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Abstract 
Tropical cyclones (TC) are among the most devastating natural hazards causing losses and 
damages in almost all tropical regions. However, an accurate risk analysis of TC in these 
regions is not straightforward due to sparse data availability and short observational records. 
High impact extreme events at the tail of the distribution are often underestimated and biased 
towards the outcome of past events. The goal of counterfactual risk analysis is to improve risk 
assessment of extreme events by incorporating data on near-miss events. Considering the 
chaotic nature of atmospheric dynamics, the outcome of past TC can be viewed as only one of 
many possible realizations. By incorporating alternative but physically plausible scenarios of 
past events, so called counterfactuals, the sparse observational datasets of TC can be improved 
significantly.  
Within this thesis, TC forecasts of past events are used as a source to create counterfactual 
scenarios of past yearly landfall rates. By identifying possible landfalls of observed events and 
worst-case scenarios, downward counterfactuals are established and compared to observed 
landfall rates using Bayesian inference.   
The analysis of downward counterfactual scenarios leads to a higher estimation of expected 
mean yearly landfall rates, probability of extreme events and outliers, and future annual landfall 
rates, including its extremes. TC forecasts allow the detection of near-miss events and 
expansion of the sparse observational data, especially for small island states where TC landfalls 
are rare. The results highlight that counterfactual data is promising in improving the risk 
assessment of TC at the tail of the distribution. The results also show that TC forecasts can be 
a great source in building counterfactual scenarios. 
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Abbreviations 
BI ................................................................................................................... Bayesian inference 

CF .......................................................................................................................... counterfactual 

ECMWF .............................................. European Centre for Medium-Range Weather Forecasts 

EP .............................................................................................................................. East Pacific 

IBTrACS ......................................... International Best Track Archive for Climate Stewardship 

KWBC ................... National Centres for Environmental Prediction (USA) and Meteorological 
Service of Canada 

LF ..................................................................................................................................... landfall 

NA ......................................................................................................................... North Atlantic 

NI .................................................................................................................. North Indian Ocean 

NOAA ........................................................ National Oceanic and Atmospheric Administration 

PP .............................................................................................. posterior predictive distribution  

SI  .................................................................................................................. South Indian Ocean 

SP ............................................................................................................................ South Pacific 

TC ...................................................................................................................... Tropical cyclone 

THORPEX .............................. The Observing System Research and Predictability Experiment 

TIGGE .............................................................. THORPEX Interactive Grand Global Ensemble 

WP ............................................................................................................................ West Pacific 

 

Variables 
!  .................................................................................................... observed yearly landfall rate 

" ........................................................................................................... number of years observed 

λ   ..................................................................................................................... mean landfall rate 

$(&) .................................................................................................................... prior probability 

$(&|!)  ......................................................................................................... posterior probability 

$(	&|!!"#)		.................................................................	posterior belief for λ given observed y 2008-2019 

$(	&|!$%&'()		..........................	posterior belief for λ given worst-case counterfactual y 2008-2019 

$(!|&) ............................................................................................................... likelihood, model 

$(!) ............................................................................................................ marginal distribution 

$(!+|y) ........................................................................................ posterior predictive distribution 

-[&] .............................................................................................................. expected value for λ 

0, 2 ........................................................... shape and rate, hyperparameters gamma distribution 
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!345 ................................................................ highest observed yearly landfall rate up to 2007 

6)*#+ ................................................................................ mean observed landfall rate up to 2007 

6)*#+,-  ........................................................................... mean observed landfall rate 1950-2007 

6)*#+.-  ...................................................................... mean observed landfall rate 1980-2007 

$(&,-) ................................................ prior probability based on observation period 1950-2007 

$(&.-) ................................................ prior probability based on observation period 1980-2007 

$(λ|!!"#) .................................................................... posterior probability based on observed y 

E[&|!!"#] ................. expected value for λ / mean of posterior distribution based on observed y  

$(&|!$%&'() ................................................................................. posterior probability based on  

E[&|!/0123] .............. expected value for λ / mean of posterior distribution based on worst-case 

∆E[&|!] ................................................................................................ -[&|!$%&'(] − -[&|!!"#] 

!+ ..................................................................................................................... future landfall rates 

$(!+|!!"#) ................................................... posterior predictive probability based on observed y 

$(!+|!$%&'() ........................................ posterior predictive probability based on counterfactual 
worst-case scenario for y 

$(!+ ≥ !345|!!"#) ..................................... probability future landfall rates are equal of higher  
than !345 for PP based on observed y 

$(!+ ≥ !345|!$%&'() ................................. probability future landfall rates are equal of higher  
than !345 for PP based on counterfactual worst-case scenario for y 

∆$(!+ ≥ !345) .................................................... $(!+ ≥ !345|!$%&'() − $(!+ ≥ !345|!!"#) 

-[!+4,5|!!"#] ..................... expected landfall rate at 95th percentile of PP distribution, observed 

-[!+4,5|!$%&'(] .............................. expected landfall rate at 95th percentile of PP distribution,  
counterfactual worst-case scenario for y  
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1 Introduction 
Tropical cyclones (TC) are among the most devastating and deadliest natural hazards, causing 
enormous damage and losses in almost all tropical regions. One of the most prominent examples 
was Hurricane Katrina which made landfall (LF) on the US Gulf Coast close to New Orleans 
in late August 2005. The accompanying rainfalls and storm surge caused by Katrina lead to the 
flooding of 80 percent of the city of New Orleans. Overall, Katrina claimed 1800 lives and with 
damages around $160 billion was the costliest natural disaster in US history (Britannica, 2021). 
A new record in overall damages due to TCs was reached in 2017 when hurricanes Harvey, 
Irma and Maria made landfall within a span of only four weeks leading to overall losses around 
$220 billion (Munich RE, 2017). With their large impacts upon landfall, it is important to have 
a good understanding of the disaster risk associated with tropical cyclones. This knowledge can 
help decision makers to take necessary mitigation measures. Furthermore, (re)insurance 
companies are interested in reliable probability distributions to build their portfolios correctly. 
  
Tropical cyclones are relatively rare with globally around 90 storms in a year. With reliable 
data only available for the last few decades the risk assessment of TCs is challenging 
(Bloemendaal et al., 2020). Especially for extreme impact events with high return periods and 
low probabilities the available data is sparse and therefore complicating reliable risk 
assessment. When modelling disaster risk based solely on past events, extreme events can easily 
be underestimated, due to their low frequency of occurrence. Information on such extreme 
events is crucial, especially when assessing the vulnerabilities of communities and planning 
necessary mitigation measures. Therein, lies the danger of catastrophes occurring that were not 
within the modelled risk horizon (Woo, 2019). To better attribute for the described outcome 
bias, Gordon Woo in 2016 first introduced the concept of using downward counterfactual (CF) 
risk analysis to detect possible high impact events. By incorporating information on near miss 
events the risk assessment at the tail of the distribution can be improved (Woo, 2016).  
The term counterfactual is more commonly used in cognitive psychology, which defines a 
downward counterfactual as a “thought about the past where the outcome was worse than what 
actually happened” (Woo, 2019). Woo (2019) suggests that instead of treating history as fixed, 
we can view it as one of many possible unfolding of past events. More common in risk analysis 
are upward counterfactuals, meaning thoughts about past events imagining a better outcome. 
This comes into play, for example, when analyzing how a past event could have been prevented 
or how its damages and losses could have been minimized.  
In order to detect possible high impact events by using counterfactual risk analysis, researchers 
may consider how past events could have been worse if the circumstances were only slightly 
different (Woo, 2019). As such, counterfactuals are defined as physically plausible unfolding 
of past events illustrating a different but possible outcome. For tropical cyclones, this could 
mean analyzing how a past hazard event could possibly have developed considering, for 
example, higher wind speed on landfall, more precipitation, or stronger storm surges. Very 
important for the risk analysis of tropical cyclones is also their trajectory. Only slight alterations 
can determine whether a TC makes landfall or not or whether a community or city is hit by a 
TC or not.  
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As an example, one can look at Hurricane Ivan, which headed towards New Orleans in 2004 as 
a category 4 TC with wind speed of 225 km h-1 (Woo, Maynard and Seria, 2017). Luckily, the 
hurricane turned east and did not directly hit New Orleans, making landfall instead east of 
Mobile Bay, Alabama. Despite this given outcome previous forecast data of Hurricane Ivan 
showed the storm possibly striking New Orleans. Considering this preceding forecast data, the 
stochastic models indicated an entirely different loss distribution due to changes in the track 
geometry, the hurricane intensity on landfall, the height of the storm surge, and the consequent 
inland flood potential. The tail of this counterfactual loss distribution would have included the 
loss realized one year later by Hurricane Katrina.  
This example of Hurricane Ivan already illustrates the potential of forecasting data as a possible 
source for counterfactual in risk analysis of TCs. Considering the chaotic nature of atmospheric 
dynamics only slight perturbations can lead to a completely different path and evolution of the 
storm. It is these small perturbations who decide which of the forecasted paths it follows closest 
to. However, at some point in time each forecasted path can be viewed as a possible outcome 
of the event. In this sense forecasting data of past events illustrate alternative, but physically 
plausible outcomes. As such, forecasting data is a good source for counterfactual information 
to expand the sparse observational data of TCs.  

Building on the proposition of Woo (2016) there have been a few studies implementing 
downward counterfactuals in their risk analysis (e.g., Aspinall and Woo, 2019; Oughton et al., 
2019). Up to date, no studies specifically used counterfactual data in the risk analysis of tropical 
cyclones. Considering the challenges in TC risk analysis leading to an outcome bias towards 
past events, and a possible underestimation at the tail of the hazard risk distribution, including 
counterfactual data might be a powerful source in expanding the horizon of possible extreme 
events. The aim of this thesis is therefore to explore forecast data as source for counterfactual 
information of past TCs to expand the sparse observational data on which current risk analysis 
is based. Thus, the data basis for risk analysis can be augmented significantly. This is illustrated 
for the North Atlantic in Figure 1.1, where the density and amount of forecast tracks is much 
higher than by merely considering observed tracks.  
More specific, this thesis compares past yearly landfall rates, or landfall counts, of TCs to 
counterfactual landfall rates based upon the combination of different forecast tracks of past TC 
events. By specifically looking for downward counterfactuals the goal is to detect possible 
extreme landfall rates. High or extreme landfall rates mark very stormy TC seasons in which 
the cumulated damages and losses might be hazardous. This illustrated the year 2017 with three 
landfalling TCs leading to the costliest year in TC damages. Thus, an exploration of how many 
landfalls within a year could be expected when including downward counterfactuals in the risk 
analysis can be of high importance for decision makers both regarding mitigation measures as 
well as in the (re)insurance sector.  

The dataset on forecast data used in this thesis contains global TC data from 2008 to 2019 with 
several forecasts for each TC. Each forecast contains several forecast ensemble members, 
representing an alternative path to the observed TC. Considering all TCs in this time period, 
each combination of the individual forecast members corresponding to observed TCs can be 
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viewed as a counterfactual history or a counterfactual scenario. The resulting landfall rates of 
said counterfactual scenario are then the basis to assess change in expected landfall rates. 

 
Expected mean landfall rates, future landfall rates and extreme landfall rates based on 
counterfactuals are analyzed using Bayesian inference (BI). The advantage of Bayesian 
inference compared to the traditional frequentist statistical inference is that it incorporates the 
notion of learning from new information. As such previous knowledge or data on TC landfall 
rates can be included updated using observed or counterfactual landfall rates. Bayesian 
inference then allows to make projections for future landfall rates. Also, Bayesian inference 
returns probabilities that incorporate the uncertainty associated with the unknown variable of 
interest (Gelman et al., 2020). As such, the probability of all possible values for mean or 
extreme landfall rates can be explored and compared between counterfactual and observed 
scenarios.  
The previous knowledge of TC landfall rates incorporated in the analysis is based on observed 
yearly landfall rates up to 2007. This represents the period before forecast data as 
counterfactuals are available. The sensitivity of the BI towards this previous or prior 
information is tested by comparing different periods of historic landfall. Thus, the period 1950 
– 2007 is compared to the period 1980 – 2007. Further, the sensitivity of the BI is also tested 
towards the used counterfactual information. The range of counterfactual scenarios is compared 
across forecast data from two different providers and a combination of both.  
The Bayesian inference analysis was conducted separately for six ocean basins North Atlantic 
(NA), East Pacific (EP), West Pacific (WP), North Indian Ocean (NI), South Indian Ocean (SI), 
and South Pacific (SP) (Figure 1.2). It was conducted for the ocean basins as well for the 
individual countries within the respective basin.  
When assuming a possible underestimation of extreme hazard events, it is of special interest to 
analyze whether future projections of TC tracks based on counterfactuals are more extreme, 
than historic data suggests. So, while several counterfactual scenarios are created and included 
in the analysis the focus of the thesis are downward counterfactual scenarios and how they 
change the risk assessment of yearly landfall rates of TCs. Overall, the following, interlinked, 
research questions are answered:  

- Can forecast tracks be used as a source for counterfactual information in risk analysis 
of tropical cyclones? 

Figure 1.1: All observed TC tracks in the North Atlantic for 2008-2019 (left) compared to all forecast tracks of the same 

period (right). 
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- To what extent does accounting for downward counterfactual scenarios change the 
probability distribution of yearly landfall rates and future projections of yearly landfall? 

- What are differences and similarities of findings across case studies for different 
… periods for prior information on landfall rates?  
… forecast dataset based on providing agency?  
… basins and countries? 

 
First in a background chapter risk of tropical cyclones and forecast data as source for 
counterfactual risk analysis of tropical cyclones are explored more thoroughly. After, the 
application of Bayesian inference within this thesis is presented, followed by a description of 
the data. In Chapter 4 the results for the different case studies are presented, compared, and 
discussed. Finally, in Chapter 5 follows the conclusion of the analysis and an outlook for 
counterfactual risk analysis of tropical cyclones.  

2 Background 

2.1 Tropical Cyclone Risk 
Tropical cyclones are symmetric low-pressure systems that develop in the tropics and can reach 
sizes between 100 to 4000 km (Lohmann, Lüönd and Mahrt, 2016). They are characterized by 
a mostly cloudless eye of a diameter between 8 and 200 km. The eye is surrounded with the 
eyewall where convection and thunderstorm activity are strongest and underneath which the 
highest near surface wind speeds can be found. This is the most dangerous and destructive part 
of the TC. Spiraling outward from the eye there are often secondary cells arranged in bands. 
They are called rainbands. The major basins of tropical cyclone formation are the North 
Atlantic, East Pacific, West Pacific, North Indian Ocean, South Indian Ocean, and South Pacific 
(Figure 1.2). The largest and the most TCs occur in the West Pacific. Depending on their region 
of occurrence TCs are also called hurricanes, typhoons, severe tropical cyclones, tropical 
cyclones, or severe cyclonic storms.   

Figure 1.2: Overview tropical cyclone basins and observed TC tracks 1980-2019. Arrows indicate general movement. NA: 

North Atlantic, EP: East Pacific, WP: West Pacific, NI: North Indian Ocean, SI: South Indian Ocean, SP: South Pacific. 
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The main driver of TCs is latent heat release as air driven over warm waters humifies, rises and 
the water condenses. When approaching land, they often intensify, due to the warm shallow 
water, reaching maximum intensity at landfall. Cut off from their main energy source they will 
weaken and dissipate over land also due to added friction at the surface.   
The path a storm takes is referred to as the TC track. It marks the location of the center of the 
storm, or the point of lowest pressure (central pressure) at different time steps. Landfall occurs 
when all or parts of the eyewall passes across the coast. Accounting for the radius of the eyewall 
within this thesis landfall is assumed when the track crosses the coastline or comes within 50 
km of the coast.  
TCs are categorized by their intensity measured as maximum sustained wind speed over 1 
minute at 10 meters above ground. Most often used is the Saffir-Simpson scale (Table 2.1) 
(Lohmann, Lüönd and Mahrt, 2016). The most severe category 5 refers to TCs with wind speeds 
exceeding 250 km h-1. For extremely severe TCs maximum sustained winds above 300 km h-1 
can be measured. When a storm develops the intensity of a tropical storm (sustained wind speed 
higher than 33 kt) it is given a name to distinguish it easily from other cyclonic systems. 

Table 2.1: Categorization of tropical cyclone. Based on Saffir-Simpson scale (adapted from NOAA, National Hurricane 

Center and Central Pacific Hurricane Center, 2021; Wikipedia, 2021). Storm surge height and minimum pressure are for 

reference only. Categorization is based on wind speed.  

Name Category Sustained winds Storm 
surge (m) 

Minimum 
pressure (hPa) 

Tropical 
Depression -1 ≤ 33 kt (≤ 62 km h-1) 0  

Tropical Storm 0 34-63 kt (63-118 km h-1) 0-0.9  

Tropical 
Cyclone 

1 64-82 kt (119-153 km h-1) 1.0-1.7 980-994 

2 83-95 kt (154-177 km h-1) 1.8-2.6 965-979 

(Major) 
Tropical 
Cyclone 

3 96-112 kt (178-208 km h-1) 2.7-3.8 945-964 

4 113-136 kt (209-251 km h-1) 3.9-5.6 920-944 

5 ≥	137 kt (≥	252 km h-1) ≥ 5.7 ≤920 

 

Damages due to tropical cyclones are caused by high wind speeds, storm surges, heavy rain and 
spawning tornado activity (Zehnder, 2021). Strong sustained winds and wind gusts can cause 
catastrophic damages to e.g., house, trees, and electricity infrastructure. Already a TC of 
category 1 can cause damage to roofs, shingles, and gutters while a TC of category 5 will 
destroy a high percentage of framed houses with total roof failure and wall collapse. However, 
large amounts of the damage are often due to accompanying storm surges which are also 
responsible for most of the deaths attributed to landfalling TCs.  
The risk associated with natural hazards such as TCs can be understood as an interaction of 
hazard, vulnerability and exposure (IPCC, 2014). The hazard itself is a combination of the 
probability of the hazard occurring and its intensity. The analysis of TC landfall rates within 
this thesis mostly concerns the probability component when assessing TC hazard risk.   

N
am

ed storm
s 
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The main challenge in correctly assessing the hazard component associated with TC risk is the 
short historical data record which is not sufficient to calculate risk of extreme events with high 
return periods. For example, to calculate the risk of a 200-year event a data record of at least 
10,000 years would be necessary. Contemporary TC hazard risk analysis mostly relies on 
catastrophe models that expand the short data records with a suite of thousands stochastic 
events. Stochastic events are simulated, physically realistic storm tracks that are created by 
statistically extrapolating historical records of past storms (Philip et al., 2019). While they 
include some statistically added fluctuations, their characteristics and parameters are largely 
similar to past observed events. This is due to the fact, that statistical models strongly rely on 
distribution of past observations while the underlying parameters generating those observations 
and the associated uncertainties are unknown (Woo, Maynard and Seria, 2017). This can lead 
to a systematic underestimation of TC probabilities which is also illustrated by ever more 
records being set within the last few years. Only recently a very active storm season in the North 
Atlantic with 30 named storms developing in 2020 kept everyone uneasy (Bertogg, 2021).  

2.2 Tropical Cyclone Forecast Data as Counterfactuals 
Within the last few decades prediction of TC tracks has improved remarkably due to progress 
in research and development of numerical weather prediction (Yamaguchi, Nakazawa and 
Hoshino, 2012). Since around 1990, multilevel global and regional dynamical models have 
become increasingly more accurate and replaced statistical or statistical dynamical models 
(Rappaport et al., 2009). Keys in this advancement were better assimilation of satellite data, 
improved model physics and higher model resolution. Another improvement in TC track 
predictions is due to the implementation of the ensemble prediction system. Instead of making 
a single forecast a set, or ensemble of forecast is produced to indicate the range of possible 
future states of the atmosphere. Ensemble TC track predictions perform better on average and 
are able to capture observed tracks that single deterministic predictions may miss.  
For each TC several forecasts containing several ensemble tracks are produced. This is a ready 
to use data base containing possible alternative track outcomes for past TCs. They are based 
upon the dynamic situation at several points in the development of the TC and account for slight 
differences in the atmospheric conditions. Compared to stochastically simulated TC tracks they 
are less biased towards the outcome of past events. Their range and distribution concerning TC 
variables are not guided by the same underlying assumptions about the distribution that is based 
in a short historical record.   
At each timestep the spread of the forecast members changes. Early storm forecasts will deviate 
stronger from the observed track record while forecast from later stages, e.g., closer to landfall, 
will more likely encompass the observed path of a storm. In this sense the probability of a 
forecast member representing the actual outcome changes with lead time. This is important 
when assessing the quality of forecasts. However, in counterfactual risk analysis the probability 
of occurrence associated with individual ensemble members is of less importance. The focus is 
rather how the observed TC could have turned out if the conditions were only slightly different. 
In that sense one can argue that each forecast member, independent on lead time, is a plausible 
alternative outcome of a past event, or a counterfactual.  
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3 Methods and Data 
To investigate alternative outcomes of past tropical cyclones, existing forecast data is used as 
source for counterfactual information. Bayesian statistical methods are applied to understand 
how the landfall distribution based upon forecast data changes from a distribution using only 
observed track data.   
The analysis is conducted for all six major TC basins. For each basin probability distribution 
of yearly landfall rates are analyzed aggregated across the basin as well as for each impacted 
country of the region individually. As the EP mainly is of interest for the USA, in this case the 
different US states are analyzed individually. 

3.1 Methods 
Statistical inference is concerned with learning something about a population based on data 
sampled from the population (The CTHAEH, 2016). The main goals are estimation of unknown 
parameters and data prediction. Bayesian inference is to model a set of data with a distribution 
depending on unknown parameters. It relies on Bayes’ Theorem which relates the probability 
of a parameter given the available data or observations to the model of the observations. The 
understanding of probability in Bayesian inference is rooted in terms of physical tendencies and 
degrees of beliefs rather than just the long-term frequencies on which frequentist inference is 
based on. Thus, probability can be seen as a measure of belief of a certain event occurring. The 
shape of the distribution expresses the belief as well as the attributed uncertainties for the belief 
in possible parameter values. 

3.1.1 Bayesian Inference of TC Landfall Rates 
This thesis models yearly landfall rates of TCs on observed landfall rates or counterfactual 
landfall rates based on forecast data. Yearly landfall rates can be represented as simple count 
data and thus be modelled as a Poisson random variable (Elsner and Bossak, 2001). We assume 
that observed yearly landfall (!) follows a Poisson mass distribution  

y~<=>??="(λ) (3.1) 

The probability of an observation ! is  

$(!|&) =
λ6A78

!! , C=D	! = 0,1,2, …	 (3.2) 

λ is called a parameter, or rate, of the distribution controlling the distribution’s shape. It can be 
any positive real number. ! on the other hand, must be a non-negative integer. A useful property 
of the Poisson mass distribution is that its expected value is equal to its parameter, i.e.: 

-[!|&] = & (3.3) 

meaning λ represents the average number of yearly landfalls or mean landfall rates. With λ 
being the single parameter governing the distribution of yearly landfalls the Bayesian inference 
analysis is defined by modelling the belief in &. While the value of & is unknown, Bayesian 
inference attributes a probability function to it based upon the knowledge and observations of 
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yearly landfall rates. The goal is to arrive at a probability distribution representing the 
probability of all possible values for the unknown parameter &. Put into Bayes’ formula it 
follows  

$(&|!) =
$(&)$(!|&)

$(!)  (3.4) 

which reads as the probability of the parameter & given the observations ! to the model $(!|&) 
that we assume for the observations. $(&) is the prior distribution for &	which represents the 
initial guess or previous knowledge about the parameter. Bayesian inference is to update the 
initial belief based on the available observations. The resulting probability distribution for & is 
called the posterior distribution, $(&|!). The marginal distribution, $(!), is independent of the 
parameter & which means it is a constant and can be omitted: 

$(&|!) ∝ $(&)$(!|&) (3.5) 

Prior 
For a model using a Poisson distribution it can be shown analytically that the prior as well as 
the posterior distribution of the parameter governing the process can be represented in a gamma 
distribution (e.g. see Donovan and Mickey, 2019; Gelman et al., 2020). In Bayesian terms, the 
gamma distribution is used as a conjugate prior for the Poisson distribution. The prior 
distribution represents the belief in each possible value for &  before introducing new 
observations. Also, it expresses the model of the data to generate the posterior distribution, 
$(&|!) (Donovan and Mickey, 2019). After deriving the likelihood $(!|λ), which is of the 
form λ'A7"8, it follows, that the prior distribution must be in the form  

$(λ) ∝ A798λ:7; = J4334(0, 2), (3.6) 

which is a gamma density with hyperparameters 0 and 2 (Gelman et al., 2020). The gamma 
distribution is a continuous probability distribution of the probability density function. The 
hyperparameters are referred to as shape (0) and the rate (2). They are the guiding parameters 
of the gamma distribution. As such they not only represent the previous knowledge about & but 
they also express the uncertainties regarding the belief in $(λ) representing the true value of &. 
They are related to & through the following formula: 

& =
0
2 (3.7) 

Posterior 
The gamma distribution is a conjugate distribution which can be updated with Poisson 
distributed data. The resulting posterior distribution is also a gamma distribution with updated 
hyperparameters. The effect of the new information or data used is then expressed in terms of 
changes in parameter values (Donovan and Mickey, 2019). It follows the posterior distribution 

$(&|!)	~	J4334(0 + "!<L, 2 + ") (3.8) 
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where !* = (!;, … , !=) is a vector of independent and identically distributed observations. " is 
the number of years observed. By modelling TC landfall rates in this manner, it is possible to 
arrive at a posterior distribution mathematically. 

Posterior Predictive (PP) Distribution  
Based upon the posterior belief for λ, the next step is to predict future landfall rates, !+. While 
observed landfall rates follow the distribution $(!|&), the true value for & is not known. To 
account for the uncertainties, we average over all possible values of & to get a better idea of the 
distribution of yearly landfall rates. The basic idea is to randomly sample possible values for & 
from the gamma posterior distribution and then sample random values for yearly landfall rates 
from a Poisson distribution based on the sampled value for &. Analytically it can be shown that 
the resulting posterior predictive distribution follows a negative binomial distribution with the 
following parameters (Gill, 2015):  

!+~	MN O0 + "!P,
1

" + 2 + 1Q (3.9) 

3.1.2 Practical Calculations 
Within this analysis the prior distribution is built by fitting a gamma distribution to observed 
yearly landfall rates up to 2007. The observed mean landfall rates for this period, 6)*#+, thus 
represent the prior estimate for λ:  

6)*#+ =
!>--?7= + !>--?7(=A;), …+ !>--?

"  (3.10) 

By choosing values for the hyperparameters shape (0) and the rate (2) it is expressed how high 
the certainty is that 6)*#+ represents the true value of &. The hyperparameters are chosen in a 
way that the relationship expressed in equation (3.7) is met: 

-[&] = 6)*#+ =
:
9.  (3.11) 

Figure 3.1 illustrates how different values for the hyperparameters change the certainty for λ. 
Narrow distributions imply a very high certainty for our belief in λ, while a broad distribution 
implies high uncertainties for the mean landfall rates based solely on data up to 2007. Within 
this analysis several values for scale and rate were tested but finally the parametrization of the 
prior distribution was chosen as follows: 

0 = 	6)*#+ ∗ 2 and 2 = 4. 

As the dark red curve in Figure 3.1 shows, these values express some confidence in previous 
landfall rates while still expressing a rather high level of uncertainty acknowledging the fact 
that the data used for the prior landfall rates is very short. Also, the data is influenced by 
available data quality which differs among regions, time periods and providing agency. For the 
analysis across basins, countries, and providers to be comparable the same values for 0 and 2 
were used for all the analysis represented. It should be noted however, that is a strong 
simplification, as one cannot assume that the uncertainty is the same for all regions, countries 
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or time periods used for the calculation of	6)*#+. However, this allows for a higher comparability 
across case studies. 

 

In a next step, the prior distribution is updated by incorporating new information of landfall 
rates from 2008 to 2019. On one hand this is done using observed landfall rates as a reference 
distribution. On the other hand, the posterior belief is updated with counterfactual landfall rates 
based on forecast tracks. A scenario of counterfactual landfall rates represents one in many 
possible combinations of all available forecast members. With the large number of forecast 
tracks for each TC in the period 2008 to 2019 there can be as many posteriors built as there are 
forecast track combinations.  
The mean of the gamma posterior distribution represents the expected value for λ based upon 

the added information, E[&|!] = :A=6!C
9A= . The variance of the distribution is :A=6!C(9A=)". The posterior 

distribution is denoted as $(λ|!!"#) for the posterior belief based on observed landfall rates for 
the period 2008-2019. The posterior belief based on the worst-case scenario with the highest 
possible numbers of landfalls is denoted as $(&|!$%&'(). The respective mean values of the 
posterior distributions are E[&|!!"#] and E[&|!$%&'(].  

The posterior predictive distribution based upon the observed or counterfactual landfall rates 
portrays how future landfall rates, !+, would be expected given the respective scenario. Their 
distributions for observed and worst-case scenarios are denoted as $(!+|!!"#) and $(!+|!$%&'() 
respectively. 

The negative binomial posterior predictive distribution has the same mean value as the posterior 
distribution,	:A	=6!C9A= . The variance however is greater for the posterior predictive distribution and 

Figure 3.1: Gamma probability mass distribution depending on chosen hyperparameters. Illustrated based upon !!"#$ for the 

NA using data from 1980 to 2007. For all analysis presented in this thesis the hyperparameters used are α=!!"#$*β and β=4 

(dark red line).  



 16 

defined as :A	=6!C(9A=)" (2 + " + 1). This is due to the additional uncertainty based on the fact, that 

we are sampling new data values. 

3.2 Data 
For the Bayesian inference analysis of counterfactual information two datasets are necessary. 
A dataset of observed TC tracks is necessary to build a prior knowledge or belief of past landfall 
rates as well as the reference for the counterfactual scenarios. A dataset of TC forecast tracks 
is used as a basis to build different counterfactual scenarios. 

3.2.1 Observed Tropical Cyclone Data 
The most complete set of tropical cyclone data available is the International Best Track Archive 
for Climate Stewardship (IBTrACS) dataset from the National Oceanic and Atmospheric 
Administration (NOAA) (Knapp et al., 2010). It contains a global collection of best-track data 
combining data from different agencies worldwide. Best-track data of a tropical cyclone 
contains the best estimate of storm position and intensity at intervals of 6 hours. If there is data 
available from several agencies for one single event, the information is combined using 
objective techniques that account for the differences between the international agencies (Knapp 
et al., 2010). 

As historic TC data this thesis uses data from the IBTrACS Project, Version 4 for the NA, EP, 
WP, NI, SI and SP basin (Knapp et al., 2018). As the IBTrACS dataset is a collection of best-
track data rather than a reanalysis the data available is strongly influenced by methods used by 
different agencies and time periods. For some regions the dataset contains TC data back to 1848 
but global records spanning all basins only date back to 1945. TCs originally were mostly of 
interest for shipping and only in the late 1950s and 1960s there was an increased interest in 
their climatology and the risk they pose for coastal communities (Knapp, 2019). In the same 
period routine aircraft observations were introduced, improving location estimates. Another big 
improvement in TC reporting came with the incorporation of data provided by satellites. First 
meteorological satellite observations in 1960s were merely able to identify systems from space. 
However, with routine microwave imager satellites starting in the 1980s observations on rain 
structure, expanse of winds, as well as the eye position improved considerably. Thus, TC data 
from 1980 on is considered to be the modern era, as geostationary satellite coverage was nearly 
global and global coverage from polar orbiting data was more widely available.   
To account for this difference in data availability and quality and to gain more insight into the 
sensitivity of the analysis on the prior information, two time periods are compared: 1950-2007 
and 1980-2007. All BI analysis is carried out using prior information based upon the two 
periods individually.   
One problem when counting storms in IBTrACS is that the operational procedures when 
including storms in TC reporting are dependent on the different agencies and may have changed 
over time. For example, some agencies may include tropical depressions and sub-tropical 
storms while others do not. To account for this fact, within this analysis only named tropical 
cyclones are included. Not named storms are in general cyclones that never reach an intensity 
higher than a tropical depression and therefore usually are not analyzed in much detail. Thus, 
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by only including named storms some of the mentioned issues can be avoided. However, for 
future analysis more detailed analysis of the included TCs might need to be considered (see e.g. 
Schreck et al., 2014). Another, more practical reason for only including named storms is also 
the problem of matching not named TCs across the different datasets of historic and forecast 
data.   
The IBTrACS dataset for the NA basin includes 1078 tracks within the period 1950 – 2019. 
748 of those tracks are named tropical cyclones. For the other basins the numbers are similar 
(see Table 3.1). An exception is the NI basin. For this basin named tracks only exist from 2005 
onward. For this reason, the analysis of the NI basin includes all available tracks. 

Table 3.1: Number of IBTrACS tracks and landfalls per basin and period. 

 
NA EP WP NI* SI SP 

IBTrACS dataset  
1950-2019 

all tracks 1078 1228 2040 608 1166 798 
named tracks 748 971 1728 55 845 514 

landfalling tracks 462 334 1421 479 402 380  
61.76% 34.40% 82.23% 78.78% 47.57% 73.93% 

Prior period 1 
1950-2007 

named tracks 571 749 1440 543 691 413 
landfalling tracks 360 245 1171 428 336 311  

63.05% 32.71% 81.32% 78.82% 48.63% 75.30% 

Prior period 2 
1980-2007 

named tracks 318 484 701 137 549 366 
landfalling tracks 188 148 583 114 186 195  

59.12% 30.58% 83.17% 83.21% 33.88% 53.28% 

observation 
period 

2008-2019 

named tracks 177 222 288 65 154 101 
landfalling tracks 102 89 250 51 66 69  

57.63% 40.09% 86.81% 78.46% 42.86% 68.32% 
* As NI basin only has named tracks starting in 2005 all tracks are included for this basin.  

For the analysis of the variable landfall only the positional information of latitude and longitude 
is needed. Landfall occurs when the area of strongest wind i.e., the eyewall, crosses the 
coastline or comes within 50 km of it. The variable used in the Bayesian Inference are yearly 
landfall rates. Those are simple counts of tracks making landfall within each year and are 
calculated for the entire basin as well for all relevant countries individually. Figure 3.2 gives an 
overview over the yearly landfall rates of the entire dataset across the different basins.   
As for the SI and SP the main TC season is in winter the landfall rates are not calculated yearly 
but rather for the TC season. For both basins a TC season spans TC tracks from August of the 
previous year until July of the indicated season year. Thus e.g., when mentioning the reference 
period from 2008-2019 for the SI and SP basins this in fact refers to seasons 2009-2020 
including data from August 2008 until July 2020.  
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3.2.2 Forecasting Data and Counterfactual Scenarios 
The forecast data used within this thesis is part of The Observing System Research and 
Predictability Experiment (THORPEX) which is a big component of the World Weather 
Research Programme under the World Meteorological Organization. The THORPEX 
Interactive Grand Global Ensemble (TIGGE) was initiated in 2005 and contains among many 
more forecasting data a dataset of tropical cyclone track data (Bougeault et al., 2010). This 
dataset called TIGGE Model Tropical Cyclone Track Data (further simply referred to as TIGGE 
dataset) holds model analysis and forecast data from several international meteorological 
agencies. The dataset contains track data since 2008 and is updated daily (National Centers for 
Environmental Prediction/National Weather Service/NOAA/U.S. Department of Commerce et 

al., 2008).   
For each TC event and provider there are several forecasts available, which in turn contain 
several forecast members. Also, the number of available forecasts and members varies greatly 
among TC events. The available forecast track variables depend upon the providing agency but 
in general include name, time, position (latitude and longitude), minimum pressure, maximum 
wind at 6-hourly intervals after the start of the forecast. Although there are TC forecast data 
available from several agencies world-wide, only the data from two agencies span the entire 
period from 2008-2019 without considerable data gaps. Thus, only data from the following 
providers are used and compared in the data analysis: 

- KWBC - National Centers for Environmental Prediction, National Weather Service, 
NOAA, U.S. Department of Comerce and Meteorological Service of Canada, 
Environment Canada 

- ECMWF – European Centre for Medium-Range Weather Forecasts 

Figure 3.2: Bar chart of yearly number of named TCs (grey) and landfall rates (blue) for the individual basins. Red line 

indicates the cut-off year or season for the data used to calculate the prior distribution (left of red line). Data on the right of 

the red right are used to calculate the reference posterior distribution (observation period). *NI dataset also not named tracks 

are included. 
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To be able to compare the different providers for each basin a set of counterfactual histories is 
created based upon forecast members from the KWBC, the ECMWF or the combined dataset 
using tracks from both providers.  Table 3.2 gives an overview over the available number of 
events and tracks within the TIGGE dataset. For example, the KWBC provides for the NA 
basins 171,684 forecast tracks that span 432 storm events for the period between 2008 and 
2019. To be able to create credible counterfactual landfall rates for the period 2008-2019, the 
track data used must be comparable to the dataset of observed landfall rates in the same period. 
Thus, only forecast tracks for named storms in the IBTrACS dataset were selected. Next to 
named TC events the TIGGE dataset also contains forecasts for not named TCs as well for 
invest tracks. Invest tracks are forecast for areas of disturbed weather, where possibly a TC 
could develop and thus are monitored. After the selection according to named observed tracks 
(IBTrACS), the number of NA tracks is reduced from 84,061 tracks (Table 3.2). To arrive at a 
robust dataset several checks and corrections had to be implemented as described in the 
following.  

Table 3.2: TIGGE - Number of events and forecast tracks. The selected tracks show the sum of all forecast members across 

the selected named TC events. The events are selected by name and cross-referenced with observed TC of the same period. 

The difference of the selected and observed events indicates the number of missing events in the TIGGE dataset. 

Basin Provider 
Number of 

TIGGE 
events 

Number 
individual 

tracks 

Selected  
(observed) 

events 

Selected 
tracks 

NA ECMWF 314 110596 176 (177) 85337 
KWBC 432 171684 156 (177) 84061 

EP ECMWF 417 126291 222 (222) 104472 
KWBC 516 185061 182 (222) 96258 

WP ECMWF 333 169134 281 (288) 149901 
KWBC 681 237864 254 (288) 131631 

NI ECMWF 64 17218 48 (65) 14162 
KWBC 104 23105 33 (65) 14899 

SI ECMWF 374 128051* 153 (154) 62553 
KWBC 375 120251 144 (154) 68391 

SP 
ECMWF 374 128051* 100 (101) 40657 
KWBC 229 75403 94 (101) 47506 

* Within the data provided by the ECMWF tracks for the SI and SP basins are compiled in a single 
dataset.  

Treatment of TIGGE Data and Data Problems 
The TIGGE database is a collection of forecast ensembles from different agencies. As such, 
they make available data on TC forecast tracks as provided by the agencies and are not further 
homogenized or otherwise quality controlled. This means that differences across basins, time 
periods and providers are not accounted for. As within this thesis only the track or path is 
relevant only the variables time and location are included. Systematic errors in track geometry 
are difficult to detect and correct for. The biggest obstacle is, that a visual check of the track 
information is unavoidable. However, looking at the sheer number of tracks which is overall 
several hundred thousand tracks this cannot be done for each single track. Thus, there is no 
thorough analysis or homogenization implemented in the presented analysis. However, some 
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simple quality controls are conducted. Tracks meeting the following criteria are excluded from 
the data analysis: 

- duplicate tracks 
- tracks with 2 or less timesteps 
- tracks located out of bounds of basin 
- tracks with unnatural changes in location between 2 timesteps (chance > 10°) 

The tracks are grouped by event name and time to create individual events. For each named 
event in the TIGGE dataset a visual check allows for correction of the following issues: 

- reversed latitude  
- wrong attribution of event name 

Finally, the grouped dataset is cross referenced with the IBTrACS dataset to select all observed, 
named, tracks within the period. The problem with this selection by name, is that possible 
forecasts from an earlier stage of an event will not be included, as they are not yet named 
correctly. For example, if an invest tracks later develops into a named storm not all forecasts 
from earlier stages will be attributed with the later storm name. However, due to the large 
number of events in the TIGGE dataset a correction of all not named or invest is not conducted.
  
Further, for most basins not for all observed events forecast tracks is available (see Table 3.2). 
For some regions and periods there are gaps in the available data, especially in the earlier years 
of the period. For example, for the years 2008 and 2009 there are several months of data missing 
from the KWBC dataset. In the NA for example, out of the 177 IBTrACS events only for 156 
events are forecast tracks available in the KWBC dataset. A much bigger gap exists for the NI 
basin. As for this basin, also non-named tracks had to be included there are several events where 
no forecasts are available.  
To still be able to achieve a full set of events, the missing events in the TIGGE dataset were 
replaced with the observed IBTrACS track. This means however, that for those events no 
counterfactual tracks are available and only one outcome (landfall or no landfall) could be 
considered. 

Creating Counterfactual Scenarios 
Landfall is calculated for the whole basins as well as for individual countries for each forecast 
member. Counterfactual scenarios of landfall rates are created by sampling a forecast track for 
each observed track in the period 2008 – 2019. The resulting yearly landfall rate represents one 
possible counterfactual scenario of how the landfall could have been distributed within the 
observed period. As with random sampling of the forecast tracks not the entire range of possible 
counterfactual scenarios could be covered the counterfactual scenarios were created manually.
  
To this purpose, for each subset of individual provider and basin or country the probability of 
an event making landfall is calculated based on the number of landfalling tracks compared to 
the total number of forecast tracks: 
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With the thesis’ focus on downward counterfactuals the scenario of most interest is the worst-
case scenario. This scenario assumes landfall for an event if at least one of the forecast tracks 
make landfall. Thus, all events with landfall probability higher than 0 were included. To then 
build a range of possible counterfactual scenarios the events were sorted by their landfall 
probability. For each new history the event with the lowest probability of landfall is assumed 
to not make landfall. The final scenario represents the best-case scenario and assumes only 
landfall for events where the probability of landfall is equal to 1, meaning all forecast tracks 
make landfall.  
This thesis focuses on exploring counterfactuals in terms of their range and focuses on what 
extremes downward counterfactuals can reveal. Therefore, a further analysis of the probabilities 
regarding a TC making landfall based on the percentage of landfalling forecast tracks is not 
included in this thesis.  

4  Results and Discussion 
As described above, the Bayesian inference of yearly landfall rates are conducted for the 
different … 

… prior distributions based upon the period (1950-2007 vs 1980-2007),  

… providing agencies of counterfactual data (forecast data from KWBC vs. ECMWF vs. 
KWBC+ECMWF)  

… basins and countries (NA, EP, WP, NI, SI, SP) 

The focus of the results presented, is how the incorporation of counterfactual TC data change 
our belief for yearly landfall rates in comparison to the same Bayesian Inference using observed 
TC data.  
For the individual basins and countries not all results across case studies are shown. For the 
analysis across basins, an extended version, including results of each case study across prior 
period and provider can be found in Appendix A. 

4.1 Observed TC Landfall Rates 
As seen in Figure 3.2, the data availability is not the same for all basins. For the NA and the 
WP TC best-track data are available all the way back to 1950. For the SI, SP and EP however, 
data is only reliably available since the 1960s. For the NI best-track data goes back to the 1950s, 
but the dataset contains an abrupt shift in the number of TC events around 1980. This shift is 
strongly informing the prior distribution, as the mean values for the two compared periods differ 
by 3.3 landfalls a year (Table 4.1). However, for none of the other basins the differences in 
mean values are bigger than 1. With such small differences the period used to form the prior 
distribution does not have a great impact on the BI analysis. This is tested by updating the prior 
probability by adding new observed landfall rates for the period 2008 to 2019. The right side 
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of Table 4.1 shows how adding observed landfall rates influences the posterior belief in λ. The 
comparison of posterior distributions depending on different priors shows very little differences 
across the two case studies. In fact, they are even smaller than the prior mean values, as by 
introducing new information the distribution shifts towards the newly added data (Figure 4.1).  

Table 4.1:Comparison of prior mean values of yearly landfall rates based on periods and difference between them (left). 

Comparison of resulting posterior belief in ", based on updated belief using observed TC landfall rates 2008-2019 as well as 

difference of the two posteriors based on different priors (right).  

 Prior Posterior observed 

Basin $!"#$%& 
1950-2007 

$!"#$'& 
1980-2007 ∆µ!"#$ '[)|+()#] 

1950-2007 
'[)|+()#] 
1980-2007 ∆E[λ|)()#] 

NA 6.207 6.714 0.507 7.927 8.054 0.127 
EP 4.824 5.286 0.462 6.768 6.884 0.116 
WP 20.190 20.821 0.632 20.672 20.830 0.158 
NI 7.379 4.071 -3.308 5.032 4.205 -0.827 
SI 6.857 6.643 -0.214 5.839 5.786 -0.054 
SP 6.347 6.964 0.617 5.899 6.054 0.154 

 

Again, the exception is the NI basin, which is strongly influenced by the big shift in observed 
landfall rates. Noticeable across the basins is that except for the NI and SI basins, the mean 
value in the prior period starting 1950 is lower than for the period starting 1980. Comparing the 
posterior belief across basins shows further, that by adding data from 2008 – 2019 the 
probability distribution shifts towards higher mean yearly landfall rates for all basins except the 
SI and SP basin. For the NI basin the same trend is only observed for BI based on prior data 
incorporating data from the modern era ( 6)*#+.- ). This suggests, that for the northern 
hemisphere there seems to be an increase in yearly landfalls across the compared periods. 
The same patterns can be observed looking at the prior distributions for the individual countries. 
With a few exceptions such as India or Bangladesh most mean values are higher for the $(	λ.-) 
and mostly the differences are relatively small. The main exception is India with a difference 
6)*#+.- −	6)*#+,- =	−3.22. All other countries show differences of less than 1 landfall a year. 
Also, the trends in the posterior beliefs show a tendency towards higher beliefs in λ	for the 
northern hemisphere. Although there are a few exceptions, none of them show a big decrease 
in yearly landfalls. When updating the belief using counterfactual data, for the worst-case 
scenario the posterior distribution, $(	λ|!$%&'(), shows the same patterns as $(	λ|!!"#). Also, 
here the differences are relatively small for all basins (Table A 1). 

As mentioned in chapter 3.2.1 the data availability for the different basins largely depends upon 
reporting practices of the different agencies contributing to the IBTrACS dataset (Knapp, 
2019). Most prominent is big shift in yearly TC numbers for the NI basin. This can be explained 
by the selection upon which TCs are included in the IBTrACS. Up to around 1979 all TCs, 
tropical storms and tropical depressions are included in the dataset. From around 1980 onward 
only TC or tropical storms are included in the dataset, while tropical depressions are no longer 
included. This problem however only occurs for the NI ocean as usually tropical depressions 
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are not named and thus not included. But as mentioned for the NI all TCs had to be included, 
as they were not named up until 2005.  

 

For all basins it needs to be considered, that not all regions had the same amount and quality of 
TC observations especially before the modern era of widely available satellite data starting 
around 1980. This means on a global scale the data from the modern era are more reliable, 
especially when comparing different basins. This difference in data availability could also 
explain the fact, that the average landfall rate is higher for the modern observation era.	Before 
satellite observations there certainly were more missed storms. Thus, just by comparing those 
two periods one cannot make any assumptions about trends in number of TCs.   
When looking at the posterior distribution based on observed IBTrACS data (Table 4.1), it 
becomes noticeable, that for most basins the posterior belief shows a shift towards higher 
expected values for λ. One might argue that TC forecasts are constantly improving and the 
period after 2008 still has a lower number of missed storm, than the period from 1980-2007. 
Another explanation could be that there was a change in the practice of naming storms. 
However, this could be different for different basins and providers and therefore difficult to 
reconstruct. When assuming that there are no significant changes in practices and quality of the 
best-track data, these results suggest an increase in landfalling TCs for the basins in the northern 
hemisphere. The IPCC Assessment Report 6 attributes low confidence towards most reported 
long-term trends due to the heterogeneous character of the best-track data (IPCC, 2021). As for 
the global frequency of TCs the IPCC suggest that it will likely remain essentially unchanged 
or decrease. This is however on a global scale and does not directly apply for the landfall 
frequency as well. The landfall frequency might also be dependent on shifts in the tracks itself. 
For example, Lackmann (2015) illustrated, that in future projections for Hurricane Sandy the 
landfall would be expected more than 200 km further north-northeast than the observed landfall 
in New Jersey.  
So, whether there is a clear trend or not, this is where the method of BI can be of high value as 
it incorporates the notion of learning from new data and incorporating multiple hypothesis for 
λ by expressing our belief in a probability distribution.   
Overall, for most basins the differences in the prior distribution based on the two compared 

Figure 4.1: Comparison of 

average yearly landfall rates for 

two prior periods 1950-2007 and 

1980-2007. Grey: mean landfall 

rate of the observation period. 

Blue: expected mean landfall for 

the posterior distribution based 

on observed landfall rates 2008-

2019.  
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periods are relatively small. Considering the knowledge about quality and completeness of the 
data it must be assumed that data from the modern era is of better consistency than pre 1980 
data. Thus, in the following only results from BI analysis using prior information from 1980-
2007 are considered. As such, the regime shift in the NI basin does not influence the results and 
for all basins the data availability on which the prior is bases is comparable.  

4.2 Counterfactual Scenarios 
As described in chapter 3.2.2 downward counterfactual histories are built by incorporating all 
possible landfalls for the worst-case scenarios. The best-case scenarios however only 
incorporate landfalls for TCs when all forecast members make landfall. Table 4.2 gives an 
overview over the historic mean landfall rates and the sum of landfalls for the observed period.  

Table 4.2: Comparison of average landfall rates and number of landfalls for the observation period 2008-2019 for range of 

counterfactual scenarios based upon data from different providers. The best-case scenario is built using a combination of 

forecast members of all events arriving at the lowest mean landfall rate. The worst-case scenario is the combination leading 

to the highest mean landfall rate. 

 IBTrACS  KWBC ECMWF KWBC+ECMWF 
Basin mean LF sum CF scenario mean LF sum mean LF sum mean LF sum 

NA 8.50 102 
best-case 2.75 33 2.58 31 2.25 27 

worst-case 11.00 132 10.83 130 11.67 140 

EP 7.42 89 
best-case 1.50 18 1.00 12 0.83 10 

worst-case 14.75 177 14.58 175 15.58 187 

WP 20.83 250 
best-case 7.08 85 5.83 70 4.33 52 

worst-case 23.42 281 23.42 281 23.58 283 

NI 4.25 51 
best-case 2.75 33 2.92 35 2.17 26 

worst-case 4.58 55 4.83 58 5.00 60 

SI 5.50 66 
best-case 1.33 16 1.92 23 1.08 13 

worst-case 11.83 142 10.58 127 12.50 150 

SP 5.50 69 
best-case 1.33 16 1.42 17 1.17 14 

worst-case 8.00 96 7.67 92 8.25 99 
 

It compares the range from the worst- to best-case scenarios for the different providers KWBC, 
ECMWF, and the two combined. Combining the two datasets achieves the largest range of 
counterfactual scenarios. Due to the higher number of forecast tracks considered it is more 
likely that at least one forecast member of an event will make landfall. As such, when looking 
into downward counterfactuals when combining the two datasets more and higher extremes can 
be produced. However, the differences across the three case studies are in general relatively 
small consisting of a few events more or less making landfall. Figure 4.2 illustrates landfall 
sums across the period for the worst-case scenario across different case studies. For example, 
the worst-case scenario for the SP basin includes a sum of 96 landfalls for the KWBC dataset 
and 92 landfalls for ECMWF. When combining the two dataset a total sum of 99 landfalls can 
be achieved. The biggest difference is seen for the SI basin where the KWBC and ECMWF 
count 142 and 127 landfalls respectively and the combined dataset 150. Overall, the influence 



 25 

of the data from different providers on the counterfactual analysis is relatively small (Appendix 
A). 

 

The range of the counterfactual scenarios from best to worst-case is very large and shows large 
deviations towards the observed landfall rates. While there are many better case scenarios 
where some of the landfalling TCs could have potentially missed the coast, there are also many 
TCs where some or at least one forecast member predicted a possible landfall. The sum of all 
landfalls as well as the mean value for the worst-case scenarios across the different providers 
show a large increase compared to the observed landfall rates. Compared to the reported 89 
landfalls in the EP basin between 2008 and 2019 (mean of 7.42 landfalls per year), the 
counterfactual worst-case scenario of the combined dataset with its 187 landfalls (mean of 
15.58) shows more than a doubling of the yearly landfall rates. Lower values are observed for 
the NA, WP, and NI basins (Table 4.2). For example, in the NI basin there were 51 landfalling 
TCs observed, while the worst-case scenario counts 11 more landfalling TCs.   
The small differences across providers reflect the fact, that both the KWBC and ECMWF are 
well established forecast centers producing comparable forecasts data for all TC basins. A more 
thorough analysis on an event level however might reveal more differences in the forecasting 
and possible landfall of individual events. Such differences are to be expected as the two 
forecast agencies have their own models with different parametrizations. One such example 
illustrating these differences was Hurricane Sandy in 2012. Sandy took an unexpected left turn 
making landfall in southern New Jersey leading to large casualties and damages. This left turn 
was not detected in the early forecasts from the US agencies, while the ECMWF model did 
show earlier forecast members modelling similar trajectories. This difference can be attributed 
to choice of cumulus parametrization which is different in the European model (Bassill, 2014). 
When looking into downward counterfactuals and worst-case scenarios it makes sense to 
include as much possible forecast tracks from different models and providers, as the span of 
alternative outcome will become broader. This is shown by the larger sums and mean values 
for the worst-case scenario of the combined dataset. Also, the spatial density of the data can be 
further increased due to the larger number of forecast tracks and gaps in data availability can 
be reduced.  

Figure 4.2: Comparison 

of worst-case scenarios 

across providers. Sum of 

landfalls for the period 

2008-2019. Observed 

landfalls as a comparison 

in grey. 
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Resulting from this vast availability of alternative tracks is also a larger difference between the 
worst-case and observed landfall rates. The analysis reveals many near-miss events where a TC 
might have made landfall if the synoptic situation were only slightly different. The 
accumulation of several worse-case scenarios for those TC could potentially have led to much 
more landfalls in the past. Depending on the region of the landfalls the resulting hazard damages 
and losses could be devastatingly worse than what was observed. However, while this thesis 
mostly focuses on downward counterfactuals one should notice that not all TCs with landfalling 
forecast members had the same likelihood of actually making landfall. For future analysis, one 
could look further into the individual probability of each TC making landfall. This would for 
example mean to incorporate the percentage of forecast members making landfall.  
While the worst-case scenarios for the individual basins objectively might not be very probable, 
they nevertheless are very interesting when exploring the realm of possible future landfalls. 
While there are no clear trends in the overall frequency of TCs there is substantial literature 
suggesting trends towards more intense landfalls and an increase in TCs of category 3 and 
higher (IPCC, 2021). Thus, a downward counterfactual analysis of TC variables can help 
incorporating extreme storm seasons in risk analysis.   
A thorough comparison of the different case studies depending on the providing agency was 
not done for the individual countries. However, preliminary results show similar features while 
especially for small states the difference between the two agencies can be larger. This further 
reinforces the argument towards a combined dataset using as many possible forecast members 
as available. In this sense, the following analysis of the posterior belief based on counterfactual 
information and the resulting expected values for future TC landfall rates are presented only 
for the case study based on the combined dataset from the KWBC and ECMWF.  

4.3 Counterfactual Posterior and Posterior Predictive Distribution 
In the following the results of the Bayesian inference analysis of counterfactual landfall rates 
is presented in more detail for all basins. The presented results only include BI using a prior 
distribution based on landfall rates from 1980-2007 and observations or counterfactuals from 
2008-2019. The counterfactual scenarios discussed are based on the combined dataset from the 
two providers KWBC and ECMWF. Table 4.3 and Figure 4.3 give an overview for the posterior 
distributions while Table 4.4 and Figure 4.4 illustrate the results for the posterior predictive 
distribution. The results for the individual countries are summarized in Appendix B. Further, 0 
shows the predictive distributions for all countries. 
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Figure 4.3: Posterior distributions based upon different landfall scenarios for 2008-2019 for all basins. Blue line is posterior 

distribution based on observed landfall rates. In different shades of red are the individual posteriors based on counterfactual 

landfall rates from the best-case scenario (left, light red) to the worst-case scenario (right, dark red). Grey line is prior 

distribution as a reference. All distributions are based on the prior using historic data from 1980-2019 and forecast data from 

the combined dataset KWBC+ECMWF.  

Figure 4.4: Posterior predictive distributions based upon different landfall scenarios for 2008-2019. In blue is posterior 

predictive distribution based on observed data. In different shades of red are the individual posteriors based on counterfactual 

scenarios from the best-case scenario (left, light red) to the worst-case scenario (right, dark red). Grey shading is prior 

distribution as a reference. All distributions are based on the prior using historic data from 1980-2019 and forecast data from 

the combined dataset KWBC+ECMWF.  
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Table 4.3: Mean landfall rate for prior period and expected mean landfall rate for posterior distribution from observed data 

and counterfactual data. 

Basin Mean prior 
)!"#$'&  

Mean posterior 
observed 
'[)|+()#]  

Mean posterior 
worst-case 
'[)|+*+,-.]  

Difference Posteriors 
'[)|+*+,-.] − '[)|+()#] 

(Change in %) 

NA 6.71 8.05 10.43 2.37 (+29%) 
EP 5.29 6.88 13.01 6.12 (+89%) 
WP 20.82 20.83 22.89 2.06 (+10%) 
NI 4.07 4.21 4.77 0.56 (+13%) 
SI 6.64 5.79 11.04 5.25 (+91%) 
SP 6.96 6.05 7.93 1.88 (+31%) 

 

Table 4.4: Posterior predictive distribution. Probability of maximum observed event or higher for different posterior 

predictive distributions (observed vs. counterfactual) and difference (left). Comparison of extreme events at the 95th 

percentile for the different probability posterior distributions (right).  

Basin 

Max. 
observed 
y 80-07 
(+012) 

3(+5
≥ +012| 
+()#) 

3(+5
≥ +012| 
+*+,-.) 

∆3(+5 ≥
+012) 

[%] 
'[+5/%0|+()#] '[+5/%0|+*+,-.] 

NA 17 0.002 0.024 2.17% 13 16 
EP 10 0.097 0.741 64.44% 12 19 
WP 28 0.058 0.129 7.19% 29 31 
NI 10 0.005 0.012 0.69% 8 9 
SI 11 0.019 0.425 40.61% 10 17 
SP 15 0.001 0.010 0.87% 11 13 

4.3.1 Results for Individual Basins 

North Atlantic 
For the NA the posterior distribution based upon observed TCs between 2008 and 2019 already 
considerably shifts the belief of mean landfall rates towards higher values compared to the prior 
distribution. This is consistent with Figure 3.2, which shows overall higher numbers of yearly 
TC events within the last two decades. Out of the 177 TCs for the observation period 102 made 
landfall (Table 3.1). Considering counterfactual scenarios from different combinations of 
different forecast members the number of landfalls could have spanned between 27 for the best-
case scenario and 140 for worst-case scenario (Table 4.2). Looking at the worst-case scenario, 
the posterior distribution, $(	λ|!$%123), shifts significantly towards higher values. The mean 
of the posterior distribution, or the expected value for λ increases by 2.37 compared to the 
posterior belief based on observed values (E[&|!/0123] − E[&|!EFG] ) (Table 4.3). When 
looking at the distribution for expected future landfall rates, the posterior predictive 
distribution, $(!+|!$%&'(), we see a considerable increase in probability for higher landfall 
rates. A good illustration is the year 2005, marking the previous maximum in observed landfalls 
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(!345) with a total of 17 TCs intersecting the US coast. This is an outlier event due to very 
active storm season. In the PP distribution based upon observed LF rates, the probability of 17 
or more landfalls in a year, $(!+ ≥ !345|!!"#), is 0.0024. When looking at the worst-case 
scenario this PP probability increase by a factor of ten to 0.024. Based on the downward 
counterfactual worst-case scenarios extreme landfall rates in the future would be noticeably 
higher. An extreme landfall rate at the 95th percentile of the PP distribution, would be expected 
to be around 13 landfalls a year based on only observed data. For the PP distribution based on 
the worst-case scenario, such an extreme event would constitute of 16 landfalls a year.  
A spatially more detailed analysis of the basin shows the same positive trends in the posterior 
and posterior predictive distributions for the individual countries (Figure 4.5,Table A 2). The 
shift towards higher values for the worst-case scenario is more pronounced for the individual 
countries compared to the basin. Future landfalls rates at the 95th percentile are up to 7 landfalls 
a year higher for the worst-case scenario. Also, the expected value for λ shows a clear trend for 
all countries. Absolute numbers suggest a bigger difference in belief for the mean expected 
landfall rates for larger countries. However, percentage wise the shift is biggest for some of the 
small island states of the Caribbean, like the Dominican Republic or Guadeloupe where 
previous landfall data is very sparse. Also, when looking at the increase in the PP probability 
for the previously highest observed values, some of the smaller states show very big differences.  

 

East Pacific 
For the EP only few TC make landfall (Figure 3.2) and the landfall rates are relatively low for 
this basin. The average yearly landfall up to 2007, 6)*#+, is 5.29 and the mean value expected 
based on the reference posterior, E[&|!!"#], 6.88. As there are many named TCs not making 
landfall it is no surprise, that the range of all counterfactual histories is relatively big. While the 
best-case scenario only denotes 10 landfalls opposed to the observed 89, the worst-case scenario 

Figure 4.5: North Atlantic - Difference in expected future landfall rates at 95th percentile of posterior 

predictive distribution, #[%&%&'|%()*+,] − #[%&%&'|%-.#]. Top right: Zoom to Caribbean.  
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assumes 187 landfalls for the same period. As such the influence of the counterfactual 
information leads to posterior beliefs suggesting much higher values for & (Figure 4.3). Also, 
the posterior predictive distribution shows a large increase in the expected values for future 
landfall rates. The previously highest observed number of landfalls in a year is 10 landfalls. For 
the posterior predictive distribution $(!+|!!"#) a value of 10 or more has a probability of 0.097. 
Based on the worst-case scenario, $(!+|!$%&'(), the probability is 0.74 which is an increase of 
64.44 %.  
Also, for some individual countries and US states the differences between the worst-case 
scenario and the reference distribution are very big. For example, in Hawaii up to today never 
more than two landfalls in a year were reported and the historic posterior distribution shows a 
mean value of 0.71. This posterior value increases to 4.39 for the worst-case scenario. At the 
tail of the PP distribution the number of yearly landfalls at the 95th percentile increases from 2 
to 8 TCs (Figure 4.6/Table A 3).   
The data for US mainland needs to be viewed at with some caution. TCs usually move towards 
the west or north-west and away from the US mainland. This is the reason the TC risk is 
relatively low for continental US. However, at higher risk is Mexico, as EP TCs often form 
close to the Mexican coast. For Mexico the analysis of expected extreme landfall rates at the 
95th percentile shows a considerable increase from 10 to 17 landfalls for the worst-case scenario 
compared to observed data. An active storm year with such high numbers of TC could thus lead 
to considerable losses and damages in Mexico. 

 

 

West Pacific 
The WP is the basin with the highest number of named TCs as well as the highest landfall rates. 
Most of all named events for the WP already make landfall (Figure 3.2, Table 3.1). In 
comparison, a counterfactual analysis of landfall rates does not reveal many worse-case 

Figure 4.6: East Pacific - Difference in expected future landfall rates at 95th percentile of posterior 

predictive distribution,	#[%&%&'|%()*+,] − #[%&%&'|%-.#]. Relevant US states are shown individually while 

the rest of the US indicates the difference aggregated over the entire country. 
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scenarios. The increase in belief for & as well for future landfall rates is for the worst-case is 
the lowest across all basins in terms of percentages. The mean expected value for & increases 
from 20.83 to 22.89 from the historic data to the belief based on the worst-case. Nevertheless, 
the probability of the previous maximum observed landfall rate of 28 or more to occur in the 
future increases by 7.2 % (Table 4.4).  
Looking at the individual countries however, the picture changes immensely. Here the worst-
case scenarios differ strongly form the BI based on observed TCs. For example, in Japan the 
expected mean landfall rate is almost twice as high based upon the worst-case counterfactual 
scenario compared to the posterior using observed landfall data. The posterior belief attributed 
to & is 8.96 and 15.53 for $(λ|!!"#) and $(λ|!$%&'() respectively (Table A 4). Also, the belief 
in future extreme landfall rates changes considerably based on downward counterfactuals. In 
Taiwan for example the PP distribution using observed TC tracks assumes 5 landfalls a year 
for a storm year at the 95th percentile. The worst-case scenario for Taiwan however would 
expect 15 landfalls within a year (Figure 4.7).  

 

North Indian Ocean 
As in the WP basin in the NI most of the past TCs did make landfall. It makes therefore sense 
that the worst-case scenario with a sum of 60 landfalls does not by much exceed the observed 
51 landfalls. The difference between the posterior distribution $(	λ|!$%&'() and $(	λ|!!"#) is 
the smallest across all basins with E[&|!/0123] − E[&|!EFG] = 0.56. Also, the PP distribution 
show only little differences regarding expected future landfall rates (Figure 4.4). Up to 2007 
the highest observed landfall rate is 10 (!345). The probability of 10 of more landfalls in a 
year occurring in the future is very low for all observed and counterfactual scenarios. In the 
worst-case it only increases slightly. However, a landfall rate at or above the 95th percentile still 
increases from 8 to 9 landfalls within a year for the worst-case scenario.   
In contrary to the results for the WP here the zoom into different countries does not reveal as 
many worse-case scenarios for the different countries either. Still for the different countries the 
worst-case scenarios do differ stronger from the posterior and poster predictive believes based 

Figure 4.7: West Pacific - 

Difference in expected future 

landfall rates at 95th percentile 

of posterior predictive 

distribution, 

#[%&%&'|%()*+,] −
#[%&%&'|%-.#]. 
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upon observed landfall rates. For all countries the belief in λ increases and the probability of 
observing the previous highest landfall rates in the future increases for some countries by up to 
25 % (Table A 5). Future landfall rates at the 95th percentile for all countries increase by 1 or 2 
landfalls a year when comparing the worst-case scenario to observations (Figure 4.8). 

 

South Indian Ocean 
The SI is more comparable to the EP as there are only few TCs making landfall (Figure 3.2). 
This again leaves room for a big spread of counterfactual scenarios. For the period 2008-2019 
66 out of all 154 named TCs made landfall. By combining different forecast members however, 
the counterfactual scenarios show a range from 13 to 150 landfalls within the same period 
(Table 4.2). Percentage wise, the worst-case scenario in the SI shows the highest increase in the 
mean expected value for λ across all basins. The posterior belief based on observed TCs the 
mean landfall rate, E[&|!EFG], is at 5.79 landfalls a year. The worst-case scenario assumes 
almost twice as many with a mean value,	E[&|!/0123],	of 11.04. This is also expressed by a 
significant shift for the distribution of expected future LF rates (Figure 4.3). For example, the 
belief of observing the previously maximum observed landfall rate of 11 in the future increases 
by 40.6 % for the worst-case scenario. However, the PP distribution shows a much larger 
variance compared to other basins (Figure 4.4). This is due to the large difference of the 
counterfactual landfall rates to the prior information used for the Bayesian analysis.   
Looking at individual countries the difference from the reference distribution to the 
counterfactual worst-case posterior and posterior predictive distribution are most distinct for 
small island states such as Mauritius or Réunion (Table A 6). This is especially true when 
looking at the tail end of the PP distribution. In Mauritius for example, a yearly landfall rate at 
the 95th percentile would be 2 landfalls based on observed values. In the worst-case scenario 
the PP distribution would assume 8 landfalls for the same percentile.  

Figure 4.8: North Indian Ocean - Difference in expected future landfall rates at 95th 

percentile of posterior predictive distribution, #[%&%&'|%()*+,] − #[%&%&'|%-.#]. 
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South Pacific 
Within the SP basin 69 out of 101 occurring TCs between 2008 and 2019 made landfall. With 
around 68 % landfalls this is already a relatively high percentage. Still, the worst-case scenario 
shows a full 99 out of the 101 TCs making landfall (98 %). The resulting shift in posterior belief 
shows a difference of 1.88 landfalls a year form the posterior based on observed values to the 
worst-case scenario. The expected future values based upon the different posterior predictive 
distributions illustrate the same shift towards higher landfall rates. In the past the highest 
observed number of landfalls were 15 landfalls in 1998. Under the posterior predictive 
distribution based on observed data the probability of 15 or more landfalls is 0.09 %. The BI 
using the worst-case counterfactual scenario attributes the same values a probability of 0.96 % 
meaning an increase in probability by a factor of 10. However, as for the SI basin the posterior 
distribution, $(	λ|!!"#) , shows a shift towards lower landfall rates compared to the prior 
distribution. This should be considered when comparing the two distributions as the reference 
posterior might be undervaluing yearly landfall rates.   
Looking at the individual countries the worst-case counterfactual scenarios differ much more 
from the observed values (Table A 7). For example, in Australia mean expected landfall rates 
increase by 3.44 landfalls per year E[&|!/0123] − E[&|!EFG]. Also, the probability of 5 landfalls 
within a year, the previous maximum observed value, or more increases by 47 %, almost 
doubling the belief in such extreme landfall rates. Similarly high shifts in probability towards 
higher landfall rates can be observed for most SP countries, including a few small island states. 
While the expected landfall rate at the 95th percentile increases by two for the entire basins, the 
difference for individual countries is up to 6 more landfalls in the worst-case scenario Figure 
4.10. Very hard to interpret are islands where so far there were little to no landfalls were 
observed. For example, the first and only observed landfall in East Timor was by TC Gillian in 
2014. However, the forecast data from 2008 to 2019 counts 11 more events with potential 
landfall and for the worst-case scenario even a maximum of 3 landfalls a year (Table A 7). 
Including those near-miss events we see a 10-fold increase in belief for mean yearly landfall 
rates in East Timor.  

Figure 4.9: South Indian Ocean - Difference in expected future landfall rates at 95th percentile of 

posterior predictive distribution, #[%&%&'|%()*+,] − #[%&%&'|%-.#]. 
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4.3.2 Discussion across Basins 
Focusing the attention on results based on observed landfall rates shows for all northern ocean 
basins an increase in belief for & in the posterior distribution compared to the prior. For the two 
basins in the southern hemisphere however the trend is reversed. As discussed earlier an 
increase (decrease) in yearly TC events within the last two decades must be viewed with 
caution, considering changes in quality and availability of TC track data over the last few 
decades. Globally, positive trends in past landfall rates are mainly observed for intense TCs of 
category 3 or higher (IPCC, 2021). Statements concerning overall trend in frequencies can only 
be made with low confidence. Despite the increase(decrease) in landfall rates for the northern 
(southern) hemisphere no long-term trend should be assumed considering the short time span 
of the dataset. Especially with a negative trend in observed data a risk analysis based solely on 
past events might lead to an underestimation of future risk. Here a counterfactual risk analysis 
can be useful, as worse- and worst-case scenarios do reveal that higher landfall rates very well 
could have been observed given different circumstances.   
Comparing the prior and posterior probability distribution of the observed landfall to the range 
of all counterfactual scenarios puts both within inside the range from best- to worst-case 
scenarios for all basins. This is important to note, as it means that the different combinations of 
forecast tracks do indeed allow for the creation of upward and downward counterfactual 
scenarios for yearly landfall rates. The differences in range across basins when comparing 
counterfactual scenarios to observed landfall rates can have several reasons. For one, not all 
basins have the same number of TCs during a year or season (Table 3.1). The period 2008 to 
2019 counted 288 tropical storms and TCs in the WP basin, while the NI basin only counted 
65. Another explanation can be due to the geographic situation. The NA, WP and NI basins 
showing lower differences from the observed landfall rates to the worst-case do have larger 
bodies of land and thus more coastlines. Especially the NI ocean is relatively small compared 
to other basins and pretty much encircled by land. Thus, it is of no surprise that most occurring 
TCs do make landfall and that there is not a much higher potential in counterfactual analysis. 

Figure 4.10: South Pacific - 

Difference in expected future 

landfall rates at 95th percentile 

of posterior predictive 

distribution, 

#[%&%&'|%()*+,] −
#[%&%&'|%-.#]. 
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The other extreme is the EP basin, where most TCs never make landfall and the counties most 
at risk are relatively small island states. Finally, differences could also be due to different data 
availability of forecasts. Especially in the NI basin where also non-named TCs are included, 
there are larger gaps in the forecast dataset (Table 3.2).  
In summary, the range of the counterfactual scenarios does depend mostly on the geographic 
conditions and the percentage of named TCs making landfall. Especially for the NI and WP, 
where most observed TCs make landfall there are not as many near-miss events that could 
contribute to a downward counterfactual scenario. The same holds true to some degree for the 
WP, NA, and SP basin. On the other hand, for the WP and SI basin there is a large number of 
near-miss events, leading to a much larger range and more downward counterfactual scenarios. 
The worst-case scenarios show much larger deviations in posterior and posterior predictive 
distributions from the reference distribution based on observation data. Still, for all basins there 
are counterfactual scenarios indicating potentially higher landfall rates than what previously 
was observed. Based on the worst-case scenario mean landfall rates and future landfall rates 
would be expected to be higher and extreme landfall rates more extreme in all case studies. 
Such high landfall rates at the tail of the distribution might not be included in the risk horizon 
when assessing risk solely on observational data. For the basins where there are not many 
downward counterfactual scenarios on simple landfall counts it might be more interesting to 
look further into intensity variable of past TC, such as central pressure or wind speed. For those 
the incorporation of forecast data in counterfactual risk analysis might change the posterior 
belief and thus a future risk assessment considerably.   
Also, focusing the analysis of landfall rates on a smaller scale can reveal more potential for 
(downward) counterfactual scenarios. On this scale the different paths a TC could have taken 
strongly influences the potential impacts of the surrounding countries of a basin. Looking at the 
results for the individual countries reveals a more detailed picture of the downward 
counterfactual potential. In all basins the worst-case scenario does lead to higher deviations 
from observed landfalls than when aggregating over the entire basin. Especially for the WP 
where the analysis across the basin does not lead to a higher attribution of extreme landfall 
rates, some countries do reveal large potential for higher landfall rates. This is impressively 
demonstrated for example in Japan or Taiwan but also other states of the region. On the other 
hand, in the NI basin also the zoom into the different countries does not reveal such a strong 
potential for downward counterfactuals. Even more than the WP the NI ocean is surrounded by 
land and TCs missing land are rather rare. Compared to the WP the countries and thus the size 
of the coastline of the individual countries is bigger. Additionally, by far the biggest part of the 
coastline is in India. So maybe in this case it might be interesting to zoom in even more and 
look for individual cities situated at the coastline. Then different paths an event could have 
taken can be better distinguished while now they just might be aggregated in Indian landfalls. 
However, another reason for the small differences could also be, that for many events in period 
2008-2019 there are no forecast data available, as not named TCs had to be included.  
Across all basins very interesting are the results for small islands states, where past TC landfalls 
are very rare and there is little data on which the risk due to TCs can be computed. Incorporating 
forecast tracks in the analysis shows that for all countries there are some near-miss events. 
Incorporating those near-miss events can significantly improve the data availability when 
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assessing TC risk and increase the assessment of potential landfall rates. As an example, the 
risk assessment for Mauritius could be very different when an extreme year concerning landfalls 
in Mauritius is thought of as 2 (observation data) or 8 landfalls (worst-case scenario). This 
might also influence decisions when considering mitigation measures. Another example is the 
EP basin which in general is not known for high impacts due to TCs. This is also illustrated by 
the fact that only few of the named TCs actually make landfall. However, there are some small 
islands at risk of TC hazards with potentially large losses and damages. This analysis shows 
very impressively how devastating a worse or even worst-case scenario could be for example 
for Hawaii. On the other hand, for a big country such as the United States or Australia the 
simple number of landfalls might not be so relevant as the exact place the TC hits the coast. As 
the losses and damages depend strongly on whether the TC hits a big city or makes landfall in 
an uninhabited part of the country. For this reason, it might be interesting to combine an analysis 
of counterfactual track data with data on population density and exposure in future projects. 

5 Conclusions and Outlook 
Within this thesis Bayesian inference is used to incorporate counterfactual information based 
on forecast tracks of past TC events, in a risk analysis of global TC landfall rates. To assess the 
sensitivity of the analysis different periods to build the prior belief and datasets from different 
providers of forecast tracks are compared.   
By combining different forecast tracks of past TC events any number of counterfactual 
scenarios for TC landfall rates can be built. The manually created scenarios are based on the 
probability of a TC making landfall considering its forecast range. This allows for the creation 
of upward and downward counterfactual scenarios that envelope the observed landfall rates. To 
improve risk analysis of extreme hazard events, forecast data also allows for the specific search 
for near-miss events and downward counterfactual scenarios of past landfall rates. Limitations 
may arise due to the quality and resolution of the forecast data that differs in time, region and 
across providers. Since the presented analysis only includes named events, the results are 
somewhat biased towards these events. The density of available TC data for risk analysis might 
even be further expanded when also considering forecast data for non-named or invest events. 
Even so, the analysis shows that forecast data can be a powerful source for the creation of 
counterfactual scenarios of past TC events. For all basins and countries, the analysis of 
downward counterfactual scenarios leads to a higher estimation of expected mean yearly 
landfall rates, probability of extreme events and outliers as well as future extreme yearly 
landfall rates.   
The findings across case studies including different observation periods for the prior 
distribution does not show large differences for most basins. Also, analysis based on different 
forecast providers in the creation of counterfactual scenarios might not show strong sensitivities 
for the BI based risk analysis. However, they do highlight the importance of dense TC track 
dataset of good quality to achieve a risk analysis accounting for extreme hazard scenarios. By 
only including observation data from the modern satellite era starting 1980 the number of 
missed storms is reduced and the dataset is comparable across all basins. Data quality is also a 
concern when including forecast data in a counterfactual risk analysis. There are differences in 
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data resolution, model parametrizations and data availability across providers, period, and 
regions. But while for observation data it is important to have a comparable and homogeneous 
dataset in counterfactual risk analysis the focus is rather on exploring the realm of possible 
scenarios. So here it makes sense to combine forecast data from different providers. By doing 
so the range of the counterfactual scenarios can be augmented and the amount of data gaps is 
reduced.  
Findings across basins and countries show large differences in the range of counterfactual 
scenarios and the potential for downward counterfactuals based on near-miss events. For basins 
with lower percentage of past events making landfall the range of counterfactual landfall rates 
is larger, and the possible worst-case scenario differs stronger from the observed landfall rates. 
The results aggregated over the entire basin however does not necessarily reflect the risk of 
individual countries. Looking at individual countries, counterfactual risk analysis of landfall 
rates reveals a larger capacity for downward counterfactual scenarios. Especially for small 
island states including such near-miss events in risk analysis can have a large effect in the 
assessment of potential losses and damages. For small islands usually the number of observed 
landfalls is very small. Such sparse data availability makes a correct assessment of extreme 
hazard scenarios difficult. Thus, counterfactual information is able to increase the data 
availability and improve the detection of potential extremes. Also, for bigger countries 
counterfactual data can have a large impact on the risk assessment. However, for future works 
it would be interesting to look at TC landfalls at a higher spatial resolution on a regional or 
local scale.   
The presented analysis shows how extreme numbers of yearly landfall rates might look like if 
incorporating downward counterfactual data in risk analysis. However, no concluding 
statements can be made regarding potential losses of damages. Further counterfactual risk 
analysis of TC is therefore necessary where TC tracks are combined with information on 
exposure and vulnerability. Also, of high relevance for when assessing hazard risk is the 
intensity of a storm. Future counterfactual risk analysis might therefore include more TC 
variables such as sustained wind speed, central pressure, or translation speed. However, for a 
counterfactual analysis of pressure or wind data from forecast data, a more thorough quality 
control and correction of biases based on the resolution of forecast data would be necessary.  
As a first exploration of counterfactual risk analysis of tropical cyclones based on forecast data 
the presented results are promising. Forecast data allows for the detection of near-miss events 
and the creation of downward counterfactual scenarios. These can be useful in improving risk 
assessment of tropical cyclones at the tail of the probability distribution. 
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Appendix 
Appendix A Basins – Extended Results 
Table A 1: Prior distribution, posterior distribution, and posterior predictive distribution from observed data and counterfactual data. Comparison across different prior periods and forecast data 
providers. 

Basin Period 
prior Provider 

Mean 
prior 
!!"#$ 

Mean 
posterior 
observed 
"[$|&%&#] 

Mean 
posterior 

worst-
case CF 
"[$|&'()*+] 

Difference 
posterior 
"[$|&'()*+]
− "[$|&%&#] 

Max. 
observed 
y 80-07 
(&)*+) 

!(#$
≥ #&'(| 
#!"#) 

!(#$
≥ #&'(| 
#$%&'() 

∆!(#$ ≥
#&'() 

[%] 
,-#$)*+.#!"#] ,-#$)*+. 

#$%!"#$%] 

EP 

1950 - 
2007 

ECMWF 

4.824 6.768 

12.143 5.375 

10 0.0892 

0.6610 57.18% 

11 

18 

KWBC 12.268 5.500 0.6734 58.43% 18 

KWBC+ECMWF 12.893 6.125 0.7313 64.22% 19 

1880 - 
2007 

ECMWF 

5.286 6.884 

12.259 5.375 

10 0.0968 

0.6725 57.56% 

12 

18 

KWBC 12.384 5.500 0.6847 58.78% 19 

KWBC+ECMWF 13.009 6.125 0.7413 64.44% 19 

NA 

1950 - 
2007 

ECMWF 

6.207 7.927 

9.677 1.750 

17 0.0021 

0.0130 1.09% 

13 

15 

KWBC 9.802 1.875 0.0145 1.24% 15 

KWBC+ECMWF 10.302 2.375 0.0219 1.98% 16 

1880 - 
2007 

ECMWF 

6.714 8.054 

9.804 1.750 

17 0.0024 

0.0145 1.21% 

13 

15 

KWBC 9.929 1.875 0.0161 1.37% 16 

KWBC+ECMWF 10.429 2.375 0.0241 2.17% 16 

NI 

1950 - 
2007 

ECMWF 

7.379 5.032 

5.470 0.438 

17 0.0000 

0.0000 0.00% 

9 

10 

KWBC 5.282 0.250 0.0000 0.00% 9 

KWBC+ECMWF 5.595 0.563 0.0000 0.00% 10 

1880 - 
2007 

ECMWF 

4.071 4.205 

4.643 0.438 

10 0.0055 

0.0104 0.50% 

8 

9 

KWBC 4.455 0.250 0.0080 0.25% 8 

KWBC+ECMWF 4.768 0.563 0.0123 0.69% 9 



 41 

SI 

1951 - 
2008 

ECMWF 

6.857 5.839 

9.652 3.813 

14 0.0016 

0.0725 7.10% 

10 

15 

KWBC 10.589 4.750 0.1244 12.28% 16 

KWBC+ECMWF 11.089 5.250 0.1590 15.75% 17 

1881 - 
2008 

ECMWF 

6.643 5.786 

9.598 3.813 

11 0.0188 

0.2631 24.43% 

10 

15 

KWBC 10.536 4.750 0.3671 34.83% 16 

KWBC+ECMWF 11.036 5.250 0.4248 40.61% 17 

SP 

1951 - 
2008 

ECMWF 

6.347 5.899 

7.337 1.438 

15 0.0007 

0.0050 0.43% 

10 

12 

KWBC 7.587 1.688 0.0066 0.59% 13 

KWBC+ECMWF 7.774 1.875 0.0081 0.74% 13 

1881 - 
2008 

ECMWF 

6.964 6.054 

7.491 1.438 

15 0.0009 

0.0060 0.51% 

11 

12 

KWBC 7.741 1.688 0.0078 0.70% 13 

KWBC+ECMWF 7.929 1.875 0.0096 0.87% 13 

WP 

1950 - 
2007 

ECMWF 

20.190 20.672 

22.610 1.938 

30 0.0235 

0.0595 3.60% 

29 

31 

KWBC 22.610 1.938 0.0595 3.60% 31 

KWBC+ECMWF 22.735 2.063 0.0627 3.92% 31 

1880 - 
2007 

ECMWF 

20.821 20.830 

22.768 1.938 

28 0.0575 

0.1240 6.64% 

29 

31 

KWBC 22.768 1.938 0.1240 6.64% 31 

KWBC+ECMWF 22.893 2.063 0.1294 7.19% 31 

 



 

 

Appendix B Countries – Results Prior, Posterior and Posterior Predictive Distribution  
Table A 2: North Atlantic - Prior distribution, posterior distribution, and posterior predictive distribution from observed data and counterfactual data. 

Country 
Mean 
prior 
!!"#$ 

Mean 
posterior 
observed 
"[$|&%&#] 

Mean 
posterior 

worst-case 
CF 

"[$|&'()*+] 

Difference 
posterior 
"[$|&'()*+]
− "[$|&%&#] 

Max. 
observed 
y 80-07 
(&)*+) 

!(#$
≥ #&'(| 
#!"#) 

!(#$
≥ #&'(| 
#$%&'() 

∆!(#$ ≥
#&'() [%] ,-#$)*+.#!"#] ,-#$)*+. 

#$%&'(] 

Anguilla 0.321 0.455 2.330 1.875 2 0.014 0.409 39.50% 2 5 

Antigua and Barbuda 0.357 0.464 2.214 1.750 2 0.015 0.379 36.43% 2 5 

Aruba 0.071 0.018 0.955 0.938 1 0.001 0.248 24.75% 0 3 

Bahamas 1.179 1.545 4.295 2.750 5 0.007 0.266 25.90% 4 8 

Barbados 0.250 0.500 1.063 0.563 3 0.003 0.027 2.43% 2 3 

Belize 0.286 0.821 2.009 1.188 2 0.056 0.326 26.98% 3 5 

Bonaire 0.107 0.027 0.839 0.813 1 0.001 0.207 20.59% 0 3 

British Virgin Islands 0.357 0.402 2.464 2.063 2 0.011 0.443 43.26% 2 5 

Canada 1.429 1.545 6.357 4.813 4 0.025 0.751 72.68% 4 11 

Cayman Islands 0.429 0.232 2.295 2.063 3 0.000 0.204 20.35% 1 5 

Colombia 0.250 0.250 1.875 1.625 3 0.000 0.127 12.63% 1 4 

Costa Rica 0.036 0.071 1.134 1.063 1 0.004 0.312 30.76% 1 3 

Cuba 0.964 1.179 4.179 3.000 3 0.037 0.594 55.74% 3 8 

Curaçao 0.107 0.027 1.089 1.063 1 0.001 0.296 29.49% 0 3 

Dominica 0.179 0.482 1.670 1.188 2 0.016 0.237 22.09% 2 4 

Dominican Republic 0.536 0.509 3.009 2.500 2 0.019 0.572 55.34% 2 6 

El Salvador 0.107 0.027 1.339 1.313 1 0.001 0.383 38.23% 0 4 

Grenada 0.464 0.179 1.054 0.875 3 0.000 0.027 2.64% 1 3 

Guadeloupe 0.393 0.598 1.973 1.375 2 0.027 0.316 28.91% 2 5 

Guatemala 0.179 0.607 2.170 1.563 1 0.128 0.629 50.12% 2 5 
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Haiti 0.429 0.607 2.857 2.250 2 0.028 0.538 50.99% 2 6 

Honduras 0.714 1.116 2.366 1.250 3 0.031 0.218 18.67% 3 5 

Jamaica 0.429 0.232 2.232 2.000 2 0.003 0.384 38.10% 1 5 

Martinique 0.250 0.375 1.625 1.250 2 0.009 0.226 21.68% 2 4 

Mexico 1.500 2.063 4.625 2.563 7 0.002 0.104 10.15% 5 9 

Montserrat 0.250 0.313 2.000 1.688 1 0.044 0.586 54.15% 1 5 

Nicaragua 0.500 0.625 1.875 1.250 2 0.030 0.290 26.05% 2 4 

Panama 0.000 0.000 1.063 1.063 0 0.000 0.643 64.32% 0 3 

Puerto Rico 0.500 0.563 2.438 1.875 2 0.024 0.437 41.31% 2 5 

Saba 0.179 0.170 1.920 1.750 2 0.001 0.302 30.07% 1 5 

Saint Kitts and Nevis 0.179 0.232 1.982 1.750 2 0.003 0.319 31.55% 1 5 

Saint Lucia 0.250 0.500 1.688 1.188 1 0.095 0.496 40.18% 2 4 
Saint Vincent and the 
Grenadines 

0.357 0.527 1.402 0.875 3 0.003 0.059 5.60% 2 4 

Saint-Barthélemy 0.286 0.259 2.259 2.000 2 0.004 0.391 38.71% 1 5 

Saint-Martin 0.286 0.384 2.259 1.875 2 0.010 0.391 38.13% 2 5 

Sint Eustatius 0.179 0.170 1.920 1.750 2 0.001 0.302 30.07% 1 5 

Trinidad and Tobago 0.321 0.143 0.893 0.750 3 0.000 0.016 1.62% 1 3 
Turks and Caicos 
Islands 

0.321 0.705 2.893 2.188 2 0.040 0.546 50.66% 2 6 

United States 3.857 3.527 7.527 4.000 9 0.005 0.232 22.70% 7 12 
United States Virgin 
Islands 

0.500 0.500 2.375 1.875 2 0.018 0.421 40.29% 2 5 

Venezuela 0.250 0.313 2.250 1.938 2 0.006 0.389 38.26% 1 5 
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Table A 3: East Pacific - Prior distribution, posterior distribution, and posterior predictive distribution from observed data and counterfactual data. 

Country 
Mean 
prior 
!!"#$ 

Mean 
posterior 
observed 
"[$|&%&#] 

Mean 
posterior 

worst-case 
CF 

"[$|&'()*+] 

Difference 
posterior 
"[$|&'()*+]
− "[$|&%&#] 

Max. 
observed 
y 80-07 
(&)*+) 

!(#$
≥ #&'(| 
#!"#) 

!(#$
≥ #&'(| 
#$%&'() 

∆!(#$ ≥
#&'() [%] ,-#$)*+.#!"#] ,-#$)*+. 

#$%&'(] 

Alaska 0.000 0.063 1.313 1.250 0 0.059 0.720 66.12% 1 3 

Arizona 0.107 0.089 5.152 5.063 1 0.006 0.960 95.46% 1 9 

California 0.036 0.009 4.821 4.813 1 0.000 0.948 94.82% 0 9 

Canada 0.000 0.063 2.188 2.125 0 0.059 0.880 82.14% 1 5 

El Salvador 0.107 0.152 1.089 0.938 1 0.014 0.296 28.24% 1 3 

Guatemala 0.071 0.080 2.268 2.188 1 0.005 0.653 64.76% 1 5 

Hawaii 0.321 0.705 4.393 3.688 2 0.040 0.805 76.57% 2 8 

Honduras 0.071 0.080 1.955 1.875 1 0.005 0.574 56.87% 1 5 

Kansas 0.000 0.063 2.063 2.000 0 0.059 0.865 80.59% 1 5 

Mexico 4.893 5.973 11.223 5.250 9 0.088 0.676 58.79% 10 17 

Missouri 0.000 0.063 1.875 1.813 0 0.059 0.838 77.89% 1 4 

Nevada 0.036 0.009 3.446 3.438 1 0.000 0.850 84.98% 0 7 

New Mexico 0.071 0.018 3.018 3.000 1 0.001 0.794 79.37% 0 6 

Nicaragua 0.036 0.071 1.009 0.938 1 0.004 0.267 26.31% 1 3 

Oklahoma 0.000 0.063 2.500 2.438 0 0.059 0.912 85.27% 1 5 

Texas 0.071 0.080 3.955 3.875 1 0.005 0.898 89.31% 1 8 

United States 0.500 0.938 9.000 8.063 3 0.019 0.976 95.71% 3 14 
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Table A 4: West Pacific - Prior distribution, posterior distribution, and posterior predictive distribution from observed data and counterfactual data. 

Country 
Mean 
prior 
!!"#$ 

Mean 
posterior 
observed 
"[$|&%&#] 

Mean 
posterior 

worst-case 
CF 

"[$|&'()*+] 

Difference 
posterior 
"[$|&'()*+]
− "[$|&%&#] 

Max. 
observed 
y 80-07 
(&)*+) 

!(#$
≥ #&'(| 
#!"#) 

!(#$
≥ #&'(| 
#$%&'() 

∆!(#$ ≥
#&'() [%] ,-#$)*+.#!"#] ,-#$)*+. 

#$%&'(] 

Cambodia 0.786 0.821 4.759 3.938 4 0.002 0.512 50.95% 3 9 

China 8.179 8.607 17.295 8.688 13 0.061 0.810 74.85% 14 25 

Dem. Rep. Korea 0.250 0.625 8.563 7.938 1 0.134 0.998 86.40% 2 14 

Guam 0.679 0.920 1.607 0.688 3 0.018 0.086 6.78% 3 4 

Indonesia 0.107 0.027 2.527 2.500 1 0.001 0.709 70.77% 0 5 

Japan 8.857 8.964 15.527 6.562 16 0.013 0.389 37.54% 14 22 

Malaysia 0.071 0.268 2.705 2.438 1 0.034 0.743 70.85% 1 6 
Northern Mariana 
Islands 

3.679 3.107 4.420 1.313 10 0.001 0.008 0.69% 6 8 

Palau 0.893 0.786 1.348 0.563 4 0.002 0.015 1.32% 3 4 

Philippines 7.929 7.732 11.545 3.813 13 0.031 0.276 24.48% 13 18 

Republic of Korea 1.500 1.625 9.250 7.625 4 0.029 0.948 91.88% 4 15 

Russian Federation 0.536 0.259 10.384 10.125 2 0.004 0.998 99.37% 1 16 

Singapore 0.036 0.009 0.759 0.750 1 0.000 0.179 17.86% 0 2 

Taiwan 2.786 2.446 9.571 7.125 5 0.043 0.908 86.48% 5 15 

Thailand 1.143 1.286 7.098 5.813 4 0.013 0.827 81.46% 3 12 

Vietnam 4.071 4.518 10.643 6.125 8 0.046 0.727 68.08% 8 16 
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Table A 5: North Indian Ocean - Prior distribution, posterior distribution, and posterior predictive distribution from observed data and counterfactual data. 

Country 
Mean 
prior 
!!"#$ 

Mean 
posterior 
observed 
"[$|&%&#] 

Mean 
posterior 

worst-case 
CF 

"[$|&'()*+] 

Difference 
posterior 
"[$|&'()*+]
− "[$|&%&#] 

Max. 
observed 
y 80-07 
(&)*+) 

!(#$
≥ #&'(| 
#!"#) 

!(#$
≥ #&'(| 
#$%&'() 

∆!(#$ ≥
#&'() [%] ,-#$)*+.#!"#] ,-#$)*+. 

#$%&'(] 

Bangladesh 0.893 0.786 1.911 1.125 2 0.050 0.300 24.93% 3 5 

Ethiopia 0.036 0.071 0.821 0.750 1 0.004 0.201 19.65% 1 3 

India 3.179 2.920 3.920 1.000 7 0.013 0.052 3.90% 6 8 

Indonesia 0.071 0.018 0.018 0.000 1 0.001 0.001 0.00% 0 0 

Iran 0.071 0.018 0.205 0.188 2 0.000 0.002 0.22% 0 1 

Maldives 0.179 0.045 0.670 0.625 2 0.000 0.035 3.50% 0 2 

Myanmar 0.929 0.732 1.295 0.563 3 0.009 0.048 3.87% 2 3 

Oman 0.250 0.313 1.000 0.688 1 0.044 0.264 21.98% 1 3 

Pakistan 0.179 0.107 0.857 0.750 1 0.008 0.213 20.55% 1 3 

Saudi Arabia 0.107 0.089 0.902 0.813 1 0.006 0.229 22.32% 1 3 

Somalia 0.179 0.357 1.107 0.750 1 0.055 0.302 24.72% 2 3 

Somaliland 0.107 0.214 0.964 0.750 1 0.024 0.251 22.75% 1 3 

Sri Lanka 0.321 0.455 1.080 0.625 2 0.014 0.101 8.67% 2 3 

Thailand 0.143 0.098 0.411 0.313 1 0.007 0.069 6.22% 1 2 

Yemen 0.143 0.473 1.161 0.688 1 0.087 0.321 23.46% 2 3 
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Table A 6: South Indian Ocean - Prior distribution, posterior distribution, and posterior predictive distribution from observed data and counterfactual data. 

Country 
Mean 
prior 
!!"#$ 

Mean 
posterior 
observed 
"[$|&%&#] 

Mean 
posterior 

worst-case 
CF 

"[$|&'()*+] 

Difference 
posterior 
"[$|&'()*+]
− "[$|&%&#] 

Max. 
observed 
y 80-07 
(&)*+) 

!(#$
≥ #&'(| 
#!"#) 

!(#$
≥ #&'(| 
#$%&'() 

∆!(#$ ≥
#&'() [%] ,-#$)*+.#!"#] ,-#$)*+. 

#$%&'(] 

Australia 2.429 2.107 4.857 2.750 6 0.008 0.222 21.42% 5 9 

Botswana 0.000 0.000 0.563 0.563 0 0.000 0.421 42.05% 0 2 
British Indian Ocean 
Territory 

0.071 0.080 0.393 0.313 1 0.005 0.064 5.93% 1 2 

Comoros 0.143 0.161 0.723 0.563 1 0.015 0.167 15.17% 1 2 
French Southern and 
Antarctic Lands 

1.036 0.884 6.196 5.313 4 0.003 0.732 72.88% 3 11 

Indian Ocean 
Territories 

0.357 0.214 1.027 0.813 2 0.003 0.091 8.82% 1 3 

Indonesia 0.321 0.268 0.830 0.563 1 0.034 0.204 16.95% 1 3 

Madagascar 2.107 1.902 4.027 2.125 6 0.005 0.120 11.49% 4 8 

Mauritius 0.929 0.482 4.420 3.938 3 0.003 0.637 63.40% 2 8 

Mayotte 0.250 0.063 0.688 0.625 1 0.003 0.155 15.11% 1 2 

Mozambique 0.893 0.661 2.473 1.813 3 0.007 0.240 23.34% 2 5 

Namibia 0.000 0.000 0.438 0.438 0 0.000 0.346 34.58% 0 2 

Réunion 0.429 0.170 3.170 3.000 3 0.000 0.390 38.94% 1 6 

Seychelles 0.107 0.089 0.777 0.688 1 0.006 0.185 17.92% 1 2 

South Africa 0.036 0.009 0.946 0.938 1 0.000 0.245 24.47% 0 3 

Tanzania 0.036 0.009 0.759 0.750 1 0.000 0.179 17.86% 0 2 

Timor-Leste 0.143 0.098 0.473 0.375 1 0.007 0.087 7.98% 1 2 

Zimbabwe 0.107 0.089 1.152 1.063 1 0.006 0.318 31.22% 1 3 
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Table A 7: South Pacific - Prior distribution, posterior distribution, and posterior predictive distribution from observed data and counterfactual data 

Country 
Mean 
prior 
!!"#$ 

Mean 
posterior 
observed 
"[$|&%&#] 

Mean 
posterior 

worst-case 
CF 

"[$|&'()*+] 

Difference 
posterior 
"[$|&'()*+]
− "[$|&%&#] 

Max. 
observed 
y 80-07 
(&)*+) 

!(#$
≥ #&'(| 
#!"#) 

!(#$
≥ #&'(| 
#$%&'() 

∆!(#$ ≥
#&'() [%] ,-#$)*+.#!"#] ,-#$)*+. 

#$%&'(] 

American Samoa 0.321 0.393 1.455 1.063 2 0.010 0.184 17.38% 2 4 

Australia 2.321 2.268 5.705 3.438 5 0.033 0.502 46.97% 5 10 

Cook Islands 0.393 0.286 3.036 2.750 2 0.005 0.578 57.30% 1 6 

Fiji 0.821 0.955 3.143 2.188 3 0.020 0.384 36.38% 3 6 

French Polynesia 0.643 0.286 3.598 3.313 6 0.000 0.079 7.91% 1 7 

Indonesia 0.036 0.134 1.196 1.063 1 0.011 0.334 32.27% 1 3 

New Caledonia 1.071 0.830 4.018 3.188 4 0.003 0.374 37.19% 3 8 

New Zealand 0.179 0.107 3.670 3.563 3 0.000 0.495 49.52% 1 7 

Niue 0.036 0.009 1.946 1.938 1 0.000 0.571 57.10% 0 5 

Papua New Guinea 0.536 0.196 1.509 1.313 3 0.000 0.072 7.22% 1 4 

Solomon Islands 1.214 0.679 1.866 1.188 5 0.000 0.015 1.49% 2 4 

Timor-Leste 0.000 0.063 0.750 0.688 0 0.059 0.517 45.81% 1 2 

Tonga 0.429 0.607 2.795 2.188 2 0.028 0.524 49.55% 2 6 

Tuvalu 0.107 0.027 0.152 0.125 1 0.001 0.014 1.25% 0 1 

Vanuatu 1.429 1.045 3.795 2.750 4 0.006 0.332 32.62% 3 7 
 
 



 

 

Countries – Figures Posterior Predictive distribution 
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Figure A 1: North Atlantic - Posterior predictive distributions based upon different histories for 2008-2019. In blue is posterior predictive distribution based on observed 
data. In different shades of red are the individual posteriors based on counterfactual scenarios from the best-case scenario (left, light red) to the worst-case scenario (right, 
dark red). Grey shading is prior distribution as a reference. All distributions are based on the prior using historic data from 1980-2019 and forecast data from the combined 
dataset KWBC+ECMWF. 
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Figure A 2: East Pacific - Posterior predictive distributions based upon different histories for 2008-2019. In blue is posterior predictive distribution based on observed data. In different 
shades of red are the individual posteriors based on counterfactual scenarios from the best-case scenario (left, light red) to the worst-case scenario (right, dark red). Grey shading is prior 
distribution as a reference. All distributions are based on the prior using historic data from 1980-2019 and forecast data from the combined dataset KWBC+ECMWF. 
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Figure A 3: West Pacific - Posterior predictive distributions based upon different histories for 2008-2019. In blue is posterior predictive distribution based on observed data. In different 
shades of red are the individual posteriors based on counterfactual scenarios from the best-case scenario (left, light red) to the worst-case scenario (right, dark red). Grey shading is prior 
distribution as a reference. All distributions are based on the prior using historic data from 1980-2019 and forecast data from the combined dataset KWBC+ECMWF. 
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Figure A 4: North Indian Ocean - Posterior predictive distributions based upon different histories for 2008-2019. In blue is posterior predictive distribution based on observed data. In 
different shades of red are the individual posteriors based on counterfactual scenarios from the best-case scenario (left, light red) to the worst-case scenario (right, dark red). Grey shading 
is prior distribution as a reference. All distributions are based on the prior using historic data from 1980-2019 and forecast data from the combined dataset KWBC+ECMWF. 
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Figure A 5: South Indian Ocean - Posterior predictive distributions based upon different histories for 2008-2019. In blue is posterior predictive distribution based on observed data. In 
different shades of red are the individual posteriors based on counterfactual scenarios from the best-case scenario (left, light red) to the worst-case scenario (right, dark red). Grey 
shading is prior distribution as a reference. All distributions are based on the prior using historic data from 1980-2019 and forecast data from the combined dataset KWBC+ECMWF. 
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Figure A 6: South Pacific - Posterior predictive distributions based upon different histories for 2008-2019. In blue is posterior predictive distribution based on observed data. In 
different shades of red are the individual posteriors based on counterfactual scenarios from the best-case scenario (left, light red) to the worst-case scenario (right, dark red). Grey 
shading is prior distribution as a reference. All distributions are based on the prior using historic data from 1980-2019 and forecast data from the combined dataset KWBC+ECMWF. 
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