C 0.5235350 -2.7406773 0.18478684 0.10095282 2.137513 2807
Neumayer Station 0.7543687 0.1033020 0.23719585 0.19002296 6.645570 3160
Darwin 0.8754014 0.8358246 0.08755820 0.03309197 33.843910 4113

Table 4.6: Statistical results for the BRL model on a selection of stations.

Station R2 E MBE MAE Pd Nd

Buchs 0.61794373 0.57058849 0.14621858 0.06641948 41.058079 3478
Ilorin 0.49141223 0.06707967 0.12717591 0.06037992 37.055678 3179
Summit Station 0.37641493 -2.49301482 0.27466443 0.24026858 7.456347 2119
De Aar 0.90145686 0.87390448 0.07771343 0.03512430 32.202881 3332
Toravere 0.90078986 0.90007445 0.07082736 0.03344563 57.971405 3707

Table 4.7: Statistical results for the Maxwell model, for some stations.

scatter plots, which show a slight correlation between the modeled and the measured diffuse
fraction, except for high diffuse fractions.

The representation of the errors MAE and MBE in function of the clearness index
in Figure 4.23 reflects such a limitation. In fact, an error extremely high for extremely
high clearness indexes is visible. Moreover, the error at intermediate clearness indexes is
relatively high as well, as observed for the data of Ilorin. The error for overcast situations
is reflected on the high Mean Bias Error of some stations, as Table 4.7 shows.

In order to have a better overview of the model performance for high clearness indexes,
the model was applied to three clearness index intervals: low and intermediate kt, high kt
and extremely high kt. The statistical results are shown in Table 4.8. The Coefficient of
efficiency E is well representing the poorness of the model performance for high clearness
index values. In fact, it decreases reaching negative values for a high clearness index interval,
meaning that the model has limitations to represent those data.

The residuals are not normally distributed for either of the three intervals (see Figure
F.4).
The model developed by Maxwell has also some limitations for low solar elevations. In fact,
Figure 4.24 shows the R2 and E increasing with the increasing of the solar elevation. The
performance of the model increases with the solar elevation, reaching a constant value for

Interval R2 E MBE MAE Nd Pd
kt ≤ 0.80 0.76050177 0.73005472 0.1161381 0.04734667 120908 38.315910
0.80 < kt ≤ 1 0.13748537 -0.03350034 0.1049007 0.04049715 14481 11.870727
kt > 1 0.01695666 -7.60217890 0.4005152 0.38062133 692 3.468208

Table 4.8: Statistical results for the Maxwell model, for three clearness index intervals.
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Figure 4.20: Representation of the measured (in black) and estimated from Maxwell (in
red) against the clearness index for Chasseral (NE).

a solar elevation greater than 40 ◦, where the coefficient of efficiency E and the coefficient
of determination are about 0.85. For greater solar elevations, the model is not depending
on the solar elevation any more.

4.2.5 Perez

A correction matrix is applied to the diffuse fraction estimated by Maxwell, which results
are described in Section 4.2.4. It should be an improvement on the previous model. However,
the graphics in Figure 4.25 show a model which has limitations for a clearness index smaller
than 0.3.
Table 4.9 shows the statistics representing the performance of the model for three stations:
Chasseral, Andeer and Payerne. The coefficient of determination E clearly indicates that
the model is not adequate.

For this reason, an individual analysis and no comparison with the other models have
been made.
In order to have a better understanding on model of Perez, data from Payerne (a BSRN
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Figure 4.21: Scatter plot of the estimated values from Maxwell against the measured values
for Chasseral (NE). The best fit (red line), its equation and the coefficient of determination
are shown, as well.

station) are analyzed. In contrast to the other models, Perez seems not to have a solar
elevation dependency on this site, in terms of coefficient of determination R2. However, the
MAE is decreasing for an increasing solar elevation. The coefficient of determination R2 and
the MAE are represented in function of the solar altitude in Figure 4.26. Furthermore, the
MAE in function of the clearness index (Figure 4.27), after reaching a peak for a clearness
equivalent to 0.3, is then decreasing. This reflects the points in Figure 4.25 where kt < 0.4
and kd < 0.6.
Being the model a correction of the Maxwell one, it suggests that the correction matrix
used is inappropriate. Further investigations are necessary.

4.2.6 Dürr

This last model is based on a regression tree and the transmissivity q is the principal
parameter. The combination of the transmissivity and its behavior in the former 30-minutes
interval defines different weather situations, and , as a consequence, attributes a value to
the diffuse fraction.
Furthermore, the model requires station specific parameters. Dürr kindly provided those
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Figure 4.22: For the stations Buchs (top) and Ilorin (bottom), representation of the modeled
by Maxwell and observed diffuse fraction against the clearness index (left) and the estimated
against the observed diffuse fraction (right). The best fit (red line), its equation and the
coefficient of determination are shown, as well.
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Figure 4.23: Representation of the MBE (in black) and MAE (in green) in function of the
clearness index of the Maxwell model.

for Payerne, so that a graphical representation of the data for this station was possible.
Figure 4.28 represents the diffuse fraction against clearness index for 1-minute data from
Payerne on the 2nd May 2009. There is a good estimation for clear sky situations. On the
other hand, for a big variability of the transmissivity, the models is not able to correctly
estimate the diffuse fraction. In fact, it principally attributes to the diffuse fraction the
value of the previous period, which produces the horizontal lines visible in Figure 4.28.
Further investigations have, therefore, to be conducted.

4.3 Time resolution

The above comparison and analysis is based on hourly data. This time step is the most
frequently used. However, SNOWPACK and ALPINE 3D can run at shorter ones, 30 min-
utes as an example.

For this reason, an investigation of the performance of the models Reindl-Helbig, Skartveit
and Olseth, BRL and Maxwell was conducted on smaller time intervals. The analysis is
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Figure 4.24: Coefficient of determination R2 (black) and coefficient of efficiency E (red) in
function of solar elevation of Maxwell model.

Station R2 E MAE MBE Pd Nd

Chasseral 0.3150178 -0.96590792 0.2832100 0.2716697 15.69031 3397
Andeer 0.3288448 -0.05224847 0.2254009 0.1742493 20.90985 2396
Payerne 0.4260680 -0.31779856 0.2421085 0.2352026 22.90076 3144

Table 4.9: Table listing the statistical results for the Perez model for a station selection:
the coefficient of determination (R2), the coefficient of efficiency (E), the mean absolute
error (MAE), the mean bias error (MBE), the number of hourly integrated data (Nd) and
the percentage of relevant estimated data (Pd).
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Figure 4.25: For the stations Payerne (top) and Chasseral (bottom), representation of the
modeled by Perez (in red) and observed (in black) diffuse fraction against the clearness
index (left) and the estimated against the observed diffuse fraction (right). The best fit
(red line), its equation and the coefficient of determination are shown, as well.
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Figure 4.26: For Payerne, R2 (left) and MAE (right) in function of the solar elevation.

Model Nd Pd MBE MAE R2 E

Reindl*

1-min. 185338 49.51 0.0605 0.0989 0.8675 0.8164
10-min. 23826 46.98 0.0296 0.0982 0.8632 0.8376
30-min. 7960 47.32 0.0282 0.0945 0.8732 0.8481

hourly 4000 47.15 0.0271 0.0901 0.8840 0.8609

S&O

1-min. 185338 54.72 0.0573 0.0838 0.8663 0.9029
10 min. 23826 53.52 0.0217 0.0761 0.9129 0.8850
30 min. 7960 52.67 0.0222 0.0757 0.9160 0.8901

hourly 4000 53.22 0.0230 0.0737 0.9170 0.8952

BRL

1-min. 185338 51.77 0.0501 0.0929 0.8847 0.8485
10 min. 23826 48.01 0.0336 0.0942 0.8677 0.8590
30 min. 7960 49.45 0.0333 0.0898 0.8739 0.8681

hourly 4000 50.37 0.0327 0.0853 0.8817 0.8793

Maxwell

1-min. 185338 33.48 0.1029 1.1611 0.6698 0.6543
10 min. 23826 47.19 0.0221 0.0971 0.8746 0.8162
30 min. 7960 47.80 0.0209 0.0945 0.8792 0.8213

hourly 4000 36.62 0.0642 0.1392 0.6859 0.3854

Table 4.10: Statistical performance of the models Reindl-Helbig (Reindl*), Skartveit and
Olseth (S&O), BRL and Maxwell for different time intervals.
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Figure 4.27: For Payerne, MAE (lined) and MBE (dashed) against the clearness index.
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Figure 4.28: Diffuse fraction (in black) against the clearness index for Payerne on the 2nd

May 2009. The estimation of Dürr (in red) is shown, as well.
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Figure 4.29: For Payerne, MBE (left) and R2 (right) for different time steps for Reindl-
Helbig (in black), Skartveit & Olseth (in red), BRL (in blue) and Maxwell (in green).

done on data of Payerne at 1, 10, 30 and 60 minutes intervals. The statistical results are
reported in Table 4.10. It can be seen, that the error tends to increase as the time resolution
is smaller (see Figure 4.29) However, these variations are acceptable. The precision of the
model can be represented by the coefficient of determination and its evolution is shown in
Figure 4.29. However, more pronounced variations are present for Maxwell.

Similar results for Maxwell and Perez were observed by Ineichen on data from Geneva
[Ineichen, 2007].
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Chapter 5

Discussion

Some previous studies were testing models on data from different locations. Others were
verifying different models on a desired location. In this work, there is a need of an universal
model, which could be applicable to data from any location. For this reason, the work attend
a selection of the most relevant models, which were then applied on data from different
locations situated worldwide. With difference to previous studies the model comparison was
done on a dataset with several station conditions, as polar and alpine stations and stations
located in desert, on the ocean and on ice shelves, as well. The station selection is covering
latitudes ranging from −78.100 ◦ to 78.925 ◦, longitudes from −237.617 ◦ to 169.689 ◦ and
altitudes from 0 m to 3233 m.

5.1 Data representation

International network and weather institutions often offer weather and climatological data,
such as incoming shortwave radiation and surface air temperature. The dataset gathered for
this study is composed of 10-minute interval data from MeteoSchweiz (Swiss stations except
for Payerne), 1-minute interval data from the University of Colorado (Summit station) and
BSRN. In order to have an homogeneous dataset, measurements where averaged over one
hour, which is the time interval on which the models listed in Chapter 3 are based. An
adequate comparison with other studies can then be made. Furthermore, a data quality
control was applied before and after the average process. However, there is a clear difference
between the representations of Swiss and worldwide hourly integrated data. As an example,
Figure 5.1 shows the diffuse fraction against the clearness index for Bermuda and Andeer.
It can be observed that Andeer presents a large number of data with a high clearness index.
Data of Swiss stations had an additional control: only data with a solar elevation greater
than the horizon angle were considered, in order to eliminate data where the global radiation
is composed of diffuse radiation only.
Iqbal [1980] stated that there were no data for kt > 0.90. Later, Erbs et al. [1982] stated
that data in the interval kt ≥ 0.80 are not well understood to justify fitting a curve to them
[Helbig, 2009]. Knowing that BSRN and MeteoSchweiz are applying data quality controls
and have rigorous instrumental requirements [Lee, 2009], the presence of high and extremely
high clearness index data should be attributed to other causes. It could be thought that this
is due to the difference in the data averaging. In fact, for BSRN data, 60 1-minute measures
are averaged. Whereas, for Swiss data, only 6 10-minutes values build up the hourly mean.
As a consequence, the variation of the data is less for a longer time interval. This is further
discussed in Section 5.3 In addition, it is unknown whether the values reported by the two
institutions are averages or instantaneous values. This fact could affect the final average.
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Figure 5.1: Diffuse fraction against clearness index for Bermuda (left) and Andeer (right).

5.2 Model’s performance

Four models (Reindl-Helbig, Skartveit & Olseth, BRL and Maxwell) were compared and
their performance analyzed in function of different parameters and conditions.
At first sight, looking to Table 4.1, Skartveit and Olseth seem to have developed the best
model. The coefficient of determination corresponds to 0.8773 and the Mean Absolute Error
to 0.0386. However, the other models obtained a slightly poorer performance, so that a more
detailed analysis has to be conducted.

Clearness index

In order to visualize the data, the usual representation of the hourly diffuse fraction against
the hourly clearness index was applied. As shown in Figure 5.2, all four models present
limitations for intermediate and extremely high clearness index situations, where the MAE
and MBE have higher values. The intermediate values, where the MAE reaches a maximum
of about 0.3, corresponds to partly cloudy situations. The poor performance of all models
for this interval is due to the inability to reproduce broken clouds weather situations,
where the global radiation is principally composed of diffuse radiation (see Figure 5.3).
Solar radiation is reaching the ground and is then reflected by the surface and clouds.
Unfortunately, this behavior (represented schematically in Figure 5.4) is hard to reproduce.
In addition, models present a limitation for extremely high clearness index values. For these
values, the diffuse fraction reaches a minimal value and tends then to increase again. As
stated by Skartveit and Olseth [1998], direct radiation reaches a maximal value. For this
reason, in the case of extremely high clearness indexes, the direct radiation has reached
its maximal value and the additional radiation detected is completely diffuse. It could be
produced by the surroundings, as ice and snow surface, and clouds which are not obscuring
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Figure 5.2: MAE (solid line) and MBE (dashed line) against the clearness index, for Reindl-
Helbig (black), S&O (red), BRL (blue) and Maxwell (green).

the Sun [Miguel et al., 2001]. This lack in estimation of extremely high clearness index
data, is particularly visible in Figure 5.3. A logistic function tends to decrease to zero, but
it is not able to reproduce the real behavior of the data. Using a constant value, Reindl*
has also an inappropriate choice of fit for this last kt interval. S&O and Maxwell seem to
have a model reproducing this behavior best. However, Maxwell (having an exponential
function) tends to overestimate the diffuse fraction for the last clearness index interval,
which corresponds to a MAE value of 0.4, which is almost the double compared to the
other models (see Figure 5.2).

Solar elevation

Already in the 90’s, it was clear (i.e. Reindl et al. [1990], Skartveit and Olseth [1987]), that
the clearness index would not be the only significant predictor. Solar elevation has a great
influence on the composition of global radiation, as well.
In this study, only data with a solar elevation greater than 5 degrees were considered.
Instrumental imprecisions are present at low solar elevations, especially due to the cosine
response [Miguel et al., 2001].
As Figure 5.5 shows, models perform poorly for a solar elevation smaller than 30◦. It
corresponds to the limit set by Skartveit and Olseth [1987], who stated that, for partly
cloudy and clear skies, this solar elevation range has an enormous influence on the diffuse
fraction.

Furthermore, because of their geographical position, the solar elevation at the two sta-
tions located in Antarctica and at the one in Arctic is low all over the year. For instance,
the maximal solar angle in Georg von Neumayer Station is 42.79 ◦. At Dome C it reaches
38.30 ◦ and 40.85 ◦ at Summit Station. All models seem to not well estimate the data of
those three stations: the coefficient of efficiency has negative values, which corresponds to
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Figure 5.3: Hourly diffuse radiation against hourly clearness index for Chasseral (NE). The
estimation of BRL is also shown (in yellow). The red circles represent the main modeling
problems.

an inadequate model choice. In addition, Table 4.1 shows a clear improvement of the global
performance of the models, when the three stations are omitted from the study. These
results would then confirm the limitations of all models in the estimation of data for low
solar elevations.

Variability index

The clearness index kt is the measure of global radiation reaching the surface compared to
the extraterrestrial radiation. A low kt combined with a high diffuse fraction kd corresponds
to a overcast situation. Whereas a high kt with low kd indicates clear sky. For this reason,
an investigation on the time evolution of the clearness index could give more information
about the weather stability: a stable kt would correspond to an overcast or clear sky situa-
tion; on the other hand, an inconstant kt would show unstable cloud conditions, i.e. broken
clouds.
Some of the models analyzed in this study introduced a parameter trying to reproduce this
phenomena. Skartveit and Olseth introduced a variability index ω3, described by Equation
3.2, Perez a stability index ∆K ′t defined by Equation 3.31 and Equation B.9 is the defini-
tion of the persistence factor Ψ introduced in BRL. These three parameters compare the
clearness index at time t with those of the previous (t − 1) and following (t + 1) hour. A
small value corresponds to stable weather.
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Figure 5.4: Scheme representing a partly cloudy weather situation, where no direct radiation
is detected by the instrument (the triangle). However, solar radiation, after reaching the
surface, can be reflected and reaches the instrument after back-scattering by clouds.

In addition, BRL has the daily clearness index Kt (Equation 3.19) as parameter, in order
to consider daily variances.
In my opinion, it is essential to introduce a parameter reproducing better cloud conditions.
This could be a reason why the models of S&O and BRL generally perform better than
Reindl-Helbig and Maxwell.
However, these models are not appropriate for an operational use, i.e. estimation of diffuse
fraction in nowcasting mode, because it needs data of future time intervals or even of a
complete day. Reindl-Helbig and Maxwell would then be more adequate for this purpose.
The new method developed by Dürr would be even more adequate. In fact, his model has
the transmissivity (Equation 3.38) as principal parameter and considers its variation over
the previous 30-minutes interval, in terms of range and standard deviation.

Atmospheric composition

In Chapter 4.1, the difference in diffuse fraction during clear days was described in detail
for a selection of five stations. Figure 4.6 shows that the three polar stations have a similar
behavior, compared to Geneva and Alice Springs.
In Alice Springs, the atmosphere is clearer, dryer and has no relevant presence of pollution.
For these reasons, it has the lowest minimal diffuse fraction kd,min compared to the other
stations. Geneva is a polluted city, with consequently a high aerosol concentration in the at-
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Figure 5.5: The coefficient of determination R2 (lined) and the coefficient of efficiency
E (dashed) against the solar elevation for Reindl* (black), S&O (red), BRL (blue) and
Maxwell (green).

mosphere. Furthermore, the anthropogenic input of tropospheric sulfate, which attenuates
incoming radiation, is increasing [Balling and Idso, 1991].It is principally confined in the
Northern Hemisphere and could be the reason why kd,min of Summit Station is higher than
those of the Antarctic stations. Moreover, the polar atmosphere has a high concentration
of ice crystals, which may enhance multiple reflections between the icy surface and the at-
mosphere, and, as a consequence, a high kd,min. In addition, they present a higher maximal
clearness index kt,max, because of a clearer atmosphere and, consequently, less back scatter
or attenuation by atmospheric components.
As Gueymard [2005] stated, turbidity plays an important role under clear sky: it charac-
terizes the extinction effect of aerosols on solar radiation.
Aerosols are either from terrestrial or marine origin. The amount of dust is greater on
land than on water and greater in drier seasons. Rain reduces the number of particles, but
increases the size of those that remain. Therefore, turbidity remains unchanged after rain
[Iqbal, 1983]. Turbidity is an optical parameter of the atmosphere, related to horizontal
visibility [Iqbal, 1983].
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Figure 5.6: Mean Absolute Error (MAE) in function of the months for stations of the
Northern (left) and Southern Hemisphere (right) for Reindl-Helbig (black), S&O (red),
BRL (blue) and Maxwell (green).

In Figure 5.6, the variation of MAE through the months is represented: a clear seasonal
dependency is visible. There is an increased error during the spring. In fact, in winter the
atmosphere is clearer than in and the turbidity is then affected.

Skartveit and Olseth [1998] also shared the opinion that turbidity information would
have a potential of improving the performance of a diffuse fraction model.
Gonzalez and Calbo [1999] stated that the diffuse fraction depends on aerosols and water
vapor, by producing a variability on longer time periods. The Linke’s turbidity considers
the effect of aerosols and water vapor [Ineichen, 2007]. Perez includes this parameter in its
model as a constant. It should be considered for the development of a future model.

Returning to Figure 4.6, the three polar stations present a relatively high kd,min, because
of a permanently low solar elevation. At low solar elevations, the incoming radiation has
to cross a longer atmosphere column and consequently, a relevant portion of radiation is
forward scattered by the atmospheric particles. The air mass reflects the atmospheric col-
umn, which the incoming radiation crosses before reaching the surface. It is solar elevation
dependent and considers the effect of permanent gases.
This air mass is included in the DISC-(Maxwell) and Perez models. Dürr also included this
parameter, in the definition of the transmissivity (see Equation 3.38).

5.3 Temporal Resolution

Averaging 1-minute (or 10-minutes, for Meteo Schweiz stations) interval data to hourly
data, the extreme values disappear. Figure 5.7 illustrates the results on averaging 1-minute
interval data to 10-minutes, 30-minutes interval and finally hourly data for Payerne. It can
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Figure 5.7: Comparison of diffuse fraction against clearness index with 1-minute (black),
10-minutes (red), 30-minutes (green) and hourly interval data (blue).
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be observed that hourly data have less variability and do not present any clearness index
greater than 0.80. As a consequence, the hourly estimated data have a smaller error than
data for a smaller time interval. Table 4.10 summarizes the statistical results for models
applied on such data. For example, BRL has a MBE which increases from 0.0327 (hourly
data) to 0.0501 (1-minute interval data). However, the improvement is not that evident.
For instance, for the S&O, the coefficient of efficiency is decreasing from 0.9029 (1-minute
interval data) to 0.8952 (hourly data). These fluctuations are due to the length of the
integration path. In fact, an increased integration length tends to cancel the variability in
the data. In general, the models present satisfactory results even when applied to data with
shorter time steps. Skartveit and Olseth [1998] were having a poorer performance on 10-
minutes intervals data compared to hourly data. Furthermore, Boland et al. [2001] showed
that their model applied on 15-minutes interval data is performing as well as when applied
on hourly data. Ineichen [2007] obtained similar results as in this study while applying the
models of Perez and Maxwell to data with different time step lengths.

5.4 Universal model

The previous sections listed different reasons why the determination of a model applicable
to data from stations worldwide with different time steps is not trivial. Reindl-Helbig was
included in the analysis as being the model used nowadays in SNOWPACK and ALPINE
3D. However, it results to be inappropriate: it only considers the clearness index and the
solar altitude as parameters. Furthermore, this model is an improvement of four models
proposed by Reindl et al. [1990]. In addition, it assumes that the diffuse fraction is constant
for high clearness indexes, which is not reflecting the measured values.
The suitable model should consider cloud conditions variability, like S&O, BRL and Dürr
do. The first two models, however, are not appropriate for an operational use: clearness
indexes of future intervals are needed. Moreover, BRL uses a logistic function which is not
appropriate for high clearness indexes, because the diffuse fraction is not tending to zero
as the model would estimate.
The universal model should also include the air mass, as Maxwell, Perez and Dürr do. Being
based on an exponential function, Maxwell and Perez are inappropriate to estimate values
for high clearness indexes because modeling diffuse fractions, which values are physically
impossible.
Therefore the approach of Dürr seems to be the most suitable. However, 1-minute interval
data have to be at disposal. Furthermore, the need of station-specific parameters (to calcu-
late the transmissivity and albedo offsets) impedes an easy transportability of the model.
On the other hand, Perez should be an improvement of Maxwell, but it seems to have prob-
lems with the correction matrix. As a consequence, erroneous values are modeled. However,
the error should be located in the code, as previous analyses of the model were not pre-
senting this problem.
Finally, not every station is measuring atmospheric parameters (like relative humidity and
surface temperature) with a so short time interval as for solar radiation. An ideal model
should require as few parameters as possible.
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Chapter 6

Conclusions and Outlook

Different studies have been conducted to determine a correlation between the global incom-
ing radiation and its diffuse fraction. However, the findings of those studies are restricted
to local application. The present work has focused on the analysis and comparison of a
selection of four models: Reindl-Helbig [Helbig, 2009], Skartveit and Olseth [Skartveit and
Olseth, 1998], Boland-Ridley-Lauret [Ridley et al., 2010] and Maxwell [Maxwell, 1987]. The
models of Perez et al. [1990b] and Dürr [2004] were considered, as well.
An exaustive worldwide dataset of hourly integrated global and diffuse radiation data were
used to test the above models.
In general, the first four models are well estimating the measured diffuse fraction, with
exception to data from polar stations, where solar elevations are permanently low. In facts,
those models have limitations for solar elevations smaller than 30 ◦.
In addition, at intermediate clearness indexes, the models are unable to correctly estimate
high diffuse fractions. Radiation is reflected between the ground and clouds and it is dif-
ficult to reproduce this behavior. Overall, the model proposed by Skartveit and Olseth is
statistically performing the best. Furthermore, it is able to reproduce diffuse radiation for
a high clearness index, in contrast to the other compared models.
The models were tested for different time resolutions (1, 10, 30 and 60 minutes) on data
from Payerne. A larger dispersion of the diffuse fraction was visible for 1-minute data.
However, no relevant differences in terms of performance were detected.

Because of lack of time, it was, however, not possible to develop a new universal model.
It could be obtained by improving an existing model or by developing a completely new
one.
Clearness index, solar elevation are significant predictors. A variability index should be
included to account for the variability due to cloudiness. Air mass and turbidity would
describe the atmospheric composition.
Further investigations on Perez should be conducted. Furthermore, it would be advanta-
geous to apply the model of Dürr on 1-minute interval data and consequently average the
modeled values over one hour. His approach appears to be the most appropriate and should
be compared to the other results, at least for Payerne.
The introduction of albedo, as parameter, could be considered, as suggested by Skartveit
and Olseth [1998].
In addition, the performance of the existing models could be improved only by adapting
the indexes of variability used [Ineichen, 2007]. By the development of a complete new
model, the principal component analysis could be applied to determine the explanatory
parameters. Moreover, as Dürr seems to be the most adequate method, a regression tree
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could be applied to determine the new model.
To conclude, it would be suitable to work with a dataset covering a time interval longer
than one year.
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C. Fröhlich and J. Lean. The sun’s total irradiance: Cycles, trends and related climate
change uncertainties since 1976. Geophysical research letters, 25:4377–4380, 1998.

J.D. Garrison. A study of the division of global irradiance into direct and diffuse irradiance
at thirty three u.s. sites. Solar Energy, 35:341–351, 1985.

71

http://pda.88000.org/12_Sun_Position_During_The_Day.html
http://pda.88000.org/12_Sun_Position_During_The_Day.html
http://amsglossary.allenpress.com
http://webhelp.esri.com/arcgisdesktop/9.3/index.cfm?TopicName=Calculating%20solar%20radiation
http://webhelp.esri.com/arcgisdesktop/9.3/index.cfm?TopicName=Calculating%20solar%20radiation
http://www.bsrn.awi.de/fileadmin/user_upload/Home/Maps/BSRN-Station-Global.png
http://www.bsrn.awi.de/fileadmin/user_upload/Home/Maps/BSRN-Station-Global.png
http://www.slf.ch/ueber/organisation/schnee_permafrost/projekte/Measuring_and_modelling_spatial_variability_of_snowpack_stability/index_DE
http://www.slf.ch/ueber/organisation/schnee_permafrost/projekte/Measuring_and_modelling_spatial_variability_of_snowpack_stability/index_DE
http://www.slf.ch/ueber/organisation/schnee_permafrost/projekte/Measuring_and_modelling_spatial_variability_of_snowpack_stability/index_DE


J.A. Gonzalez and J. Calbo. Influence of the global radiation variability on the hourly
diffuse fraction correlations. Solar Energy, 65:119–131, 1999.

C.A. Gueymard. Importance of atmospheric turbidity and associated uncertainties in solar
radiation and luminous efficacy modelling. Energy, 30:16031621, 2005. doi: doi:10.1016/
j.energy.2004.04.040.

N. Helbig. Aplication of the radiosity approach to the radiation balance in complex terrain.
PhD thesis, University Zurich, 2009.

N. Helbig, H. Löwe, and M. Lehning. Radiosity approach for the shortwave surface radiation
balance in complex terrain. 2009.

Faculty of Geology Illinois Central College. Sun radiation and heating of the atmosphere.
”http://faculty.icc.edu/easc111lab/labs/labi/prelab_i.html”.

P. Ineichen. Comparision and validation of three global-to-beam irradiance models against
ground measurements. 2007.

M. Iqbal. Prediction of hourly diffuse solar radiation from measured hourly global solar
radiation on a horizontal surface. Solar Energy, 24:491–03, 1980.

M. Iqbal. An introduction to solar radiation. Academic Press, 1983.

C.P. Jacovides, F.S. Tymvios, V.D. Assimakopoulos, and N.A. Kaltsounides. Comparative
study of various correlations in estimating hourly diffuse fraction of global solar radiation.
Renewable Energy, 31:2492–2504, 2006.
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Appendix A

Stations details

Figure A.1: Graphical illustration of the Swiss stations.
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Figure A.2: World map with BSRN stations (red points). The black points represents the
selected stations BSRN [2010].
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Appendix B

Astronomical equations and radiation
definitions

Being the principal source of energy for the Earth, the Sun is crucial for the life on Earth.
Its radiation is an important component for the global energy balance which drives the
weather and climate systems.
Knowing the exact position of the Sun, the maximal exploitation of its incoming radiation
can be achieved. This is, for example, important for the positioning of photovoltaic and
thermal panels.

In this chapter we provide a brief summary of the principal astronomical equations that
are necessary to describe the solar positions and the different types of radiation.

B.1 The solar position

The Earth is rotating around the Sun with a frequency of one day. The position of the Sun
is varying as illustrated in Figure B.1.

Figure B.1: Solar postions during a day [sun, 2010]

Furthermore, for a fixed day time, the apparent sun position is also changing in the
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course of the year. For this reason, astronomical relationships have to be determined in
order to compute the position of the Sun during the entire year.

Equation of time

The solar day is defined as the time that is needed by the Sun to achieve a complete tour
of the Earth [Iqbal, 1983]. This does not necessarily correspond to 24 hours and it varies
from year to year. Figure B.2 illustrates how the relative Sun position is moving across the
sky: pictures of the Sun taken by an immobile photographer at the same time of the day
have been superimposed. It can be seen that after one whole year of observations, the Sun
is computing a eight-shape circuit.

Figure B.2: Analemma [Tingilinde, 2010]

The principal causes of this phenomena are the elliptical shape of the terrestrial orbit
around the Sun and the tilt of the Earth in relation to the plane of its orbit.
As a consequence, at 12 noon the Sun does not have the same position in the different
months. The curve is described by the so called equation of time Et and can reach up
to 16 minutes approximately [Helbig, 2009]. The following formula has been developed by
Spencer [1971] and then truncated by Iqbal [1983] [Helbig, 2009]:

Et = 229.18(0.000075 + 0.01868 cos Γ

− 0.032077 sin Γ− 0.014615 cos 2Γ− 0.04089sin2Γ) (B.1)

where Γ is the day angle between the radius vector and the radius vector on 1st of
January in the ecliptic plane [Iqbal, 1983].
Assuming a circular orbit, the day angle can be defined as:

Γ =
2π(dn − 1)

365.2425
(B.2)
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where dn is the day number: 1 for 1st of January and 365 for 31st of December.
Moreover, the mean year length of 365.2425 days of the Gregorian calendar, replacing 365,
was introduced in Spencer’s formula (Spencer [1971] and Helbig [2009]).
The coefficient of Equation B.1 converts the expression from radians to minutes [Iqbal,
1983]:

229.18 = 24 · 60

2 · π
.

Apparent solar time

Data such as wind speed and temperature are often recorded in terms of local time, whereas
the solar radiation data is recorded in terms of apparent solar time, also named true solar
time. In fact, it is necessary to have data recorded at the same period of time in order to
compute the angle of incidence of solar radiation.
For this reason, in addition to the equation of time (Equation B.1), a longitude correction
Lcorr is needed [Iqbal, 1983]:

Lcorr = 4(Lloc − Lst) (B.3)

where Lloc is the local longitude and Lst is the standard longitude, defined as:

Lst = 15

⌊
Lloc
15
± 0.5

⌋
”‘+”’ applies to positive (east direction) and ”‘-”’ to negative (west direction) Lloc.
In Equation B.3, a correction factor of 4 minutes for every degree is applied. It corresponds
to the time needed by the Sun to cross 1◦ degree of longitude and is positive if the local
meridian is East of the standard and is negative West of the standard meridian.
As a result, the standard time is usually converted in local apparent time tloc, affected by
these two corrections:

tloc = tmean + Et

= tsd + Lcorr + Et

= tsd + 4(Lst − Lloc) + Et (B.4)

where tmean and tsd are the local mean time and the local standard time, respectively. It is
important to note that the summer time is not accounted for [Helbig, 2009].

Hour angle

At apparent solar noon, the Sun crosses the meridian. The angular displacement of the
Sun East or West of this local meridian is named the hour angle ω. In other words, it
corresponds to the angle measured at the celestial pole between the observer’s meridian
and the solar meridian and it varies by 15 ◦ every hour (Iqbal [1983],Helbig [2009]):

ω = 15 ∗ (12− tloc) (B.5)

The hour angle is zero at noon, positive before solar noon and negative afterwards.
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Solar declination angle

The Sun has a diurnal variation of the incident radiation, which is due because of the
rotation of the Earth around its axis. Furthermore, it has a seasonal variation, which is
attributed to the rotation of the Earth around the Sun Helbig [2009]. This rotation is coun-
terclockwise and the plane of the Equator is inclined of approximately 23.5 ◦ with respect
to the equatorial plane. An ecliptic plane is the plane of revolution of the Earth around the
Sun and the axis around which the earth rotates is named polar axis. The angle between
the two remains unchanged [Iqbal, 1983].
The position of the Sun during its variations is described by two coordinates: the hour
angle ω (Equation B.5) and the solar declination angle δ. They constitute the equatorial
system. The solar declination angle is the angle between a line joining the centers of the
Sun and the Earth to the equatorial plane. It has a daily variation and, in the Northern
Hemisphere, its maximum is equivalent to +23.45 ◦ at the summer solstice and its minimum
to −23.45 ◦ at the winter solstice. The angle is zero at the spring and the autumn equinoxes
(Bourges [1985], Helbig [2009]), where the equinox is defined as either of the two points of
intersection of the Sun’s apparent annual path and the plane of the earth’s equator, that
is, a point of intersection of the ecliptic and the celestial equator AMS [2010]. The spring
equinox (called also vernal equinox) occurs approximately on 21st March. The dates of the
equinoxes slightly change every year and the four season cited are referred to the Northern
Hemisphere. For the Southern Hemisphere, they have to be reversed.
Spencer [1971] proposed a formula, which presents maximum of error of 0.0006 rad. Then,
Bourges [1985] introduced a new formula (in radian) that reduced the error of Spencer to
0.0003 rad:

δ = (0.3723 + 23.2567 sin Γne − 0.758 cos Γne

+ 0.1149 sin 2Γne + 0.3656 cos 2Γne

− 0.1712sin3Γne + 0.0201cos3Γne)π/180 (B.6)

where Γne is the day angle in radians relative to spring equinox time, defined similarly to
Equation B.2. It is relative to the day number dne of the year at noon:

dne = dn − 0.5− n0, (B.7)

where 0.5 is subtracted to return to noon. If dne is negative, 365.2425 is added.
The spring equinox time is expressed in days departing from the beginning of the year y
[Bourges, 1985]:

n0 = 78.801 + 0.2422(y − 1969)− b0.25 ∗ (y − 1969)c . (B.8)

For the period 2000-2050, Helbig [2009] developed a new formula where the first term is
recalculated and corresponds to 9.3542. It starts at 1st January 2000 with the spring equinox
day on 20 March 2000 at 8:30 UTC+1.
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Solar azimuth

The apparent position of the Sun in the sky for a given location and for a given time is
determined by the solar azimuth and the solar zenith angle [Oke, 1978]. Solar azimuth
Ψ is the first Sun coordinate and is defined as the angle between the projection of the
Sun-Earth vector and the true north projection on the horizontal plane of the observer’s
horizon:

cos Ψ = (sin δ cosφ− cos δ sinφ cosω)/ sin θz (B.9)

where φ is the latitude and θz the solar zenith angle.
It is anticlockwise from South and clockwise from North and is positive in the East direc-
tion and negative in the West direction. It varies between 0 ◦ and 180 ◦ [Iqbal, 1983].
The solar zenith θz is the angle of an observer on the earth’s surface corresponding to the
celestial sphere. The opposite point is called nadir.
It is also called zenith distance, is comprised between 0 ◦ and 90 ◦ and it can be defined as
a trigonometric relationship [Iqbal, 1983]:

cos θz = sin δ sinφ+ cos δ cos δ cosω

⇐⇒ θz = arccos(sin δ sinφ+ cos δ cos δ cosω)

In this case, the mean solar time is exceeding twelve, therefore the azimuth angle needs to
be subtracted from 2π.

B.2 Solar radiation

Essential energy is provided to the Earth by the Sun in the form of radiation. It is necessary
for the life on the Earth. For example, it is the principal constituent of photosynthesis.

Radiation describes the process by which the energy is transmitted through the medium
by photons. Photons have similar properties as particles and waves. The oscillations can be
considered as waves traveling with a wavelength λ. Furthermore, radiation is able to travel
in vacuum and moves at the speed of light (3 · 108m/s).
All bodies possessing energy are emitting radiation. For instance, the Sun emits radiation
with wavelengths from 0.15 µm (ultra-violet) to 3.0 µm (near infra-red) mostly, whereas
the Earth-Atmosphere system emits radiations ranging from 3.0 µm to 100 µm (see Figure
B.3). For this reason, radiations in the range 0.15-3.0 µm are designed as short-wave or
solar radiation, and radiation in the range 3.0-100 µm are named long-wave radiation [Oke,
1978].

Extraterrestrial radiation

The quantity of short-wave radiation entering the atmosphere is called extraterrestrial radi-
ation ( or top of the atmosphere radiation) I0. It is a calculated diurnal value and is defined
as follows [Oke, 1978]:

I0 = E0 · ISC (B.10)
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Figure B.3: Short-wave and long-wave radiation spectrum Illinois Central College

where E0 is the Eccentricity correction and TSI the solar constant. The extraterrestrial
value used is changing with latitude and time of year [Boland et al., 2001].

Often called the solar constant (SOLCON), the Total Solar Irradiance ISC is defined
as rate of incident solar energy at all wavelengths on an unita area, which is normally
exposed to rays at one astronomical distance [Iqbal, 1983] (1.496 · 1011 m). This measure is
not completely constant. From space measurements, small temporal fluctuations have been
observed (because of solar variability fluctuations) and its average value is 1366.1W/m−2

(Fröhlich and Lean [1998],Fröhlich [2006], Helbig [2009]), which is used in this study.
As already mentioned, the Earth has an elliptical orbit and its distance from the Sun is
varying. Furthermore, the Sun has a highly variable temperature and energy emission. In
addition, sunspots have live cycles of about 11 years . With other solar activities (such as
solar flares), it produces variations in the solar spectrum distribution. These phenomena
are affecting the TSI, which is then varying and a correction to the eccentricity is needed.
Therefore, an eccentricity correction factor E0 is applied [Helbig, 2009]; Spencer (with a
maximum error of 0.0001) developed an expression for the eccentricity; it is dimensionless
and represents the orbital diurnal changes:

E0 = (
r0

r
)2

= 1.00011 + 0.034221 cos Γ + 0.00128 sin Γ + 0.000719 cos 2Γ + 0.000077 sin 2Γ (B.11)

In general, the distance r is expressed by a Fourier series with a number of coefficients. r0

corresponds to the mean distance between the Sun and the Earth.

Solar radiation and processes

As solar radiation enters the atmosphere, it is either absorbed or scattered by particles in the
atmosphere (Figure B.5). These interactions are produced by clouds, water vapor, aerosols
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Figure B.4: Spectrum of transmission and scattering of shortwave radiation by different
trace gases Rohde [2010].

(as salt crystals and dust particles) and other constituents of the atmosphere. Aerosols
are defined as suspensions of liquid or solid particles in the air. Their diameter range from
10−4 µm to 10 µm. They can either absorb or scatter radiation and, as a consequence, alter
the Earth energy balance. Aerosols also play a crucial role in the cloud formation process
and precipitation, where water vapor molecules are coagulating to tiny drops. In fact, they
also serve as condensation and freezing nuclei Kämpfer [2009].

Absorption Solar radiation can be absorbed by atmospheric gases (as O3) and aerosols.
This absorption yield to oscillations in the spectral radiation curve. Figure B.4 represents
the spectrum of shortwave absorption and scattering by gases, as water vapor and methane.
Atmospheric gases, as water vapor (H2O), ozone (O3) and carbon dioxide (CO2), have
the most important impacts on the solar spectra. Aerosols causes a intensity reduction
dependent on the path length through the atmosphere that the solar radiation has to
accomplish.

This phenomena affects the portion of extraterrestrial radiation reaching the surface
and is described by the clearness index kt.
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Scattering In addition to the absorption, light can be also scattered by air molecules,
cloud droplets and aerosols. A fraction of the scattered beam reaches the ground surface in
the form of diffuse radiation.
The amount of radiation reaching the ground depends on the thickness of the atmosphere
that it had to cross. Such a thickness is determined by the elevation of the Sun. In fact, when
the Sun is at the zenith, the path that the radiation has to cover through the atmosphere
is minimal and maximal at the horizon.
Diffuse radiation can be defined as the short wavelength radiation coming from all

Figure B.5: Composition of the solar radiation reaching the terrestrial surfaceArcGis [2010]

parts of the sky [Liu and Jordan, 1960]. It is reflected and scattered and includes multiple
reflections between the atmosphere and the surface. Clouds are one of the principal factors
responsible for diffuse radiation.
There are two main types of scattering (Figure B.6b): the Rayleigh scattering and the
Mie scattering. The first one is elastic scattering of light by particles, such as atoms and
molecules, whose diameter d is much smaller than the light wavelength λ. Its intensity I
is wavelength dependent (I ∝ λ−4) and is equal for forward and backward scattering. The
minimum of its intensity is at 90 ◦ of its line of incidence. It explains the blue sky and the
red sunsets and sunrises. On the other hand, the Mie scattering is caused by particles, such
as dust, pollen and smoke, whose diameter has the same magnitude as the incident light
radiation. It often occurs in the lower portion of the atmosphere, where larger particles are
more abundant, and is mainly in the forward direction. In a clean and dry atmosphere,
half of the radiation is scattered back to the space and the other half reaches the surface as
diffuse radiation. With more dust in the atmosphere, more scattered radiation reaches the
surface because of a forward direction scattering. For this reason, there is a big portion that
appears to be from a small annular area around the solar disk: circumsolar radiation. The
diffuse radiation generated by the primary scattering is dominant. Ozone absorbs in the
ultraviolet, visible and infrared light. The attenuation is very strong in the far-ultraviolet
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(a) Mie (b) Rayleigh

Figure B.6: Mie and Rayleigh scattering Willis [2010]

region [Iqbal, 1983]. The amount of radiation reaching the surface without any scattering
or reflection is defined as direct radiation. The global radiation is the sum of the two
components, diffuse and direct.

The diffuse fraction kd is affected by the scattering, as it represents the fraction of diffuse
radiation compared to the global radiation reaching a location.
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Appendix C

Look-up tables for Perez model

1 0.385230 0.385230 0.385230 0.462880 0.317440
2 0.338390 0.338390 0.221270 0.316730 0.503650
3 0.235680 0.235680 0.241280 0.157830 0.269440
4 0.830130 0.830130 0.171970 0.841070 0.457370
5 0.548010 0.548010 0.478000 0.966880 1.036370
6 0.548010 0.548010 1.000000 3.012370 1.976540
7 0.582690 0.582690 0.229720 0.892710 0.569950
1 0.131280 0.131280 0.385460 0.511070 0.127940

2 0.223710 0.223710 0.193560 0.304560 0.193940
3 0.229970 0.229970 0.275020 0.312730 0.244610
4 0.090100 0.184580 0.260500 0.687480 0.579440
5 0.131530 0.131530 0.370190 1.380350 1.052270
6 1.116250 1.116250 0.928030 3.525490 2.316920
7 0.090100 0.237000 0.300040 0.812470 0.664970
1 0.587510 0.130000 0.400000 0.537210 0.832490

2 0.306210 0.129830 0.204460 0.500000 0.681640
3 0.224020 0.260620 0.334080 0.501040 0.350470
4 0.421540 0.753970 0.750660 3.706840 0.983790
5 0.706680 0.373530 1.245670 0.864860 1.992630
6 4.864400 0.117390 0.265180 0.359180 3.310820
7 0.392080 0.493290 0.651560 1.932780 0.898730
1 0.126970 0.126970 0.126970 0.126970 0.126970

2 0.810820 0.810820 0.810820 0.810820 0.810820
3 3.241680 2.500000 2.291440 2.291440 2.291440
4 4.000000 3.000000 2.000000 0.975430 1.965570
5 12.494170 12.494170 8.000000 5.083520 8.792390
6 21.744240 21.744240 21.744240 21.744240 21.744240
7 3.241680 12.494170 1.620760 1.375250 2.331620

Continued on Next Page. . .
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1 0.126970 0.126970 0.126970 0.126970 0.126970

2 0.810820 0.810820 0.810820 0.810820 0.810820
3 3.241680 2.500000 2.291440 2.291440 2.291440
4 4.000000 3.000000 2.000000 0.975430 1.965570
5 12.494170 12.494170 8.000000 5.083520 8.792390
6 21.744240 21.744240 21.744240 21.744240 21.744240
7 3.241680 12.494170 1.620760 1.375250 2.331620
1 0.126970 0.126970 0.126970 0.126970 0.126970

2 0.810820 0.810820 0.810820 0.810820 0.810820
3 3.241680 2.500000 2.291440 2.291440 2.291440
4 4.000000 3.000000 2.000000 0.975430 1.965570
5 12.494170 12.494170 8.000000 5.083520 8.792390
6 21.744240 21.744240 21.744240 21.744240 21.744240
7 3.241680 12.494170 1.620760 1.375250 2.331620
1 0.337440 0.337440 0.969110 1.097190 1.116080

2 0.337440 0.337440 0.969110 1.116030 0.623900
3 0.337440 0.337440 1.530590 1.024420 0.908480
4 0.584040 0.584040 0.847250 0.914940 1.289300
5 0.337440 0.337440 0.310240 1.435020 1.852830
6 0.337440 0.337440 1.015010 1.097190 2.117230
7 0.337440 0.337440 0.969110 1.145730 1.476400
1 0.300000 0.300000 0.700000 1.100000 0.796940

2 0.219870 0.219870 0.526530 0.809610 0.649300
3 0.386650 0.386650 0.119320 0.576120 0.685460
4 0.746730 0.399830 0.470970 0.986530 0.785370
5 0.575420 0.936700 1.649200 1.495840 1.335590
6 1.319670 4.002570 1.276390 2.644550 2.518670
7 0.665190 0.678910 1.012360 1.199940 0.986580
1 0.378870 0.974060 0.500000 0.491880 0.665290

2 0.105210 0.263470 0.407040 0.553460 0.582590
3 0.312900 0.345240 1.144180 0.854790 0.612280
4 0.119070 0.365120 0.560520 0.793720 0.802600
5 0.781610 0.837390 1.270420 1.537980 1.292950
6 1.152290 1.152290 1.492080 1.245370 2.177100
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7 0.424660 0.529550 0.966910 1.033460 0.958730
1 0.310590 0.714410 0.252450 0.500000 0.607600

2 0.975190 0.363420 0.500000 0.400000 0.502800
3 0.175580 0.196250 0.476360 1.072470 0.490510
4 0.719280 0.698620 0.657770 1.190840 0.681110
5 0.426240 1.464840 0.678550 1.157730 0.978430
6 2.501120 1.789130 1.387090 2.394180 2.394180
7 0.491640 0.677610 0.685610 1.082400 0.735410
1 0.597000 0.500000 0.300000 0.310050 0.413510

2 0.314790 0.336310 0.400000 0.400000 0.442460
3 0.166510 0.460440 0.552570 1.000000 0.461610
4 0.401020 0.559110 0.403630 1.016710 0.671490
5 0.400360 0.750830 0.842640 1.802600 1.023830
6 3.315300 1.510380 2.443650 1.638820 2.133990
7 0.530790 0.745850 0.693050 1.458040 0.804500
1 0.597000 0.500000 0.300000 0.310050 0.800920

2 0.314790 0.336310 0.400000 0.400000 0.237040
3 0.166510 0.460440 0.552570 1.000000 0.581990
4 0.401020 0.559110 0.403630 1.016710 0.898570
5 0.400360 0.750830 0.842640 1.802600 3.400390
6 3.315300 1.510380 2.443650 1.638820 2.508780
7 0.204340 1.157740 2.003080 2.622080 1.409380
1 1.242210 1.242210 1.242210 1.242210 1.242210

2 0.056980 0.056980 0.656990 0.656990 0.925160
3 0.089090 0.089090 1.040430 1.232480 1.205300
4 1.053850 1.053850 1.399690 1.084640 1.233340
5 1.151540 1.151540 1.118290 1.531640 1.411840
6 1.494980 1.494980 1.700000 1.800810 1.671600
7 1.018450 1.018450 1.153600 1.321890 1.294670
1 0.700000 0.700000 1.023460 0.700000 0.945830

2 0.886300 0.886300 1.333620 0.800000 1.066620
3 0.902180 0.902180 0.954330 1.126690 1.097310
4 1.095300 1.075060 1.176490 1.139470 1.096110
5 1.201660 1.201660 1.438200 1.256280 1.198060
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6 1.525850 1.525850 1.869160 1.985410 1.911590
7 1.288220 1.082810 1.286370 1.166170 1.119330
1 0.600000 1.029910 0.859890 0.550000 0.813600

2 0.604450 1.029910 0.859890 0.656700 0.928840
3 0.455850 0.750580 0.804930 0.823000 0.911000
4 0.526580 0.932310 0.908620 0.983520 0.988090
5 1.036110 1.100690 0.848380 1.035270 1.042380
6 1.048440 1.652720 0.900000 2.350410 1.082950
7 0.817410 0.976160 0.861300 0.974780 1.004580
1 0.782110 0.564280 0.600000 0.600000 0.665740

2 0.894480 0.680730 0.541990 0.800000 0.669140
3 0.487460 0.818950 0.841830 0.872540 0.709040
4 0.709310 0.872780 0.908480 0.953290 0.844350
5 0.863920 0.947770 0.876220 1.078750 0.936910
6 1.280350 0.866720 0.769790 1.078750 0.975130
7 0.725420 0.869970 0.868810 0.951190 0.829220
1 0.791750 0.654040 0.483170 0.409000 0.597180

2 0.566140 0.948990 0.971820 0.653570 0.718550
3 0.648710 0.637730 0.870510 0.860600 0.694300
4 0.637630 0.767610 0.925670 0.990310 0.847670
5 0.736380 0.946060 1.117590 1.029340 0.947020
6 1.180970 0.850000 1.050000 0.950000 0.888580
7 0.700560 0.801440 0.961970 0.906140 0.823880
1 0.500000 0.500000 0.586770 0.470550 0.629790

2 0.500000 0.500000 1.056220 1.260140 0.658140
3 0.500000 0.500000 0.631830 0.842620 0.582780
4 0.554710 0.734730 0.985820 0.915640 0.898260
5 0.712510 1.205990 0.909510 1.078260 0.885610
6 1.899260 1.559710 1.000000 1.150000 1.120390
7 0.653880 0.793120 0.903320 0.944070 0.796130
1 1.000000 1.000000 1.050000 1.170380 1.178090

2 0.960580 0.960580 1.059530 1.179030 1.131690
3 0.871470 0.871470 0.995860 1.141910 1.114600
4 1.201590 1.201590 0.993610 1.109380 1.126320
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5 1.065010 1.065010 0.828660 0.939970 1.017930
6 1.065010 1.065010 0.623690 1.119620 1.132260
7 1.071570 1.071570 0.958070 1.114130 1.127110
1 0.950000 0.973390 0.852520 1.092200 1.096590

2 0.804120 0.913870 0.980990 1.094580 1.042420
3 0.737540 0.935970 0.999940 1.056490 1.050060
4 1.032980 1.034540 0.968460 1.032080 1.015780
5 0.900000 0.977210 0.945960 1.008840 0.969960
6 0.600000 0.750000 0.750000 0.844710 0.899100
7 0.926800 0.965030 0.968520 1.044910 1.032310
1 0.850000 1.029710 0.961100 1.055670 1.009700

2 0.818530 0.960010 0.996450 1.081970 1.036470
3 0.765380 0.953500 0.948260 1.052110 1.000140
4 0.775610 0.909610 0.927800 0.987800 0.952100
5 1.000990 0.881880 0.875950 0.949100 0.893690
6 0.902370 0.875960 0.807990 0.942410 0.917920
7 0.856580 0.928270 0.946820 1.032260 0.972990
1 0.750000 0.857930 0.983800 1.056540 0.980240

2 0.750000 0.987010 1.013730 1.133780 1.038250
3 0.800000 0.947380 1.012380 1.091270 0.999840
4 0.800000 0.914550 0.908570 0.999190 0.915230
5 0.778540 0.800590 0.799070 0.902180 0.851560
6 0.680190 0.317410 0.507680 0.388910 0.646710
7 0.794920 0.912780 0.960830 1.057110 0.947950
1 0.750000 0.833890 0.867530 1.059890 0.932840

2 0.979700 0.971470 0.995510 1.068490 1.030150
3 0.858850 0.987920 1.043220 1.108700 1.044900
4 0.802400 0.955110 0.911660 1.045070 0.944470
5 0.884890 0.766210 0.885390 0.859070 0.818190
6 0.615680 0.700000 0.850000 0.624620 0.669300
7 0.835570 0.946150 0.977090 1.049350 0.979970
1 0.689220 0.809600 0.900000 0.789500 0.853990

2 0.854660 0.852840 0.938200 0.923110 0.955010
3 0.938600 0.932980 1.010390 1.043950 1.041640
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4 0.843620 0.981300 0.951590 0.946100 0.966330
5 0.694740 0.814690 0.572650 0.400000 0.726830
6 0.211370 0.671780 0.416340 0.297290 0.498050
7 0.843540 0.882330 0.911760 0.898420 0.960210
1 1.054880 1.075210 1.068460 1.153370 1.069220

2 1.000000 1.062220 1.013470 1.088170 1.046200
3 0.885090 0.993530 0.942590 1.054990 1.012740
4 0.920000 0.950000 0.978720 1.020280 0.984440
5 0.850000 0.908500 0.839940 0.985570 0.962180
6 0.800000 0.800000 0.810080 0.950000 0.961550
7 1.038590 1.063200 1.034440 1.112780 1.037800
1 1.017610 1.028360 1.058960 1.133180 1.045620

2 0.920000 0.998970 1.033590 1.089030 1.022060
3 0.912370 0.949930 0.979770 1.020420 0.981770
4 0.847160 0.935300 0.930540 0.955050 0.946560
5 0.880260 0.867110 0.874130 0.972650 0.883420
6 0.627150 0.627150 0.700000 0.774070 0.845130
7 0.973700 1.006240 1.026190 1.071960 1.017240
1 1.028710 1.017570 1.025900 1.081790 1.024240

2 0.924980 0.985500 1.014100 1.092210 0.999610
3 0.828570 0.934920 0.994950 1.024590 0.949710
4 0.900810 0.901330 0.928830 0.979570 0.913100
5 0.761030 0.845150 0.805360 0.936790 0.853460
6 0.626400 0.546750 0.730500 0.850000 0.689050
7 0.957630 0.985480 0.991790 1.050220 0.987900
1 0.992730 0.993880 1.017150 1.059120 1.017450

2 0.975610 0.987160 1.026820 1.075440 1.007250
3 0.871090 0.933190 0.974690 0.979840 0.952730
4 0.828750 0.868090 0.834920 0.905510 0.871530
5 0.781540 0.782470 0.767910 0.764140 0.795890
6 0.743460 0.693390 0.514870 0.630150 0.715660
7 0.934760 0.957870 0.959640 0.972510 0.981640
1 0.965840 0.941240 0.987100 1.022540 1.011160

2 0.988630 0.994770 0.976590 0.950000 1.034840
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3 0.958200 1.018080 0.974480 0.920000 0.989870
4 0.811720 0.869090 0.812020 0.850000 0.821050
5 0.682030 0.679480 0.632450 0.746580 0.738550
6 0.668290 0.445860 0.500000 0.678920 0.696510
7 0.926940 0.953350 0.959050 0.876210 0.991490
1 0.948940 0.997760 0.850000 0.826520 0.998470

2 1.017860 0.970000 0.850000 0.700000 0.988560
3 1.000000 0.950000 0.850000 0.606240 0.947260
4 1.000000 0.746140 0.751740 0.598390 0.725230
5 0.922210 0.500000 0.376800 0.517110 0.548630
6 0.500000 0.450000 0.429970 0.404490 0.539940
7 0.960430 0.881630 0.775640 0.596350 0.937680
1 1.030000 1.040000 1.000000 1.000000 1.049510

2 1.050000 0.990000 0.990000 0.950000 0.996530
3 1.050000 0.990000 0.990000 0.820000 0.971940
4 1.050000 0.790000 0.880000 0.820000 0.951840
5 1.000000 0.530000 0.440000 0.710000 0.928730
6 0.540000 0.470000 0.500000 0.550000 0.773950
7 1.038270 0.920180 0.910930 0.821140 1.034560
1 1.041020 0.997520 0.961600 1.000000 1.035780

2 0.948030 0.980000 0.900000 0.950360 0.977460
3 0.950000 0.977250 0.869270 0.800000 0.951680
4 0.951870 0.850000 0.748770 0.700000 0.883850
5 0.900000 0.823190 0.727450 0.600000 0.839870
6 0.850000 0.805020 0.692310 0.500000 0.788410
7 1.010090 0.895270 0.773030 0.816280 1.011680
1 1.022450 1.004600 0.983650 1.000000 1.032940

2 0.943960 0.999240 0.983920 0.905990 0.978150
3 0.936240 0.946480 0.850000 0.850000 0.930320
4 0.816420 0.885000 0.644950 0.817650 0.865310
5 0.742960 0.765690 0.561520 0.700000 0.827140
6 0.643870 0.596710 0.474460 0.600000 0.651200
7 0.971740 0.940560 0.714880 0.864380 1.001650
1 0.995260 0.977010 1.000000 1.000000 1.035250
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2 0.939810 0.975250 0.939980 0.950000 0.982550
3 0.876870 0.879440 0.850000 0.900000 0.917810
4 0.873480 0.873450 0.751470 0.850000 0.863040
5 0.761470 0.702360 0.638770 0.750000 0.783120
6 0.734080 0.650000 0.600000 0.650000 0.715660
7 0.942160 0.919100 0.770340 0.731170 0.995180
1 0.952560 0.916780 0.920000 0.900000 1.005880

2 0.928620 0.994420 0.900000 0.900000 0.983720
3 0.913070 0.850000 0.850000 0.800000 0.924280
4 0.868090 0.807170 0.823550 0.600000 0.844520
5 0.769570 0.719870 0.650000 0.550000 0.733500
6 0.580250 0.650000 0.600000 0.500000 0.628850
7 0.904770 0.852650 0.708370 0.493730 0.949030
1 0.911970 0.800000 0.800000 0.800000 0.956320

2 0.912620 0.682610 0.750000 0.700000 0.950110
3 0.653450 0.659330 0.700000 0.600000 0.856110
4 0.648440 0.600000 0.641120 0.500000 0.695780
5 0.570000 0.550000 0.598800 0.400000 0.560150
6 0.475230 0.500000 0.518640 0.339970 0.520230
7 0.743440 0.592190 0.603060 0.316930 0.794390

Table C.1: Correction matrix χ(k′t, θz,W,∆k
′
t).
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Appendix D

Statistical methods

Different statistical instruments are available in the literature. In this study, the Mean Bias
Error and the Mean Absolute Error are used to quantify the performance of the model
described in Chapter 3. Furthermore, in order to have a qualitative representation of the
model performance, two further statistical instruments are used: the coefficient of determi-
nation R2 and the coefficient of efficiency E.

In this chapter, a brief description of the above mentioned statistical instruments is
illustrated.

Mean Bias Error

There are different instruments that can quantify the error between the observed and the
measured values. The first is the Mean Bias Error (MBE) is the average deviation of the
estimated values from the measured values. It is defined as:

MBE =

∑N
i=1(ŷi − yi)

N
(D.1)

where ŷi is the ith predicted value, yi the ith observed value, and N the number of observa-
tions.
A model would perfectly fit the observed data if the MBE is equal to zero, i.e. the sum of
pairwise identical negative and positive deviations would also be zero [Iqbal, 1983].

Mean Absolute Error

An additional instrument to quantify the errors is the Mean Absolute Error (MAE), which
is defined as follows:

MAE =

∑N
i=1 |ŷi − yi|

N
(D.2)

Similarly to MBE, it describes the difference between the modeled data and the observations
in the units of the variables. Furthermore, MAE is preferred over the Root Mean Square
Error [Legates and McCabe, 1999].

Coefficient of determination

The linear relationship between the estimated and the measured values is tested by the
correlation coefficient r. This statistical measure verifies its linear correlation and is defined
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as follows:

r =

∑N
i=1(yi − ȳ)(ŷi − ¯̂y){[∑N

i=1(ŷi − ¯̂y)2
] [∑N

i=1(yi − ȳ)2
]}0.5 (D.3)

where ¯̂y is the predicted mean value and ȳ the measured mean value.
Ideally, r should correspond to 1 or −1 Iqbal [1983].
The numerator of Equation D.3 is a measure how the observed and modeled values varie
together using their deviation from the mean. The denominator measures how the measured
and the estimated values vary separately.
With r, the coefficient of determination R2 describes the degree of collinearity between
the observed and the computed variates. R2 is the proportion of the total variance in the
observed data that can be explained by a model. It ranges from 0 to 1 and is defined as
follows:

R2 := r2 =


∑N

i=1(yi − ȳ)(ŷi − ¯̂y){[∑N
i=1(ŷi − ¯̂y)2

] [∑N
i=1(yi − ȳ)2

]}0.5


2

(D.4)

It is the ratio between the unnormalized covariance and the unnormalized variances. The
coefficient of determination explains how well the observed data are reproduced by the
modeled data. In other words, it represents the percentage of the explained to the total of
variations.
It only evaluates linear relationships between the variables and is insensitive to additive
and proportional differences between model and observations. This type of measure is more
sensitive to outliers than observations near the mean and leads to a bias toward the extreme
events. In addition, its statistical distribution is well known [Legates and McCabe, 1999].
However, R2 and r both have limitations. Moreover, the coefficient of determination does
not account for differences in the mean of the two time series and assumes that the ob-
served variance is less than the model-predicted variance [Legates and McCabe, 1999]. It
is demonstrated MathWorld [2010] that the coefficient of determination is the portion of
variance of the modeled values which is accounted by the 1:1 line.

Coefficient of efficiency

In 2003, three temperature-index based models and of one energy balance based snowmelt
model were investigated by Zappa et al. [2003]. For this purpose, the efficiency coefficient
E2 was applied, which is a generic version, based on Legates and McCabe [1999] and Nash
and Suttcliffe [1970] studies:

E := E1 = 1−
∑N

i=1 (yi − ŷi)2∑N
i=1 (yi − ȳ)2

(D.5)

where E is the ratio of the mean square error

MSE =

∑N
i=1 (yi − ŷi)2

N
(D.6)
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to the variance in the observed data, subtracted from unity.
It ranges from −∞ to 1. A zero value reflects a good estimation by the model. Whereas,
negative values signifies a poor performance of the model.
E is sensitive to differences in the observed and model simulated means and variances
Legates and McCabe [1999].

Nash and Sutcliffe introduce a third statistical instrument, the index of agreement:

d = 1−
∑N

i=1 (yi − ŷi)2∑N
i=1 (|ŷi − ȳ|+ |yi − ȳ|)2

= 1−NMSE

PE
(D.7)

where PE is the potential error

PE =
N∑
i=1

(|ŷi − ȳ|+ |yi − ȳ|)2 . (D.8)

It ranges from 0 to 1, which is for the best fit and is sensitive to extreme values.
Furthermore, E and d are very similar methods. They both are sensible to outliers.
However, in my opinion, d is not sensible to the variation in the performance of the models.
For this reason, only the coefficient of efficiency E is considered as statistical measure in
this study.

Residuals

A complementary tool to the model investigation is the analysis of the residuals r:

e = y − ŷ, (D.9)

which is the difference between the estimated and the observed value, ŷ and y, respectively.
At first, the plot of the standardized residuals against the standardized estimated diffuse
fraction is formed. An standardized variable is defined as follows:

xstd =
x− x̄
sd(x)

(D.10)

where x is the unstandardized value, x̄ its mean and sd(x) the standard deviation.
The plotted values generally are close to the zero horizontal line, which means that the
points are well predicted. Values above are underpredicted and values below are overpre-
dicted. The linearity assumption is confirmed whether the same number of points is present
above and below the horizontal line.
Then a histogram of the standardized residuals can be plotted and a curve of the normal
distribution can be overlaid. It permits to test the normal distribution of the residuals.
A QQ-Plot (”‘Q”’ stands for quantile) is then used to reinforce the assumption of a normal
distribution of the residuals. They are normal distributed if the points lay on the line.
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Appendix E

Statistical results

... Continued on Next Page
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Station R2 E MAE MBE Pd Nd

Robbia 0.7384671 0.7181619 0.12797762 0.04443873 30.496151 2338
Moleson 0.6981069 0.6652712 0.13725952 0.06791140 30.875456 3838
Montana 0.8111276 0.7413688 0.11187587 0.07869043 31.312018 3628
Chasseral 0.7598021 0.6600968 0.13118180 0.09341299 32.940830 3397
Pilatus 0.7097518 0.6876686 0.12918435 0.07024258 45.562481 3369
Altdorf 0.7531478 0.7404422 0.12105326 0.04928409 42.129246 2414
Geneva 0.8437190 0.8390440 0.08922130 0.05269562 45.692389 3784
Visp 0.6984615 0.6702561 0.13885696 0.06395248 32.223580 3274
Buchs 0.6816737 0.6619043 0.13675572 0.06278430 40.138010 3478
Goesgen 0.6629828 0.6438390 0.14329333 0.06605141 37.422037 3367
Comprovasco 0.7734217 0.7538922 0.11416177 0.04232742 42.894249 2695
Hoernli 0.7311356 0.7115850 0.12587295 0.06632387 42.082294 3208
Montana 0.7588199 0.7453723 0.11908180 0.05533643 38.272120 2396
Alice Springs 0.8866533 0.8285907 0.08532740 0.02770627 16.726160 3922
Barrow 0.7027471 0.5089345 0.15522106 0.12485502 38.645418 3514
Bermuda 0.8039380 0.7200999 0.10393480 0.07300610 34.755625 3867
Cabauw 0.8850711 0.8688919 0.07143916 0.04867081 55.313634 3858
Carpentras 0.8995191 0.8574744 0.08807254 0.03899609 35.828450 3754
Chesapeake Light 0.9179134 0.9018380 0.06786469 0.04223711 44.218415 3736
Coco Island 0.8349969 0.7906055 0.08207378 0.05718751 39.323698 3667
Dome C 0.5653018 -2.6281581 0.11898770 0.09185393 21.090132 2807
Desert Rock 0.8169632 0.7263950 0.08405736 0.04147044 15.814777 3952
Goodwin Creek 0.8853985 0.8316392 0.09160615 0.04827821 33.817804 3853
Georg von Neumayer 0.7485279 -0.1731673 0.23317960 0.20953988 15.601266 3160
Momote 0.8287951 0.7973876 0.09462916 0.04591585 42.386831 4131
Ny-Alesund 0.8006920 0.6641574 0.13097578 0.09395672 42.437086 3775
Tamanrasset 0.8032452 0.6114248 0.10761813 0.08151543 20.320041 3937
Tateno 0.9146441 0.8998668 0.06412966 0.04608334 54.927501 4069
Toravere 0.9047302 0.8776950 0.07155062 0.02471932 56.541678 3707
Payerne 0.8778039 0.8365510 0.08790467 0.05782691 49.459288 3144
Brasilia 0.8688476 0.8294349 0.09461297 0.03567818 31.982889 3974
De Aar 0.9253562 0.8831964 0.08424084 0.02867434 26.710684 3332
Darwin 0.8409219 0.7624125 0.10396678 0.03799748 29.564795 4113
Xianghe 0.8916573 0.7121721 0.11349129 0.08711956 31.774761 3978
Solar Village 0.8407930 0.7760512 0.07412578 0.06001529 28.543355 4071
Ilorin 0.5879029 0.2944510 0.11496362 0.06699045 38.439761 3179
Izana 0.8314110 0.7230235 0.08531861 0.04424831 14.968999 3387
Lauder 0.8735181 0.8416139 0.09835210 0.04892695 35.365226 3888
Summit Station 0.6861280 -0.6820207 0.24855270 0.20784162 7.928268 2119

Table E.1: Statistical results for the Reindl-Helbig model.
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Station R2 E MAE MBE Pd Nd

Robbia 0.7479716 0.6054957 0.14062677 0.03293994 29.426861 2338
Moleson 0.7112182 0.6362427 0.13486112 0.05750162 31.605003 3838
Montana 0.8527031 0.8120257 0.09021507 0.06423317 37.761852 3628
Chasseral 0.7942031 0.7248408 0.11155334 0.07684805 38.151310 3397
Pilatus 0.7159098 0.6322808 0.12480369 0.05587849 43.128525 3369
Altdorf 0.7773555 0.6988003 0.11801262 0.03720137 43.661972 2414
Geneva 0.8882122 0.8872594 0.07649497 0.04422209 51.083510 3784
Visp 0.7410529 0.6409384 0.12791166 0.04899446 34.208919 3274
Buchs 0.7099893 0.6280870 0.12665781 0.04968360 43.070730 3478
Goesgen 0.7127231 0.6414368 0.12340326 0.05102440 41.283041 3367
Comprovasco 0.7781875 0.6413535 0.12891860 0.03167270 40.853432 2695
Hoernli 0.7488947 0.7119642 0.11021061 0.05339457 45.698254 3208
Montana 0.7711007 0.6929969 0.12110109 0.04273816 37.186978 2396
Alice Springs 0.8641489 0.7946755 0.08780989 0.02291353 19.811321 3922
Barrow 0.6909929 0.5391603 0.13814826 0.11615954 44.052362 3514
Bermuda 0.8496959 0.7908202 0.09131790 0.06508211 38.401862 3867
Cabauw 0.9006764 0.8919363 0.06400712 0.04246298 57.024365 3858
Carpentras 0.9155086 0.8914894 0.07307125 0.03521344 40.037294 3754
Chesapeake Light 0.9202600 0.9101787 0.06337352 0.03773306 46.654176 3736
Coco Island 0.8592840 0.8282531 0.07753942 0.05185099 39.432779 3667
Dome C 0.2176861 -2.4588793 0.15980288 0.06979002 4.061275 2807
Desert Rock 0.8294056 0.7840923 0.07345677 0.03611684 26.644737 3952
Goodwin Creek 0.8996763 0.8649314 0.08208318 0.04388682 39.242149 3853
Georg von Neumayer 0.6681572 -0.3970748 0.21723094 0.19414642 14.683544 3160
Momote 0.8624036 0.8336970 0.08417065 0.03996155 45.073832 4131
Ny-Alesund 0.8111389 0.7120026 0.10539113 0.08406667 49.801325 3775
Tamanrasset 0.7897895 0.6427919 0.11221113 0.07612661 16.916434 3937
Tateno 0.9126942 0.9032925 0.06268706 0.04173550 55.763087 4069
Toravere 0.9131026 0.8815805 0.07229306 0.02189618 57.243054 3707
Payerne 0.8971442 0.8710585 0.07597807 0.05033665 52.385496 3144
Brasilia 0.8752521 0.8220122 0.09205560 0.03025625 34.272773 3974
De Aar 0.9050819 0.8445501 0.09352727 0.02563715 26.890756 3332
Darwin 0.8866132 0.8366397 0.08561959 0.03191094 33.041575 4113
Xianghe 0.9016999 0.7659253 0.10905396 0.08153797 36.902966 3978
Solar Village 0.8457477 0.7597211 0.09025462 0.06366843 19.405551 4071
Ilorin 0.5981215 0.3077692 0.11387525 0.05542284 40.578798 3179
Izana 0.7315111 0.6044272 0.11061052 0.03444699 12.016534 3387
Lauder 0.8773286 0.8159544 0.09866153 0.03864289 34.696502 3888
Summit Station 0.5187612 -1.2902064 0.23043027 0.20143590 9.910335 2119

Table E.2: Statistical results for the Skartveit and Olseth model.
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Station R2 E MAE MBE Pd Nd

Robbia 0.5339677 0.7430305 0.09839203 0.03521911 21.086399 2338
Moleson 0.6812201 0.6890893 0.12663199 0.05630590 31.005732 3838
Montana 0.7659391 0.7552519 0.10380693 0.06911121 28.335171 3628
Chasseral 0.7096287 0.6904590 0.11543628 0.07325546 31.439505 3397
Pilatus 0.6802588 0.7295095 0.11544949 0.05019274 40.397744 3369
Altdorf 0.6485310 0.7452673 0.10813795 0.03812408 35.666943 2414
Geneva 0.8269857 0.8602988 0.07582718 0.03819199 47.912262 3784
Visp 0.5643906 0.6497179 0.13780290 0.05633696 22.266341 3274
Buchs 0.6034045 0.6467216 0.13253586 0.05180542 34.215066 3478
Goesgen 0.5927138 0.6308204 0.13851719 0.05417101 30.501931 3367
Comprovasco 0.6707144 0.7620895 0.10455593 0.03317614 34.805195 2695
Hoernli 0.6599088 0.7045343 0.12067620 0.05318091 36.471322 3208
Montana 0.6327508 0.7525408 0.10735937 0.04614240 29.799666 2396
Alice Springs 0.8810923 0.8566982 0.07197961 0.02994504 21.111678 3922
Barrow 0.6601882 0.4441032 0.16863934 0.13180445 38.616961 3514
Bermuda 0.8077770 0.7617100 0.09618921 0.05984183 35.479700 3867
Cabauw 0.8676571 0.8642308 0.07042890 0.03326044 59.020218 3858
Carpentras 0.8991856 0.8735414 0.08242041 0.03327231 37.426745 3754
Chesapeake Light 0.9038189 0.8985416 0.06958235 0.03811661 45.074946 3736
Coco Island 0.8470771 0.8194021 0.07813074 0.05515308 41.150804 3667
Dome C 0.5235350 -2.7406773 0.18478684 0.10095282 2.137513 2807
Desert Rock 0.8094938 0.7010376 0.08013175 0.05030165 21.761134 3952
Goodwin Creek 0.8167309 0.8131966 0.09351742 0.04542716 29.120166 3853
Georg von Neumayer 0.7543687 0.1033020 0.23719585 0.19002296 6.645570 3160
Momote 0.8537867 0.8336868 0.08601463 0.03785070 45.775841 4131
Ny-Alesund 0.8061093 0.7292549 0.11712974 0.06822810 46.649007 3775
Tamanrasset 0.8105975 0.5635298 0.11879180 0.08812503 17.145034 3937
Tateno 0.9168311 0.9089322 0.06191567 0.03538576 58.294421 4069
Toravere 0.8665628 0.7961298 0.08436168 0.01633279 54.599407 3707
Payerne 0.8702683 0.8481935 0.08478929 0.04433897 50.667939 3144
Brasilia 0.8815018 0.8597843 0.08413417 0.03157646 35.656769 3974
De Aar 0.9302499 0.9130804 0.07188879 0.02499516 29.921969 3332
Darwin 0.8754014 0.8358246 0.08755820 0.03309197 33.843910 4113
Xianghe 0.9067003 0.8011198 0.09894410 0.06651191 33.634992 3978
Solar Village 0.8393147 0.7325519 0.08763783 0.06665254 22.058462 4071
Ilorin 0.5219174 0.1434545 0.11084028 0.04923917 36.017616 3179
Izana 0.8446238 0.7256009 0.07762583 0.04791371 23.176853 3387
Lauder 0.8671643 0.8401809 0.09910976 0.04309259 35.468107 3888
Summit Station 0.6576514 -1.1789869 0.29101653 0.22392907 1.226415 2120

Table E.3: Statistical results for the BRL model.
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Station R2 E MAE MBE Pd Nd

Robbia 0.67783881 0.61721872 0.14916194 0.04459105 29.170231 2338
Moleson 0.69988614 0.67305713 0.13580210 0.07223995 31.344450 3838
Montana 0.79431383 0.71008850 0.11869370 0.08720270 32.414553 3628
Chasseral 0.74954430 0.64211148 0.13726130 0.10128709 34.088902 3397
Pilatus 0.60246518 0.54721152 0.14431000 0.07448434 43.158207 3369
Altdorf 0.72258329 0.69386699 0.12790283 0.04717073 42.750621 2414
Geneva 0.84292055 0.83118235 0.09795993 0.06158284 44.476744 3784
Visp 0.63104129 0.56694885 0.14934858 0.06640408 33.414783 3274
Buchs 0.61794373 0.57058849 0.14621858 0.06641948 41.058079 3478
Goesgen 0.61667645 0.57657061 0.14680353 0.06643992 38.996139 3367
Comprovasco 0.74173242 0.69591287 0.12690119 0.04276991 41.855288 2695
Hoernli 0.65666698 0.63272226 0.13214807 0.06678827 43.827930 3208
Montana 0.71445828 0.68487922 0.13039181 0.05325184 37.437396 2396
Alice Springs 0.88314297 0.85986882 0.06957296 0.02994383 24.426313 3922
Barrow 0.65344772 0.42630954 0.16893211 0.14460477 38.133182 3514
Bermuda 0.77906687 0.69442673 0.11409002 0.08406730 33.514352 3867
Cabauw 0.88236823 0.85265203 0.08156009 0.05950569 53.032659 3858
Carpentras 0.90207695 0.88530927 0.07619352 0.04842767 40.197123 3754
Chesapeake Light 0.91010602 0.89842543 0.06980593 0.04957289 43.629550 3736
Coco Island 0.78632926 0.74832378 0.09470237 0.06365921 34.687756 3667
Dome C 0.02475112 -4.96448138 0.19059465 0.07903035 4.488778 2807
Desert Rock 0.83598963 0.73775714 0.07248430 0.05030667 27.277328 3952
Goodwin Creek 0.88167702 0.84260997 0.08365465 0.05786031 43.498573 3853
Georg von Neumayer 0.59352878 -1.06626665 0.25488811 0.23613864 8.037975 3160
Momote 0.79779656 0.77309134 0.10019960 0.05009545 42.265795 4131
Ny-Alesund 0.77384047 0.61889391 0.13477258 0.11117019 42.596026 3775
Tamanrasset 0.76652234 0.50511719 0.12600225 0.09279889 16.535433 3937
Tateno 0.90927810 0.89154005 0.06812022 0.05196420 55.394446 4069
Toravere 0.90078986 0.90007445 0.07082736 0.03344563 57.971405 3707
Payerne 0.87105815 0.82376702 0.09403032 0.06825904 47.805344 3144
Brasilia 0.86351178 0.85020051 0.08480482 0.03810019 37.317564 3974
De Aar 0.90145686 0.87390448 0.07771343 0.03512430 32.202881 3332
Darwin 0.82372413 0.78733528 0.09806266 0.04298506 31.096523 4113
Xianghe 0.88796752 0.71355208 0.12328461 0.09505587 30.744093 3978
Solar Village 0.82464799 0.64969631 0.09504822 0.07550460 21.272415 4071
Ilorin 0.49141223 0.06707967 0.12717591 0.06037992 37.055678 3179
Izana 0.69047385 0.55343497 0.11231744 0.04726565 11.662238 3387
Lauder 0.86939713 0.84458473 0.09126971 0.05406260 38.143004 3888
Summit Station 0.37641493 -2.49301482 0.27466443 0.24026858 7.456347 2119

Table E.4: Statistical results for the Maxwell model.
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Appendix F

Additional graphics and tables

Figure F.1: Residual analysis for kt ≤ 0.3(top) and 0.3 < kt ≤ 0.78 (bottom): standardized
residuals plotted against the standardized estimated diffuse fraction (left) and against the
theoretical quantiles (right).
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Figure F.2: Residual analysis for kt ≤ 0.8 (top) and kt > 0.8 (bottom): standardized
residuals plotted against the standardized estimated diffuse fraction from BRL (left) and
against the theoretical quantiles (right).
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Figure F.3: Residual analysis for Southern (up) and Northern (down) Hemisphere station’s
data: standardized residuals plotted against the standardized estimated diffuse fraction
from BRL (left) and against the theoretical quantiles (right).
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Figure F.4: Residual analysis for three clearness index intervals (kt ≤ 0.80, 0.80 < kt ≤ 1.00
and kt > 1.00): standardized residuals plotted against the standardized estimated diffuse
fraction (left) and against the theoretical quantiles (right).
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Solar elevation R2 E MAE MBE Nd Pd
φ ≤ 10 ◦ 0.5118865 0.4861008 0.15582004 0.07617900 11415 35.74244
10 ◦ < φ ≤ 15 ◦ 0.6923237 0.6858108 0.12683692 0.06182501 12102 39.78681
15 ◦ < φ ≤ 20 ◦ 0.7264461 0.7257030 0.12435764 0.06136565 13577 38.48420
20 ◦ < φ ≤ 25 ◦ 0.7749891 0.7748224 0.11448052 0.05614469 13917 38.74398
25 ◦ < φ ≤ 30 ◦ 0.7989778 0.7988985 0.10776692 0.05289655 13660 37.38653
30 ◦ < φ ≤ 35 ◦ 0.8164619 0.8158501 0.10171927 0.04819227 12186 36.70606
35 ◦ < φ ≤ 40 ◦ 0.8334284 0.8325538 0.09519588 0.04737749 11616 35.95041
40 ◦ < φ ≤ 45 ◦ 0.8649203 0.8643109 0.08523975 0.04315256 9422 34.48312
45 ◦ < φ ≤ 50 ◦ 0.8780470 0.8752827 0.08183435 0.04567789 8889 36.50579
50 ◦ < φ ≤ 55 ◦ 0.8946735 0.8929240 0.07676437 0.04150198 7516 35.24481
55 ◦ < φ ≤ 60 ◦ 0.8934487 0.8909714 0.07712192 0.04149052 7047 37.88846
60 ◦ < φ ≤ 65 ◦ 0.8963855 0.8924510 0.07641858 0.04147725 6051 37.23352
65 ◦ < φ ≤ 70 ◦ 0.8989533 0.8948823 0.07456672 0.04147725 3648 34.12829
70 ◦ < φ ≤ 75 ◦ 0.8896879 0.8834576 0.07769438 0.04147725 2371 33.99410
75 ◦ < φ ≤ 80 ◦ 0.8922374 0.8866747 0.07445195 0.04147725 1481 32.81567
80 ◦ < φ ≤ 85 ◦ 0.8838311 0.8741087 0.08033286 0.04147725 945 29.41799
85 ◦ < φ ≤ 90 ◦ 0.8871041 0.8793356 0.07761098 0.04147725 2664 31.23123

Table F.1: Summary of statistic of Skartveit and Olseth depending on the solar elevation.
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Appendix G

Comparison graphics

Figure G.1: The coefficient of determination R2 for Reindl-Helbig (in black), Skartveit and
Olseth (in red), BLR (in green) and Maxwell (in blue), in function of the stations altitude.
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Figure G.2: The Mean Absolute Error, MAE, (up) and the Mean Bias Error, MBE, (down)
for Reindl-Helbig (in black), Skartveit and Olseth (in red), BLR (in green) and Maxwell
(in blue), in function of the stations altitude.
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Figure G.3: The coefficient of determination R2 for Reindl-Helbig (in black), Skartveit and
Olseth (in red), BLR (in green) and Maxwell (in blue), in function of the stations latitude.

Figure G.4: The Mean Absolute Error, MAE, for Reindl-Helbig (in black), Skartveit and
Olseth (in red), BLR (in green) and Maxwell (in blue), in function of the stations latitude.
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Figure G.5: The coefficient of determination R2 for Reindl-Helbig (in black), Skartveit
and Olseth (in red), BLR (in green) and Maxwell (in blue), in function of the stations
longitude.

Figure G.6: The Mean Absolute Error, MAE, for Reindl-Helbig (in black), Skartveit and
Olseth (in red), BLR (in green) and Maxwell (in blue), in function of the stations longi-
tude.
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Figure G.7: The coefficient of efficiency E for Reindl-Helbig (in black), Skartveit and Olseth
(in red), BRL (in green) and Maxwell (in blue), in function of the months, for stations in
the Northern Hemisphere (left) and Southern Hemisphere (right).

Figure G.8: The Mean Absolute Error, MAE, for Reindl-Helbig (in black), Skartveit and
Olseth (in red), BRL (in green) and Maxwell (in blue), in function of the months, for
stations in the Northern Hemisphere (left) and Southern Hemisphere (right).
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Figure G.9: The coefficient of determination R2 for Reindl-Helbig (in black), Skartveit and
Olseth (in red), BRL (in green) and Maxwell (in blue), in function of the seasons, for
stations in the Northern Hemisphere (line) and Southern Hemisphere (dashed).
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Figure G.10: Representation of the coefficient of efficiency E for Reindl-Helbig (in black),
Skartveit and Olseth (in red), BRL (in green) and Maxwell (in blue), in function of the
seasons, for stations in the Northern Hemisphere (line) and Southern Hemisphere (dashed)
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Figure G.11: Representation of the Mean Absolute Error (MAE) for Reindl-Helbig (in
black), Skartveit and Olseth (in red), BRL (in green) and Maxwell (in blue), in function
of the seasons, for stations in the Northern Hemisphere (line) and Southern Hemisphere
(dashed)
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Figure G.12: The coefficient of determination R2 (lined) and the coefficient of efficiency E
(dashed) for Reindl-Helbig (in black), Skartveit and Olseth (in red), BRL (in green) and
Maxwell (in blue), in function of the solar elevations.
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Figure G.13: Representation of the Mean Absolute Error, MAE, (lined) and the Mean Bias
Error, MBE, (dashed) for Reindl-Helbig (in black), Skartveit and Olseth (in red), BRL (in
green) and Maxwell (in blue), in function of the solar elevations.
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captionThe Mean Absolute Error, MAE, (up) and the coefficient of determination R2

(down) for Reindl-Helbig (in black), Skartveit and Olseth (in red), BRL (in green) and
Maxwell (in blue), in function of the clearness index.
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Appendix H

Nomenclature

I Global radiation (in W m−2

I0 Extraterrestrial radiation (in W m−2

Ib Direct radiation (in W m−2

Id Diffuse radiation (in W m−2

r0 Mean distance between the Earth and the Sun (in m)
λ Solar wavelength (in m)
E0 Eccentricity correction factor (dimensionless)
Et Equation of time (in minutes)
Lloc Local longitude (in degree)
Lst Standard longitude (in degree)
ω Hour angle (in radian)
δ Solar declination angle (in radian)
Γ Day angle (in radian)
dn Day number (dimensionless)
Γne Day angle (in radian)
dne Day equinox number (dimensionless)
n0 Spring equinox time (dimensionless)
Nd Number of data (dimensionless)
Pd Percentage of data explained by 10%
Φ Solar elevation (in degree)
Φhoriz Horizon angle (in degree)
h0 Station altitude (in m)
hmax Highest mountain altitude (in m)
d Distance between the station and the highest mountain (in m)
kt Clearness index (dimensionless)
kd Diffuse fraction (dimensionless)
θz Zenith angle (in degree)
ω3 Hourly variability index (dimensionless)

t,i Cloudless clearness index, i = 1, 2 (dimensionless)
θ Clear sky index (dimensionless)
α Extreme beam transmittance (dimensionless)
As Apparent Solar Time (in hour)
Ψ Persistence factor (dimensionless)
Kt Daily clearness index (dimensionless)
Td Dew temperature (in Celsius)
Tair Surface temperature (in Celsius)
Continued on Next Page. . . 120



Rh Relative humidity (in percent)
mair Air mass
Kn Direct radiation transmittance (dimensionless)
Ib,DISC Normal beam radiation estimated (W m−2)
χ Correction matrix
k′t Normalized clearness index (dimensionless)
W Precipitable water
∆k′t stability index (dimensionless)
q Transmissivity (dimensionless)
qavg Transmissivity average (dimentionless)
qlim Transmissivity limit (dimentionless)
qdiff Lower limit of q for cloud-free conditions (dimentionless)
qstd Transmissivity standard deviation (dimentionless)
qr Transmissivity range (dimensionless)
∆q Transmissivity offset (dimensionless)
∆a Albedo offset (dimensionless)
t0 Sunrise time (hour)
tn Sunset time (hour)
t̄ Time at solar noon (hour)
MBE Mean bias error (in the unit of the variables)
MAE Mean absolute error (in the unit of the variables)
r Correlation coefficient (dimensionless)
R2 Coefficient of determination (dimensionless)

e Residuals (in the unit of the variables)

ASRB Alpine Surface Radiation Budget
BSRN Baseline Surface Radiation Network
WCRP World Climate Research Programme
WMO World Meteorological Organization
ICSU Intenational Council for Science

Continued on Next Page. . .
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IOC Intergovernamental Oceonographic Commission

122


	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Background
	Motivations

	Dataset
	Data collection
	Swiss stations
	Worldwide stations

	Data quality control

	Decomposition models
	Polynomial models
	Reindl-Helbig
	Skartveith and Holseth

	Logistic function models
	Boland-Ridley-Lauret (BRL)

	Exponential Model
	Maxwell
	Perez

	Transmissivity Model
	Dürr


	Results
	Clear days representation
	Models performance evaluation
	Reindl - Helbig
	Skartveit and Olseth
	BRL
	Maxwell
	Perez
	Dürr

	Time resolution

	Discussion
	Data representation
	Model's performance
	Temporal Resolution
	Universal model

	Conclusions and Outlook
	Stations details
	Astronomical equations and radiation definitions
	The solar position
	Solar radiation

	Look-up tables for Perez model
	Statistical methods
	Statistical results
	Additional graphics and tables
	Comparison graphics
	Nomenclature

