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Abstract 

Climate variability is known to impact crop yields. Studying how a crop’s yield 

may vary in the future is important in order to allow time for agricultural adaptation 

measures to be developed. Winter wheat is an important crop in Switzerland and 

understanding how its yields may change with the climate is important for food security. 

This thesis used correlation analysis to study which climate indicators relate most 

strongly to wheat yields from 1981 to 2017, and constructed a multiple regression 

model to predict yield on the basis of climate variables. The model had a R2 of 0.35 and 

its most important climate variables were temperature, especially summer heat and 

winter frost. Adverse effects of warmer winter temperatures and precipitation were also 

identified. Radiation was significant as well, but its role was more difficult to interpret. 

The model was also used to predict yield based on data 2°C and 4°C warmer. The results 

indicate that mean yield may not change significantly under these circumstances, but 

yield variability from year to year would likely increase. These results suggest that 

including additional variables in statistical crop models, not only temperature and 

precipitation, may be beneficial but not essential. Additionally, using intra-seasonal 

climate variables can give insight into what specific challenges crop growers may face. 

Future studies could help clarify relationships between climate drivers and yield across 

the regions of Switzerland. They may also benefit from the use of more sophisticated 

climate projections.  
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1. Introduction 

1.1 Motivation 

Studies have established that climate variability contributes to crop yield 

variability (Hatfield & Prueger, 2015; Lobell & Field, 2007; Ray et al., 2019). Therefore, 

as the climate changes, yield amounts and variability are also expected to change. 

Studying the relationship between climate variables and yield can therefore give insight 

into what drives changes in yield. Climate projections can then be used to estimate 

changes in yield in the future. This information can in turn be used to plan an 

agricultural adaptation strategy for climate change, since technology and adaptation 

also play a role in crop yields (Lecerf et al., 2019). A crop model is one of the tools that 

can be used to examine yield and the variables that influence it. 

This study examines winter wheat (Triticum aestivum L.) in Switzerland, one of 

the most important crops in Switzerland for direct human consumption. In Switzerland, 

wheat yield increased steadily from the 1960s to the 1990s, due to technological 

advancements such as crop breeding. However, this growth tapered off in the early 

1990s due to agricultural policy changes that promoted environmental wellbeing, which 

included measures such as banning fungicides and insecticides (Finger, 2010). Climate 

suitability for winter wheat growth may have decreased in recent decades, but a yield 

decrease attributable to climate was not identified (Holzkämper et al., 2014).  

Wheat cultivars in Europe have been carefully selected to perform under specific 

growing conditions. In Switzerland, these growing conditions are likely to change in the 

future. Without significant global action to mitigate climate change, by 2060, the 

country could face increased summer temperatures (+2.5 to +4.5°C) and changes in 
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summer precipitation (-25% to +10%) compared to the reference period 1981-2010 

(NCCS, 2018). Current wheat cultivars may not perform as well under these conditions 

(Mäkinen et al., 2018). A greater understanding of how future conditions may affect 

yield is necessary so that farmers can adapt. Adaptation strategies such as planting 

different crop varieties or developing new ones, or implementing irrigation, can be 

effective, but they require time to develop and implement (Semenov et al., 2014). 

Therefore, models are a tool that can help researchers understand how to best prepare 

for future conditions to preserve food security.  

1.2 Context 

Statistical models are based on regression equations, built from crop yield and 

weather data, and are relatively simple compared to process-based (numerical) models, 

which are built on experimental trials and require more data input (Lobell & Burke, 

2010). Statistical models are useful for projecting future responses in yield, and they are 

more useful at broad scales than at single sites (Lobell & Burke, 2010).  The 

performance of a statistical model differs with the response to each climate variable 

chosen (Lobell & Burke, 2010).  The most commonly selected variables in statistical 

crop models are temperature, total precipitation, and annual grain yield. Temperature is 

usually taken as daily or monthly minimum and maximum, and sometimes average, 

through the growing season.  

These climate variables have been shown to affect yields of various crops. Wheat, 

maize, and barley have a negative response in yield globally due to increased 

temperatures. By 2002 there were already global losses of $5 billion a year, although 

they were compensated by technological advancements (Lobell & Field, 2007). A study 
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of European wheat yield found that it had a climate sensitivity of 6% decrease with a 1°C 

increase in temperature (Mäkinen et al., 2018).   

1.2.1 Wheat Development 

Winter wheat is sown in October in Switzerland, and harvested in June or July, 

but sometimes as late as August. As wheat grows throughout this lengthy growing 

season, different factors influence the plant’s eventual yield. For survival and high yield, 

it is critical that the plant’s various stages of growth are synchronized with optimal 

seasonal conditions (Hyles et al., 2020).  

In the fall, the seed sprouts and grows a main shoot. Then tillers, or axillary 

shoots, grow (Hyles et al., 2020; Large, 1954). Tillers are essential for high yields, 

because each tiller has the potential to form one head. Each head contains spikelets, 

which are composed of florets. Each floret can produce one kernel of wheat. Tillers that 

grow in the fall are more productive in terms of yield. This is because in the spring, the 

plant is focused on reproductive growth instead of vegetative. The driving force behind 

this differentiation in growth is vernalization. Vernalization occurs in winter, when the 

plant experiences cold temperatures for several successive weeks. Several factors affect 

winter survival (“Winter Wheat Development and Growth Staging,” 2018). Exposure to 

cold temperatures “hardens” the plant to survive freezing temperatures. Therefore, 

temperatures that are cold but above freezing can aid winter survival (Hyles et al., 

2020). Repetitive freezing and thawing damages tissues more than a single frost event. 

Ice encasement or midwinter thaw and rain with flooding can both suffocate plants. 

Snow cover can provide protective insulation (“Winter Wheat Development and Growth 

Staging,” 2018).  
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Vernalization ends when temperature warms and the wheat experiences more 

radiation due to longer days in spring. After these conditions are met, reproductive 

growth is induced, so the head begins to grow inside the stem (Hyles et al., 2020). This 

reproductive growth is not hardened to frost the way that the vegetative tissue was, so 

after vernalization is over the plant becomes vulnerable to frost (“Winter Wheat 

Development and Growth Staging,” 2018). Warmer springs, and therefore shorter 

vernalization periods, can lead to fewer heads, which in turn result in lower yields (Ortiz 

et al., 2012) Stem elongation occurs just as the plant enters the reproductive growth 

stage. If this period of growth lasts longer, the spike grows longer, and therefore more 

florets and potentially more kernels can grow (Kronenberg et al., 2019). The heads 

emerge, flower, and fertilize. At this point the plant enters the grain-filling stage, where 

kernels grow. During the plant’s reproductive growth phase, higher temperatures can 

accelerate the plant’s life cycle, ultimately resulting in a lower yield (Fischer, 1985). The 

period after anthesis, or flowering, through grain-filling, is especially critical and 

sensitive. High temperatures during this time period can drastically reduce yield, as the 

grain-filling is accelerated and the kernels are much smaller at maturity (Gibson & 

Paulsen, 1999; Mitchell et al., 1993). Finally, the plant dries to straw and is ready for 

harvest. In Switzerland harvest usually occurs in June, but may be as late as August.  

 

 



11 
 

1.3 Research question 

The objective of the master thesis is to attribute interannual variability of winter 

wheat yields in Switzerland to variation in climate drivers. The specific research 

questions addressed are:  

1. Which climate indicators relate most strongly to observed winter wheat 

yields?  

2. How do these relationships between climate drivers and yield deviate between 

different agroclimatic regions of Switzerland? 

3. How well can yield variability be predicted on the basis of climate variables?  

4. How might yield variability change under warmer conditions?  
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2. Data and Methods 

2.1 Data 

Weather data was downloaded from the Swiss Federal Office of Meteorology and 

Climatology’s (MeteoSwiss) IDAWEB server, for the years 1981-2017. The variables 

downloaded were: 

1. daily mean air temperature 2 meters above ground (°C), 

2. daily maximum air temperature 2 meters above ground (°C), 

3. daily minimum air temperature 2 meters above ground (°C), 

4. calendar day precipitation (mm), 

5. daily mean relative air humidity 2 meters above ground (%), 

6. daily mean vapor pressure 2 meters above ground, and 

7. daily mean global radiation (W/m2). 

The Farm Accountancy Data Network of Switzerland (FAT) provided annual 

winter wheat yield totals sampled from farms within local communities between 1981 

and 2017. 

2.2 Data Processing 

Data processing was conducted in R (R Core Team, 2020b), generally following 

the outline described in Holzkämper et al. (2014). The first step was to match municipal 

wheat data to corresponding weather data. This was done by drawing a radius of 15 km 

around each weather station. When a municipality’s centroid fell inside the radius, it 

was assigned to that station. Then, yield data was aggregated for each station. Stations 

with no wheat yield data were removed from further analysis, leaving 86 stations out of 
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an original 210. For the remaining 86 stations, the yields from all the assigned 

municipalities were aggregated by year, and the mean, standard deviation, minimum, 

maximum, and median values were calculated. Fourteen stations were chosen for 

further analysis: Bern Zollikofen, Güttingen, Genève Cointrin, Zürich Kloten, Neuchâtel, 

Payerne, Pully, Zürich Affoltern, Schaffhausen, St. Gallen, Aadorf Tänikon, Vaduz, 

Wädenswil, and Wynau. Station names, abbreviations, coordinates, elevation, average 

daily temperature, and average annual precipitation are shown in Table 1. The location 

of each station is shown in Figure 1. 

Table 1: Stations with their full names, Swiss kilometer coordinates, elevation, and average daily 
temperature and average annual precipitation from 1981 to 2017. 

 

The selected stations had sufficient climate time series data and give an overview 

of the Swiss plateau, the relevant area for wheat harvest. Weather data was cropped to 

Station Full Name X 
Coordinate 
(km) 

Y 
Coordinate 
(km) 

Elevation 
(m) 

Temperature 
(°C) 

Precipitation 
(mm) 

BER Bern 
Zollikofen 

601933 204409 552 9.2 1039 

GUT Güttingen 738421 273962 440 9.4 955 

GVE Genève 
Cointrin 

498904 122631 410 10.7 933 

KLO Zürich Kloten 682710 259338 426 9.5 986 

NEU Neuchâtel 563086 205559 485 10.4 970 

PAY Payerne 562131 184611 490 9.5 864 

PUY Pully 540819 151510 455 11.0 955 

REH Zürich 
Affoltern 

681432 253548 443 9.5 1027 

SHA Schaffhausen 688702 282803 438 9.6 913 

STG St. Gallen 747865 254588 775 8.4 1328 

TAE Aadorf 
Tänikon 

710517 259824 539 8.8 1182 

VAD Vaduz 757722 221699 457 10.2 952 

WAE Wädenswil 693847 230744 485 9.7 1376 

WYN Wynau 626404 233848 422 9.2 1129 
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match the growing season, from sowing in October of the previous year to August, the 

latest possible date for harvest.  

 

 

Figure 1: Locations of the 14 selected weather stations across the Swiss plateau. 

 

The climate data were processed into indices and some derived variables were 

calculated. In total, nine final variables were used for analysis:  

1. daily mean air temperature 2 meters above ground (°C), 

2. daily maximum air temperature 2 meters above ground (°C), 

3. daily minimum air temperature 2 meters above ground (°C), 

4. daily maximum temperature over 25°C, 

5. daily minimum temperature below 0°C, 

6. calendar day precipitation (mm), 
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7. daily total water availability (mm), 

8. daily mean vapor pressure deficit (hPa), and 

9. daily mean global radiation (W/m2).  

The derived climate variables were water availability, vapor pressure deficit, 

mean temperature below 0°C, and mean temperature above 25°C. Water availability is 

equal to precipitation minus evapotranspiration (Holzkämper et al., 2014). Vapor 

pressure deficit was calculated from measured vapor pressure and relative humidity 

(Castellvi et al., 1996). Vapor pressure deficit was included rather than simply humidity 

(Hsiao et al., 2019). To calculate mean temperature below 0°C, days with minimum 

temperatures below 0°C were selected, and the average temperature was computed. This 

was to capture frost effects. The same procedure was done for days with maximum 

temperatures above 25°C, to capture heat stress effects (Acevedo et al. 2002, cited in 

Holzkämper et al., 2014). 

To create indices, the variables were averaged for each month of the growing 

season (October to August), and then for seasonal aggregates. The exception is 

precipitation, which is measured cumulatively instead of averaged. Seven seasonal 

aggregates were created: October and November (ON), October through December 

(OND), December through February (DJF), January through March (JFM), March 

through May (MAM), April through June (AMJ), and June through August (JJA). The 

growing season was also calculated (GS).  

Additional packages used in data processing are listed in the references (Hlavac, 

2018; Nolan & Padilla-Parra, 2017; R Core Team, 2020a; Zarei et al., 2019a). 



16 
 

2.3 Data analysis 

The steps of the data analysis were designed to answer the research questions of 

the thesis. Correlation analysis was performed to answer the question corresponding to 

the relationship between yield and climate variables. Station-specific correlation 

analysis was used to analyze possible changes in these relationship across different 

regions of Switzerland. A linear model was created and judged based on its ability to 

predict yield variability using climate variables. Finally, the model was used to predict 

yield density distribution with warmer temperatures.  

When building linear crop models, yield is typically detrended (Nicholls, 1997; 

Shi et al., 2013). It is assumed that some improvements in yield production over time 

are due to advancements in agricultural practices such as crop variety selection and 

fertilizer application (Shi et al., 2013). In an attempt to remove these anthropological 

elements and isolate the effects of climate, the trend with time is removed. Detrending 

of yield was performed before the correlation analysis and linear regression, since the 

correlation analysis was used to choose the variables for the linear model. Each station’s 

yield data was detrended separately using the “Detrend” function from the 

SpecsVerification package (Siegert, 2020). This function fits a linear trend to a time 

series and then removes it. Finally, data from all 14 stations were combined into one 

dataset.  

2.3.1 Correlation analysis 

Correlation analysis was performed to examine the relationship between yield 

and each of the climate variables. These results also informed the choice of variables for 

the linear model.  
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Two-sided Pearson correlation tests were performed in R. This tests for a linear 

relationship between paired samples, from 0 (no relationship) to 1 (equal), with a p-

value used to determine statistical significance. First, the dataset with all stations was 

tested. Then, each station was tested individually in order to examine possible trends 

across the wheat-growing region of Switzerland. Some stations had insufficient data for 

meaningful results. Trends were examined at different stations to compare if certain 

climate variables had a stronger relationship with wheat in different regions. 

Additionally, to examine changes in trends in later years, the dataset was split in half, 

into earlier and later years. Correlation analysis was performed on each half so that the 

results could be compared.  

2.3.2 Linear regression 

A linear model was built using the selected climate indices as predictor variables 

and yield as the response variable. The objective was to answer the third research 

question, about how well yield variability can be predicted on the basis of climate 

variables.  

The same dataset of combined data from all selected stations that was used in the 

correlation analysis was also used here. All rows with NA values were removed. The data 

was not split for cross-validation at this point, as automated cross-validation was 

performed later. The linear model was built stepwise, and then with the help of a best 

linear model selection function from the bestglm package (Kern et al., 2018; McLeod et 

al., 2020). First, the correlation analysis of all stations was examined. Indices with 

statistically significant correlations were all selected. This included many variables that 

correlated with each other, which can cause collinearity problems (Shi et al., 2013). To 
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reduce this danger, correlation analysis of all the variables with each other was 

performed. Variables that had a correlation coefficient of |0.5| or higher (closer to 

positive or negative 1) with each other were identified, and only one of them was 

selected for the model. That selection was based on the variable having fewer covariates 

overall and having a stronger correlation with yield. Then all of these variables were put 

into the step function, which uses Akaike information criterion (AIC) to remove some 

variables until the final model has a good fit but avoids overfitting. This reduced the 

number of variables. Next, quadratic terms were added for the remaining temperature 

and moisture variables, to check for nonlinear effects. Then the step function was 

repeated. Once fewer than ten linear and nonlinear terms were remaining, the bestglm 

function was used. It selects the best subset of a linear model using an information 

criterion like AIC or cross-validation. In this case, cross-validation was used.  

Once a satisfactory model had been created, the final step was to check its 

residuals. Quantile-quantile plots and the Shapiro-Wilks normality test were used to 

confirm that the residuals were normally distributed.  

2.3.3 Predicted yield density distribution with increased temperatures 

This method was designed to answer the fourth research question concerning the 

prediction of yield variability change under warmer conditions. This was done by 

perturbing the data. The temperature values were increased, but other variables were 

left constant. The first step was to create a histogram. Then the linear model was used to 

predict a density distribution without any change to the data. Next, 2°C were added to 

each value of each temperature column to create a new, perturbed dataset. A third 

dataset was created with the temperature increased a further 2°, or 4° higher than the 
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measured data. These two new datasets were input into the prediction of the linear 

model, creating two more density distributions.   
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3. Results 

3.1 Correlations 

First, the results of the correlation analysis from the large dataset will be 

examined. Next, regional differences will be addressed. Finally, correlations from the 

years before and after 2000 will each be examined.  

3.1.1. All Stations 

Correlations for the five temperature indices can be seen in Figure 2. The eleven 

months of the growing season are shown on the left side, and seasonal indices are shown 

on the right.  A few patterns are visible. First, correlations between yield and 

temperature are generally small. However, mean, minimum, and maximum 

temperatures have a strong negative correlation in December. Correlations with mean 

maximum temperature over 25°C are very small, less than |0.1|, and none of them are 

statistically significant. Mean minimum temperature below 0°C appears to have a 

significant, positive relationship with yield in late winter and early spring.  

Figure 2: Monthly (left) and seasonal (right) correlations between five temperature variables and yield. Small 
circles indicate correlation values that are not statistically significant. Larger shapes indicate statistically significant 
correlations of their respective variables.  



21 
 

Precipitation has a negative relationship with yield. Correlations are small in the 

fall and early winter, and higher in late winter and spring, until July. The pattern of 

correlations in water availability is almost identical. The same time indices are 

statistically significant, and the relationship between water availability and yield is also 

negative. This relationship between precipitation and water availability is not 

surprising, because precipitation is one of the two variables used to calculate water 

availability. The correlations with water availability are often stronger (more negative) 

in the monthly aggregates than they are for precipitation. Vapor pressure deficit (VPD) 

is the other moisture variable, and is usually inversely related to precipitation and water 

availability. Vapor pressure deficit has slightly fewer significant correlations, and they 

are less strong. However, VPD is significant more often in the fall, October through 

January. Higher values of VPD indicate drier conditions, while higher values of 

precipitation and water availability indicate wetter conditions. When looking at all 

stations, correlations between yield and precipitation and yield and water availability 

are almost always negative. Correlations between yield and VPD are negative in the fall 

months and generally positive in the spring months.  

Figure 3: Monthly (left) and seasonal (right) correlations between precipitation, water availability, vapor pressure 
deficit, radiation, and yield. Small circles indicate correlation values that are not statistically significant. Larger shapes 
indicate statistically significant correlations of their respective variables.  
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Radiation has many statistically significant correlations. The monthly index 

correlations of radiation seem to be slightly similar to those of VPD. The seasonal index 

correlations of radiation and VPD appear very similar. In the fall and early winter, 

correlations are negative. From February through the remainder of the growing season, 

they are positive. This is reflected in the seasonal aggregates. This indicates that higher 

radiation in the fall is associated with lower yields, while more radiation in the early 

spring onwards is associated with higher yields.  The strongest effect occurs in the 

months before harvest. This may be a cross effect rather than a direct cause.  

In general, for the dataset with all stations included, negative correlations 

between yield and precipitation and yield and water availability can be seen. These 

correlations match in timing and sign but are slightly stronger for water availability. 

Negative correlations exist in the fall for vapor pressure deficit, but are positive by the 

late spring. Radiation correlations are negative until February, after which they are 

positive. Temperature correlations show a strong negative spike in December.  

3.1.2 Regional Differences 

Although variations in patterns of correlations were examined at different 

stations, no regional trends or distinctions could be identified. Stations with sufficient 

climate and yield time series were examined, nine in total. No regional patterns were 

visible in the relationships between climate variables and wheat. Since no conclusions 

could be drawn, this segment of analysis did not contribute meaningfully to the study, so 

their correlation estimates and p-values are shown in the appendix only. 
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3.1.3. Comparing Earlier and Later Years 

First, temperature variables were examined. Before 2000, the only significant 

correlations were in minimum temperature in July (-0.46) and JJA (-0.52; Fig. 4). After 

2000, the strong negative correlation with December temperatures appears for the first 

time (Fig. 5). Statistically significant correlations are strong and negative in December (-

0.51 to -0.62). Minimum temperature below 0°C has significant negative correlations in 

the November indices as well. This may indicate that the negative correlation with 

Figure 4: Monthly (left) and seasonal (right) correlations between five temperature variables and yield from 
1981-1999. Small circles indicate correlation values that are not statistically significant. Larger shapes indicate a 
statistically significant correlation. 

Figure 5: Monthly (left) and seasonal (right) correlations between five temperature variables and yield from 
2000-2017. Small circles indicate correlation values that are not statistically significant. Larger shapes indicate a 
statistically significant correlation. 
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temperature in December that was seen in Figure 2 originated mainly in later, warmer 

years.  

 

Moisture and radiation indices are shown for the years before 2000 in Fig. 6, and 

for the years after 2000 in Fig. 7. In the first 19 years, the significant correlations for 

radiation are in December (-0.48), JFM (0.52), JJA (0.47), and the growing season 

(0.53). For the moisture variables, water availability has significant correlations in JFM 

(-0.47), AMJ (-0.52), and the growing season (-0.65). Precipitation correlations are 

Figure 6: Monthly (left) and seasonal (right) correlations between precipitation, water availability, vapor 
pressure deficit, radiation, and yield from 1981-1999. Small circles indicate correlation values that are not statistically 
significant. Larger shapes indicate statistically significant correlations.  

Figure 7: Monthly (left) and seasonal (right) correlations between precipitation, water availability, vapor 
pressure deficit, radiation, and yield from 2000-2017. Small circles indicate correlation values that are not statistically 
significant. Larger shapes indicate statistically significant correlations.  
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significant in AMJ (-0.50) and the growing season (-0.61). In general, correlations of 

precipitation and water availability match each other closely, while mirroring VPD, as 

expected. Radiation correlations seem to follow a similar pattern to VPD, especially 

seasonally. In the last 18 years, these patterns are not so clear, with the exception of the 

relationship between water availability and precipitation. There are no statistically 

significant correlations for radiation or moisture variables.  

3.2 Linear model 

The final linear model’s terms and their coefficients are shown in Table 2. The 

model includes a quadratic term for average daily maximum temperature in December, 

a quadratic term for average daily minimum temperature in October, average daily 

minimum temperature in JJA, average daily minimum temperature below 0° in DJF, 

cumulative precipitation throughout the growing season, and mean daily radiation in 

November and AMJ. The adjusted R2 value is 0.351.  

In summary, there are four temperature variables, one moisture variable, and 

two radiation variables. Looking at the coefficients, this model relies more on 

temperature for yield prediction than on other variables. The variables with the highest 

coefficients are minimum temperature in JJA and minimum temperature below 0°C in 

DJF. 

The model captures several climate effects on wheat. Winter temperatures below 

freezing are harmful, but so are high maximum temperatures. Warmer temperatures 

after sowing may be beneficial. Higher minimum temperatures in summer have a 

negative effect. Precipitation throughout the growing season has a weaker negative 
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effect. Radiation has a negative effect in the fall, but a positive effect in the spring. These 

factors will be returned to in the discussion.  

Table 2: Summary of the linear model showing the estimate for each coefficient. Standard error is indicated in parenthesis and 

significance level is indicated with asterisks (** p < 0.01; *** p < 0.001). 

 Dependent variable: 

 Yield 

(Mean Daily Max Temp Dec)^2 -0.127*** 
 (0.024) 

(Mean Daily Min Temp Oct)^2 0.082*** 
 (0.016) 

Mean Daily Min Temp JJA -1.519*** 
 (0.316) 

Mean Daily Min Temp Below 0° DJF 1.458*** 
 (0.358) 

Growing Season Precipitation -0.010*** 
 (0.002) 

Mean Radiation AMJ 0.061*** 
 (0.021) 

Mean Radiation Nov -0.239*** 
 (0.039) 

Constant 87.001*** 
 (6.173) 

Observations 366 

R2 0.363 

Adjusted R2 0.351 

Residual Std. Error 6.116 (df = 358) 

F Statistic 29.167*** (df = 7; 358) 
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3.3 Predicted yield density distribution with increased 

temperatures 

Using the linear model, yield density distributions were predicted using a dataset 

with warmer temperatures. The results are illustrated in Figure 8. Summary statistics 

are shown in Table 3. In general, it can be seen that the mean and median yield may 

decrease only very slightly at higher temperatures. However, the spread increases at 

higher temperatures, so minimum yields are lower and maximum yields are higher. 

 

 

 

 

Figure 6: The histogram’s gray bars represent measured yield values. The black line represents the 
predicted density distribution of yield based on the unaltered data and linear model. The orange line shows 
the predicted density distribution of yield under conditions 2°C warmer, and the red line for 4°C warmer. 
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Table 3: Summary statistics for the predicted density distribution of the original and perturbed datasets. 

 +0°C +2°C +4°C 

Minimum 36.85 33.65 30.08 

1st Quartile 51.9 51.04 50.01 

Median 55.13 54.99 54.65 

Mean 55.25 54.98 54.36 

3rd Quartile 58.88 59.08 59.1 

Max 64.64 66.53 68.06 
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4. Discussion 

4.1 Findings and Interpretation 

4.1.1 Correlations  

Some notable results of the correlation analysis will be examined in detail and 

put into context with other literature. First, the strong negative correlation between 

yield and several temperature indices in December and winter. This indicates that 

warmer winter temperatures are associated with lower yields. This could be related to 

disease. Warmer winter temperatures are associated with diseases such as rust 

infections later in the season, which can reduce yield (Te Beest et al., 2008) However, it 

could also be related to climate. Temperatures that are cold but above freezing are 

necessary for protective frost hardening. A warmer monthly temperature might indicate 

that a crop is not sufficiently hardened to survive frost, or that the field is undergoing 

successive periods of frost and thaw, which can be very damaging (Hyles et al., 2020; 

“Winter Wheat Development and Growth Staging,” 2018). These negative fall and 

December correlations with temperature did not appear in the earlier half of the dataset. 

Possibly there were not enough years with warm winter anomalies for the trend to be 

visible.  

There is precedent for this kind of correlation in the literature. Ceglar et al. 

(2016) examined the relative importance of various meteorological drivers throughout 

different regions of France. In the wheat-growing region of France that borders 

Switzerland, they found a significant positive temperature anomaly in December, which 

contributed to a lower yield. They did find in general that significant warm temperature 
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anomalies in the winter months had negative impacts on yield, and attributed this to 

reduced frost hardening and vernalization. 

In January and February, positive correlations with the minimum temperature 

below 0°C are visible. This is related to the above points about frost and cold 

temperatures. Less frost is beneficial, but so are temperatures that are cold but above 

freezing, as they aid in vernalization and frost hardening (Hyles et al., 2020; “Winter 

Wheat Development and Growth Staging,” 2018).  

Moisture effects throughout the year were somewhat difficult to interpret. 

Precipitation and water availability had a negative relationship with yield throughout 

the growing season, indicating that drier conditions are associated with higher yields. 

Vapor pressure deficit was negative and significant in the fall and winter, but positive in 

the spring. This may be somewhat contradictory to the information from precipitation 

and water availability. Negative correlations with vapor pressure deficit indicate that 

yield is higher when VPD is lower, meaning that conditions are moister. This may 

indicate that in the fall, more moisture helps yield, while later in the growing season, 

excess moisture is detrimental. Sufficient water in the fall is necessary for germination 

and sprouting. Waterlogging can reduce yields, but when it occurs in midwinter or 

earlier in the season, the plant is often able to compensate later in the season, so that the 

yield is not significantly reduced (Cannell et al., 1980). However, if the waterlogging 

occurs later in the season, the plant may not have sufficient time to recover, and yields 

may be lower as a result. Additionally, higher moisture in the spring and summer can 

lead to vivipary, which reduces the quality of the yield (Lenton, 2001, as cited in Xia et 

al., 2009). However, this effect is not necessarily visible in the measured weight used 

here. A positive correlation with VPD could also be attributed to disease. Higher VPD 
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indicates less moisture, and moisture is associated with disease outbreaks such as rust 

(Te Beest et al., 2008). This effect was visible in the correlation analysis of the first half 

of the dataset, but not clear in the later half.  

Therefore, germination, saturation, and disease are possible explanations for the 

different correlations with VPD shown throughout the growing season. Precipitation 

and water availability only captured the effect of excess moisture. Considering that 

factors such as soil water saturation may be important, perhaps it would have been 

more beneficial to use soil moisture as a variable. This is a common variable in process-

based models, but is often not included in statistical crop models, which strive for 

simplicity and use of readily-available variables (Lobell & Asseng, 2017).  

Correlations with radiation appear to follow the same pattern as VPD correlations 

here, meaning that more radiation in the fall is associated with lower yields, while the 

opposite is true in the spring. Radiation is generally expected to have a positive 

relationship with yield (Fischer, 1985). Holzkämper et al. (2014) found that in 

Switzerland, winter wheat growth suitability regions were primarily limited by low 

radiation and high precipitation. Since evidence exists for this positive relationship 

between radiation and yield, especially in Switzerland itself, the radiation correlations 

here may be capturing some other effect, rather than showing a direct relationship with 

yield. It is possible that low values of radiation are related to precipitation events. 

Radiation and VPD are positively correlated with each other in the spring and summer. 

Likewise, precipitation and water availability are each negatively correlated with 

radiation in the spring and summer. Excess moisture effects on yield in the fall could be 

positive, as discussed above.  
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4.1.2 Model 

In the model created here, important effects analyzed in the discussion of 

correlations apply as well. Temperature variables appear to be the most important for 

yield prediction. Excess heat in summer and frost in winter are important, as well as 

avoiding too-warm temperatures in winter. Precipitation in the growing season has a 

small negative effect. However, radiation in November, which has a relatively high 

negative coefficient in the model, may actually be capturing a moisture effect, as 

discussed above. It is not clear why one of the moisture variables was not able to 

perform as well in the model as radiation. Holzkämper et al. (2014) found that winter 

wheat growth suitability regions in Switzerland is primarily limited by excess 

precipitation and low radiation, and also by minimum and maximum temperature 

thresholds. The model generated here does include negative effects of summer heat and 

winter frost, but in general the temperature indices are more important than 

precipitation.  

Many statistical crop models use monthly or growing season aggregates of daily 

precipitation and minimum and maximum temperature as their only climate variables 

(Lobell et al., 2007). This study demonstrates that other variables, such as radiation, can 

have a significant effect on yield, and perhaps they should be considered more often for 

crop models, as in (Zarei et al., 2019b). In the process of this study, models with fewer 

variables, and that considered only the growing season variables, did not perform as 

well, so in this case the R2 was improved with the inclusion of additional variables.  

However, this model’s R2 is lower than other country-specific winter wheat 

models in the European region. Kern et al. (2018) created a cross-validated linear crop 

model that was able to explain 67% of the variance in winter wheat yields in Hungary. 
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This included fertilizer amount (rather than detrending yield data), a remote-sensing 

based vegetation index in May, and minimum temperature in May. One element 

involved is that models that incorporate the time or technological trend as one of the 

variables can achieve a higher proportion of explained variance overall, because both 

climate and non-climate variance is being explained. Another more unusual element for 

a statistical model was the inclusion of the vegetation index. This contribution alone 

improved the model’s R2 by 0.1 (Kern et al., 2018). Another variable that could 

potentially benefit the model created in this thesis is soil water content, since the 

potential explanations for the November radiation coefficient indicated that moisture 

may play a role not otherwise captured in the model.  

Another promising approach would be to split the climate data based on the 

growing phase of wheat, rather than by months or several months, resulting in a model 

that is focused on biological needs of the plant rather than on anthropologic conventions 

of time. This was demonstrated by Bönecke et al. (2020). This study conducted in 

Germany was able to explain 50% or more of winter wheat yield variability based on 

climate variability. Temperature was the most influential climate variable, with heat 

stress being particularly important. By isolating vulnerable stages of plant growth such 

as stem elongation, they were able to make a more precise model Bönecke et al. (2020).  

A possible extension of this model’s use would be to predict how technological 

trends may affect future wheat yields, and if they could compensate for potential losses 

from climate change. In the past, farmers have taken advantage of technological 

advancements and may have adapted to climate change, but future patterns of 

adaptation and advancement may not follow past patterns, which introduces 

uncertainty (Lecerf et al., 2019; Lobell & Asseng, 2017).  Gammans et al. (2017) used a 
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statistical model to predict a 21% decrease in winter wheat yields in France under 

RCP8.5, if technology remained constant. However, if the historical trend of yield 

increases due to technological advances continued at the same rate in the future, this 

may compensate for negative effects of warming, especially moderate warming, as in 

scenario RCP4.5. In the future, beneficial effects of higher carbon dioxide levels are also 

expected (Lobell & Asseng, 2017).  

4.1.3 Predicted Yield  

With warmer temperatures, the spread of the density distribution grew wider. 

This is likely due to the model including both positive and negative effects of 

temperature, so the resulting yield may vary more widely from year to year. This may 

indicate that in a warmer future, farmers may need to adapt in order to avoid years with 

large losses. (Bönecke et al., 2020) recommended several adaptations to farmers in 

Germany to adapt by avoiding excessive heat stress by sowing early, planting crops that 

can be harvested early, and considering implementing irrigation systems if drought is a 

concern. This would not solve the problem of warm winter temperatures negatively 

affecting yield. In this case, the crop may need to be protected from frost, or crop 

varieties will have to be planted that are more tolerant to intermittent frost.  

This is clearly a rough sketch of what this model could do with more 

sophisticated climate projection data. (Holzkämper et al., 2015) found that statistical 

models could be improved if they included effects of ozone or carbon dioxide. Models 

that are used for the distant future or for more than 2°C of warming especially can 

benefit from these effects being included.  
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Using a linear model to predict changes can be risky if the new data extends 

beyond the observed values which were used to create the model. This is especially 

relevant for variables which may have a range with linear or quadratic response, but 

upon reaching certain thresholds, suddenly begin to respond differently (Asseng et al., 

2011). This may be relevant in this case, as the maximum temperature above 25°C was 

not included as one of the variables in the model. It is possible that some nonlinear 

effects of increased heat stress beyond this point were not captured when the model was 

used with the new hotter dataset. Asseng et al. (2011) found that in Australia, 

temperature changes as small as 2°C could reduce wheat yield by as much as 50%. 

However, this is likely due to temperatures in Australia already being very hot, so a 

temperature increase of 2°C can result in temperatures over 34°C, and therefore plant 

senescence. This contributes to the idea that temperature extremes or thresholds may be 

more significant than linear increases.   

A potential source of error in similar analysis is that evapotranspiration is 

affected by temperature. This would change the water availability, which would in turn 

affect the predicted yield density distribution if water availability was a factor in the 

model. This could be solved by calculating the evapotranspiration rate rather than using 

a measured value.  

4.2 Other Limitations 

In general, one limitation was the availability of wheat data. Wheat data was 

sampled from each municipality each year. Municipalities were assigned to the closest 

station, but individual wheat fields may have experienced climatic conditions differing 

slightly from those reported by the station.  
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In the variable selection, another possibility in addition to considering other 

variables such as soil water content would be to change the metrics for extreme 

temperature. It could be much more beneficial to consider the number of days with 

minimum (or maximum) temperatures under (or over) a temperature threshold (Asseng 

et al., 2011). This would capture effects like the number of frost events, which may be 

more meaningful than mean minimum temperature belove 0°C.  
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5. Conclusions and Outlook 

The thesis set out to address four main research questions. The first concerned 

which climate indicators relate most strongly to observed winter wheat yields. In the 

model, temperature indices are the most important climate drivers for yield. Summer 

and winter heat are especially important. Winter heat began to negatively correlate with 

yield in the past two decades. Radiation and precipitation are also significant. The 

second question aimed to examine how relationships between climate drivers and yield 

deviate between different agroclimatic regions of Switzerland. Meaningful differences 

across Switzerland were not identified in these results. The third question addressed 

how well yield variability can be predicted on the basis of climate variables. This 

research produced a cross-validated model with an adjusted R2 of 0.35. The final 

question referred to how yield amount and variability might change under warmer 

conditions. The predicted yield density distribution with 2°C and 4°C warmer 

temperatures indicates that the overall mean yield may not change significantly, but 

yield variability may increase.  

Future studies may benefit from utilizing soil moisture data, where available. 

This may bring clarity to differences that were seen between correlations of VPD and 

precipitation here. Another step that would improve clarity of these results would be to 

make climate indices around phenological timing rather than months. One area that 

remained ambiguous here was possible differences in the relationships between climate 

drivers and yield across the different agroclimatic regions of Switzerland. A future study, 

perhaps with more datapoints carefully selected to represent these regions, might 

identify a pattern not observed in these results.  
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A clear extension of this study would be to input projected data from a climate 

model into the model created here to make a more precise prediction of yield in the 

future. This could include more accurate temperature projections, and would include 

precipitation projections, which were not included here. However, future research could 

also use the predictions that were made here and focus on how to adapt to prevent more 

highly varying yield in the future. This might include researching techniques to protect 

wheat from intermittent winter frost, alter planting times to avoid exposure to excessive 

summer heat, or develop new crop varieties that are more resilient to these factors.  

 

  

 

 

  



39 
 

6. References 

Asseng, S., Foster, I., & Turner, N. C. (2011). The impact of temperature variability on 

wheat yields. Global Change Biology, 17(2), 997–1012. 

https://doi.org/10.1111/j.1365-2486.2010.02262.x 

Bönecke, E., Breitsameter, L., Brüggemann, N., Chen, T. W., Feike, T., Kage, H., 

Kersebaum, K. C., Piepho, H. P., & Stützel, H. (2020). Decoupling of impact factors 

reveals the response of German winter wheat yields to climatic changes. Global 

Change Biology, 26(6), 3601–3626. https://doi.org/10.1111/gcb.15073 

Cannell, R. Q., Belford, R. K., Gales, K., Dennis, C. W., & Prew, R. D. (1980). Effects of 

waterlogging at different stages of development on the growth and yield of winter 

wheat. Journal of the Science of Food and Agriculture, 31(2). 

https://doi.org/10.1002/jsfa.2740310203 

Castellvi, F., Perez, P. J., Villar, J. M., & Rose11, J. I. (1996). Analysis of methods for 

estimating vapor pressure deficits and relative humidity. In Agricultural and Forest 

Meteorology (Vol. 82). 

Ceglar, A., Toreti, A., Lecerf, R., van der Velde, M., & Dentener, F. (2016). Impact of 

meteorological drivers on regional inter-annual crop yield variability in France. 

Agricultural and Forest Meteorology, 216, 58–67. 

https://doi.org/10.1016/j.agrformet.2015.10.004 

Finger, R. (2010). Evidence of slowing yield growth - The example of Swiss cereal yields. 

Food Policy, 35(2), 175–182. https://doi.org/10.1016/j.foodpol.2009.11.004 

Fischer, R. A. (1985). Number of kernels in wheat crops and the influence of solar 

radiation and temperature. The Journal of Agricultural Science, 105(2), 447–461. 

https://doi.org/10.1017/S0021859600056495 

Gibson, L. R., & Paulsen, G. M. (1999). Yield components of wheat grown under high 

temperature stress during reproductive growth. Crop Science, 39(6), 1841–1846. 

https://doi.org/10.2135/cropsci1999.3961841x 

Hatfield, J. L., & Prueger, J. H. (2015). Temperature extremes: Effect on plant growth 

and development. Weather and Climate Extremes, 10, 4–10. 

https://doi.org/10.1016/j.wace.2015.08.001 



40 
 

Hlavac, M. (2018). stargazer: Well-Formatted Regression and Summary Statistics 

Tables (R package version 5.2.2). https://cran.r-project.org/package=stargazer 

Holzkämper, Calanca, P., Honti, M., & Fuhrer, J. (2015). Projecting climate change 

impacts on grain maize based on three different crop model approaches. 

Agricultural and Forest Meteorology, 214–215, 219–230. 

https://doi.org/10.1016/j.agrformet.2015.08.263 

Holzkämper, Fossati, D., Hiltbrunner, J., & Fuhrer, J. (2014). Spatial and temporal 

trends in agro-climatic limitations to production potentials for grain maize and 

winter wheat in Switzerland. Regional Environmental Change, 15(1), 109–122. 

https://doi.org/10.1007/s10113-014-0627-7 

Hsiao, J., Swann, A. L. S., & Kim, S. H. (2019). Maize yield under a changing climate: 

The hidden role of vapor pressure deficit. Agricultural and Forest Meteorology, 279. 

https://doi.org/10.1016/j.agrformet.2019.107692 

Hyles, J., Bloomfield, M. T., Hunt, J. R., Trethowan, R. M., & Trevaskis, B. (2020). 

Phenology and related traits for wheat adaptation. In Heredity. Springer Nature. 

https://doi.org/10.1038/s41437-020-0320-1 

Kern, A., Barcza, Z., Marjanović, H., Árendás, T., Fodor, N., Bónis, P., Bognár, P., & 

Lichtenberger, J. (2018). Statistical modelling of crop yield in Central Europe using 

climate data and remote sensing vegetation indices. Agricultural and Forest 

Meteorology, 260–261, 300–320. 

https://doi.org/10.1016/j.agrformet.2018.06.009 

Kronenberg, L., Yates, S., Boer, M., Kirchgessner, N., Walter, A., & Hund, A. (2019). 

Temperature response of wheat affects final height and the timing of key 

developmental stages under field conditions. 1–36. 

https://doi.org/10.1101/756700 

Large, E. C. (1954). Growth Stages In Cereals Illustration of the Feekes Scale. Plant 

Pathology, 3(4), 128–129. https://doi.org/10.1111/j.1365-3059.1954.tb00716.x 

Lecerf, R., Ceglar, A., López-Lozano, R., van der Velde, M., & Baruth, B. (2019). 

Assessing the information in crop model and meteorological indicators to forecast 

crop yield over Europe. Agricultural Systems, 168, 191–202. 

https://doi.org/10.1016/j.agsy.2018.03.002 



41 
 

Lobell, D. B., & Asseng, S. (2017). Comparing estimates of climate change impacts from 

process-based and statistical crop models. Environ. Res. Lett, 12(15001). 

https://doi.org/10.1088/1748-9326/015001 

Lobell, D. B., & Burke, M. B. (2010). On the use of statistical models to predict crop 

yield responses to climate change. Agricultural and Forest Meteorology, 150(11), 

1443–1452. https://doi.org/10.1016/j.agrformet.2010.07.008 

Lobell, D. B., Cahill, K. N., & Field, C. B. (2007). Historical effects of temperature and 

precipitation on California crop yields. Climatic Change, 81(2), 187–203. 

https://doi.org/10.1007/s10584-006-9141-3 

Lobell, D. B., & Field, C. B. (2007). Global scale climate-crop yield relationships and the 

impacts of recent warming. Environmental Research Letters, 2(1). 

https://doi.org/10.1088/1748-9326/2/1/014002 

Mäkinen, H., Kaseva, J., Trnka, M., Balek, J., Kersebaum, K. C., Nendel, C., Gobin, A., 

Olesen, J. E., Bindi, M., Ferrise, R., Moriondo, M., Rodríguez, A., Ruiz-Ramos, M., 

Takáč, J., Bezák, P., Ventrella, D., Ruget, F., Capellades, G., & Kahiluoto, H. (2018). 

Sensitivity of European wheat to extreme weather. Field Crops Research, 222, 209–

217. https://doi.org/10.1016/j.fcr.2017.11.008 

McLeod, A. I., Xu, C., & Lai, Y. (2020). bestglm: Best Subset GLM and Regression 

Utilities (R package version 0.37.3). https://cran.r-project.org/package=bestglm 

Mitchell, R. A. C., Mitchell, V. J., Driscoll, S. P., Franklin, J., & Lawlor, D. W. (1993). 

Effects of increased CO2 concentration and temperature on growth and yield of 

winter wheat at two levels of nitrogen application. Plant, Cell & Environment, 

16(5), 521–529. https://doi.org/10.1111/j.1365-3040.1993.tb00899.x 

NCCS. (2018). CH-2018 - Climate Scenarios for Switzerland. 

https://www.swisscom.ch/en/about/company/portrait/network/5g.html 

Nicholls, N. (1997). Increased Australian wheat yield due to recent climate trends. 

Letters to Nature, 387(1997), 484–485. 

Nolan, R., & Padilla-Parra, S. (2017). filesstrings: An R package for file and string 

manipulation (2(14)). The Journal of Open Source Software. doi: 

10.21105/joss.00260 

Ortiz, B. v., Tapley, M., & van Santen, E. (2012). Planting Date and Variety Selection 

Effects on Wheat Yield. 



42 
 

R Core Team. (2020a). foreign: Read Data Stored by “Minitab”, “S”, “SAS”, “SPSS”, 

“Stata”, “Systat”, “Weka”, “dBase”, .... (R package version 0.8-72). https://cran.r-

project.org/package=foreign 

R Core Team. (2020b). R: A language and environment for statistical computing. R 

Foundation for Statistical Computing. https://www.r-project.org/ 

Ray, D. K., West, P. C., Clark, M., Gerber, J. S., Prishchepov, A. v., & Chatterjee, S. 

(2019). Climate change has likely already affected global food production. PLoS 

ONE, 14(5). https://doi.org/10.1371/journal.pone.0217148 

Semenov, M. A., Stratonovitch, P., Alghabari, F., & Gooding, M. J. (2014). Adapting 

wheat in Europe for climate change. In Journal of Cereal Science (Vol. 59, Issue 3, 

pp. 245–256). Academic Press. https://doi.org/10.1016/j.jcs.2014.01.006 

Shi, W., Tao, F., & Zhang, Z. (2013). A review on statistical models for identifying 

climate contributions to crop yields. Journal of Geographical Sciences, 23(3), 567–

576. https://doi.org/10.1007/s11442-013-1029-3 

Siegert, S. (2020). SpecsVerification: Forecast Verification Routines for Ensemble 

Forecasts of Weather and Climate. (R package version 0.5-3.). https://cran.r-

project.org/package=SpecsVerification 

te Beest, D. E., Paveley, N. D., Shaw, M. W., & van den Bosch, F. (2008). Disease-

weather relationships for powdery mildew and yellow rust on winter wheat. 

Phytopathology, 98(5), 609–617. https://doi.org/10.1094/PHYTO-98-5-0609 

Winter Wheat Development and Growth Staging. (2018). In Plant Pathology (Vol. 3, 

Issue 4). https://doi.org/10.1111/j.1365-3059.1954.tb00716.x 

Xia, L. Q., Yang, Y., Ma, Y. Z., Chen, X. M., He, Z. H., Röder, M. S., Jones, H. D., & 

Shewry, P. R. (2009). What can the Viviparous-1 gene tell us about wheat pre-

harvest sprouting? Euphytica, 168(3), 385–394. https://doi.org/10.1007/s10681-

009-9928-1 

Zarei, A. R., Shabani, A., & Mahmoudi, M. R. (2019a). dplyr: A Grammar of Data 

Manipulation (R package version 0.8.5). https://cran.r-project.org/package=dplyr 

Zarei, A. R., Shabani, A., & Mahmoudi, M. R. (2019b). Comparison of the climate 

indices based on the relationship between yield loss of rain-fed winter wheat and 

changes of climate indices using GEE model. Science of the Total Environment, 

661, 711–722. https://doi.org/10.1016/j.scitotenv.2019.01.204 



43 
 

 

7. Appendix 

7.1 Correlation Tables 

The tables show the correlation estimates and their p-values. P-values of 0.05 and 

smaller are in red typeface, indicating that the correlation to the left is statistically 

significant at that level. Some tables were represented graphically in figures in the text. 

Tables begin on the following page.  
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Table 4: All Stations (appears in Figs. 2 and 3) 

 

 

 Mean Temp (°C) Mean Max Temp 
(°C)  

Mean Min Temp 
(°C) 

Mean Max Temp 
Over 25 °C 

Mean Min Temp 
Under 0 °C 

Cor P-value Cor P-value Cor P-value Cor P-value Cor P-value 

Oct 0.137 0.0057 0.0805 0.1052 0.1597 0.0012 -0.0682 0.17 0.0325 0.5141 

Nov 0.037 0.4567 -0.0578 0.245 0.0962 0.0527 0 1 0.0455 0.3604 

Dec -0.1381 0.0053 -0.2375 0 -0.039 0.4333 0 1 0.0134 0.7879 

Jan 0.0867 0.0813 0.0341 0.4929 0.139 0.005 0 1 0.1977 0.0001 

Feb 0.0982 0.0483 0.1011 0.0417 0.1147 0.0208 0 1 0.1548 0.0018 

Mar 0.003 0.9521 0.0147 0.7683 -0.0193 0.6985 0 1 -0.0638 0.1996 

Apr 0.1136 0.0223 0.1155 0.0199 0.0763 0.1249 0.0151 0.7612 0.1121 0.0239 

May 0.0168 0.7366 0.0308 0.5367 -0.0288 0.5626 -0.001 0.9846 -0.0576 0.2468 

Jun 0.0792 0.1117 0.0821 0.0986 0.0171 0.7313 -0.0681 0.1705 0 1 

Jul 

 

-0.0079 0.8744 0.0001 0.9982 -0.0279 0.5748 0.0781 0.1162 0 1 

Aug 

 

-0.0103 0.8365 -0.0141 0.7777 -0.0182 0.7143 -0.0058 0.907 0 1 

GS 0.0738 0.1379 0.0427 0.3903 0.0749 0.1317 0.0001 0.998 0.1613 0.0011 

ON 0.1044 0.0355 0.0101 0.8399 0.1527 0.002 -0.0682 0.17 0.0563 0.2574 

DJF 0.0504 0.3113 -0.0018 0.9708 0.113 0.0228 0 1 0.1965 0.0001 

MAM 0.056 0.2604 0.072 0.1474 0.0075 0.8802 0.008 0.8725 -0.0109 0.8264 

JJA 0.0284 0.5681 0.0308 0.5356 -0.0113 0.8203 -0.019 0.7031 0 1 

OND 0.0152 0.7608 -0.1044 0.0355 0.0906 0.0683 -0.0682 0.17 0.0431 0.3861 

JFM 0.0929 0.0618 0.0762 0.1254 0.1141 0.0215 0 1 0.1581 0.0014 

AMJ 0.0894 0.0722 0.1025 0.039 0.0241 0.6285 -0.0053 0.916 0.0855 0.0855 

 Sum Precipitation 
(mm) 

Mean Water 
Availability (mm) 

Mean VPD (hPa) Mean Rad 
(W/m2) 

 

Cor P-value Cor P-value Cor P-value Cor P-value   

Oct -0.0913 0.071 -0.076 0.1329 -0.1527 0.002 0.0077 0.878   

Nov -0.015 0.7668 0.0027 0.9579 -0.2135 0 -0.1846 0.0002   

Dec -0.0284 0.5739 -0.0245 0.6272 -0.2039 0 -0.091 0.0707   

Jan -0.2075 0 -0.2047 0 -0.1155 0.0202 -0.1182 0.0175   

Feb -0.123 0.0135 -0.1234 0.0132 -0.0628 0.2081 0.1152 0.0206   

Mar -0.1028 0.0391 -0.1079 0.0322 -0.0457 0.3597 0.1245 0.0123   

Apr -0.139 0.0052 -0.1542 0.0019 0.0644 0.1965 0.1512 0.0023   

May -0.2504 0 -0.2603 0 0.0618 0.2148 0.1941 0.0001   

Jun -0.252 0 -0.2789 0 0.1129 0.0232 0.2228 0   

Jul 

 

-0.0542 0.2803 -0.0801 0.11 0.0207 0.6785 0.0973 0.0503   

Aug 

 

-0.0964 0.0531 -0.0857 0.0858 -0.0265 0.5939 0.0644 0.1955   

GS -0.2613 0 -0.322 0 -0.0156 0.7545 0.0725 0.1449   

ON 0.0068 0.8908 -0.0444 0.3798 -0.2021 0 -0.0799 0.113   

DJF -0.1654 0.0008 -0.1981 0.0001 -0.1484 0.0027 -0.0498 0.318   

MAM -0.2317 0 -0.2606 0 0.0452 0.365 0.2241 0   

JJA -0.1967 0.0001 -0.2289 0 0.0414 0.4052 0.1974 0.0001   

OND 0.0223 0.6548 -0.0518 0.304 -0.2276 0 -0.0945 0.0606   

JFM -0.2203 0 -0.2216 0 -0.0871 0.0804 0.1055 0.034   

AMJ -0.3088 0 -0.3748 0 0.1094 0.028 0.287 0   
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Table 5: BER 

 

 

 Mean Temp (°C) Mean Max Temp 
(°C)  

Mean Min Temp 
(°C) 

Mean Max Temp 
Over 25 °C 

Mean Min Temp 
Under 0 °C 

Cor P-value Cor P-value Cor P-value Cor P-value Cor P-value 

Oct 0.0654 0.7006 0.0674 0.692 0.0442 0.7951 -0.1181 0.4864 -0.1729 0.3063 

Nov 0.0857 0.614 0.0331 0.8459 0.0441 0.7954 0 1 -0.2302 0.1706 

Dec -0.2037 0.2267 -0.2519 0.1326 -0.1597 0.345 0 1 -0.1686 0.3184 

Jan 0.1189 0.4832 0.115 0.4981 0.1228 0.4691 0 1 0.1753 0.2994 

Feb 0.1632 0.3346 0.2432 0.1469 0.0996 0.5576 0 1 0.132 0.436 

Mar 0.0084 0.9607 0.0954 0.5745 -0.13 0.4431 0 1 -0.17 0.3143 

Apr 0.1047 0.5375 0.1361 0.422 -0.0318 0.8519 0.0495 0.7711 -0.0495 0.7711 

May 0.0252 0.8824 0.1062 0.5316 -0.1315 0.4379 0.1247 0.462 -0.0049 0.9769 

Jun 0.0941 0.5794 0.0829 0.6258 0.0512 0.7636 -0.0595 0.7265 0 1 

Jul 

 

-0.1252 0.4601 -0.1235 0.4663 -0.2429 0.1475 0.0077 0.9638 0 1 

Aug 

 

-0.1788 0.2896 -0.1749 0.3005 -0.2424 0.1483 -0.0837 0.6222 0 1 

GS 0.0616 0.7171 0.1234 0.4669 -0.0735 0.6655 -0.1311 0.4392 -0.003 0.9858 

ON 0.1044 0.5385 0.0708 0.6773 0.059 0.7287 -0.1181 0.4864 -0.3012 0.07 

DJF 0.0889 0.6006 0.1251 0.4608 0.0622 0.7148 0 1 0.1135 0.5037 

MAM 0.0613 0.7187 0.1688 0.3179 -0.1585 0.3488 0.1231 0.4679 -0.1778 0.2923 

JJA -0.1021 0.5477 -0.1191 0.4824 -0.1955 0.2463 -0.1023 0.5467 0 1 

OND -0.0268 0.8748 -0.0686 0.6864 -0.0426 0.8022 -0.1181 0.4864 -0.2826 0.0901 

JFM 0.1533 0.365 0.2276 0.1756 0.0694 0.683 0 1 0.0998 0.5566 

AMJ 0.1021 0.5476 0.1645 0.3307 -0.0613 0.7187 0.0992 0.559 -0.0467 0.7838 

 Sum Precipitation 
(mm) 

Mean Water 
Availability (mm) 

Mean VPD (hPa) Mean Rad 
(W/m2) 

 

Cor P-value Cor P-value Cor P-value Cor P-value   

Oct -0.0854 0.6205 -0.0797 0.6439 -0.2066 0.2198 0.0643 0.7096   

Nov -0.0294 0.8648 -0.0259 0.8809 0.0112 0.9477 -0.1362 0.4285   

Dec 0.1127 0.5128 0.1161 0.5002 -0.1489 0.3791 -0.0219 0.899   

Jan -0.3132 0.0591 -0.314 0.0584 -0.014 0.9346 0.0523 0.7585   

Feb -0.1909 0.2577 -0.2017 0.2312 0.1685 0.3187 0.3358 0.0422   

Mar -0.3071 0.0644 -0.3177 0.0554 0.115 0.498 0.3048 0.0666   

Apr -0.0321 0.8504 -0.0789 0.6425 0.1543 0.3618 0.1547 0.3605   

May -0.3854 0.0185 -0.3815 0.0198 0.1939 0.2501 0.3093 0.0625   

Jun -0.1905 0.2587 -0.2195 0.1917 0.1803 0.2856 0.1945 0.2486   

Jul 

 

-0.0734 0.666 -0.1091 0.5202 0.0155 0.9275 0.2359 0.1598   

Aug 

 

0.0194 0.9094 0.0239 0.8882 -0.1362 0.4214 0.0613 0.7183   

GS -0.344 0.0371 -0.427 0.0084 0.0973 0.5666 0.2228 0.1849   

ON 0.0292 0.8636 -0.0696 0.6865 -0.1389 0.4123 -0.0112 0.9483   

DJF -0.1782 0.2913 -0.2261 0.1784 0.032 0.8511 0.1558 0.357   

MAM -0.3657 0.026 -0.3792 0.0206 0.2231 0.1844 0.3472 0.0353   

JJA -0.14 0.4087 -0.1736 0.3042 0.0195 0.9086 0.2455 0.143   

OND 0.1162 0.4933 -0.0029 0.9868 -0.1836 0.2767 -0.0171 0.9211   

JFM -0.4406 0.0064 -0.4456 0.0057 0.1307 0.4408 0.4001 0.0141   

AMJ -0.3467 0.0356 -0.3934 0.016 0.2605 0.1194 0.3347 0.0429   
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Table 6: GUT 

 

 

 Mean Temp (°C) Mean Max Temp 
(°C)  

Mean Min Temp 
(°C) 

Mean Max Temp 
Over 25 °C 

Mean Min Temp 
Under 0 °C 

Cor P-value Cor P-value Cor P-value Cor P-value Cor P-value 

Oct 0.1247 0.4623 0.1065 0.5303 0.1654 0.3281 0.1198 0.4801 -0.2037 0.2267 

Nov 0.0898 0.5972 0.0455 0.7892 0.1075 0.5265 0 1 0.0714 0.6746 

Dec -0.2731 0.102 -0.3545 0.0313 -0.1662 0.3257 0 1 -0.1391 0.4115 

Jan 0.0772 0.6498 0.0631 0.7108 0.103 0.5439 0 1 0.1805 0.2851 

Feb 0.1275 0.4522 0.1675 0.3218 0.1017 0.5494 0 1 0.0231 0.8921 

Mar -0.0302 0.8593 -0.0098 0.9539 -0.0408 0.8104 0 1 -0.1168 0.4911 

Apr 0.2331 0.1651 0.2254 0.1798 0.1894 0.2615 0.0873 0.6076 0.398 0.0147 

May 0.0675 0.6916 0.0827 0.6264 0.0184 0.9139 0.1184 0.4852 -0.172 0.3087 

Jun 0.1069 0.5289 0.1128 0.5063 0.0052 0.9754 -0.148 0.3821 0 1 

Jul 

 

-0.1086 0.5224 -0.1065 0.5304 -0.0669 0.694 -0.0571 0.7371 0 1 

Aug 

 

-0.1391 0.4117 -0.1459 0.3887 -0.1096 0.5185 -0.1546 0.3608 0 1 

GS 0.0667 0.6948 0.0678 0.6902 0.0644 0.7047 -0.1756 0.2986 0.0425 0.8029 

ON 0.1369 0.4191 0.0971 0.5674 0.1769 0.295 0.1198 0.4801 -0.0331 0.8458 

DJF 0.0258 0.8795 0.0262 0.8776 0.0529 0.7557 0 1 0.0571 0.7373 

MAM 0.115 0.4979 0.1399 0.4089 0.0598 0.7254 0.1329 0.433 0.0336 0.8437 

JJA -0.0563 0.7404 -0.0695 0.6828 -0.0656 0.6997 -0.1884 0.2642 0 1 

OND -0.0209 0.9022 -0.0953 0.5749 0.0506 0.7663 0.1198 0.4801 -0.0983 0.5626 

JFM 0.0939 0.5802 0.1214 0.4743 0.0887 0.6015 0 1 0.0536 0.7527 

AMJ 0.1742 0.3025 0.1981 0.2397 0.0812 0.6327 0.1245 0.4627 0.3073 0.0643 

 Sum Precipitation 
(mm) 

Mean Water 
Availability (mm) 

Mean VPD (hPa) Mean Rad 
(W/m2) 

 

Cor P-value Cor P-value Cor P-value Cor P-value   

Oct -0.1429 0.4056 -0.1372 0.4248 -0.117 0.4903 0.0316 0.855   

Nov -0.0665 0.7001 -0.0657 0.7036 -0.0231 0.8919 -0.0411 0.8118   

Dec 0.0447 0.7958 0.0429 0.8036 -0.1225 0.4703 -0.0958 0.5785   

Jan -0.3953 0.0155 -0.3972 0.0149 0.0664 0.6961 0.03 0.86   

Feb -0.3309 0.0454 -0.3419 0.0383 0.1768 0.2952 0.4155 0.0105   

Mar 0.0019 0.9909 -0.0403 0.8153 0.1146 0.4993 0.1327 0.4338   

Apr -0.1678 0.321 -0.1837 0.2765 0.2382 0.1556 0.1948 0.2479   

May -0.404 0.0145 -0.3941 0.0174 0.2311 0.1688 0.2662 0.1113   

Jun -0.3944 0.0157 -0.3877 0.0178 0.2072 0.2185 0.1938 0.2504   

Jul 

 

0.1267 0.4616 0.1038 0.5468 -0.1367 0.4197 -0.0137 0.936   

Aug 

 

0.0895 0.6037 0.1188 0.4901 -0.1434 0.397 -0.0672 0.6926   

GS -0.426 0.0086 -0.4735 0.0031 0.099 0.5598 0.1055 0.5342   

ON -0.0431 0.8 -0.1384 0.4208 -0.0905 0.5942 0.0005 0.9977   

DJF -0.3496 0.0339 -0.4117 0.0113 0.0707 0.6773 0.1941 0.2496   

MAM -0.3392 0.04 -0.3649 0.0264 0.3008 0.0705 0.2955 0.0758   

JJA -0.1831 0.2779 -0.1011 0.5515 -0.0424 0.8034 0.0683 0.6878   

OND 0.0251 0.8826 -0.0874 0.6122 -0.14 0.4084 -0.0301 0.8618   

JFM -0.4423 0.0061 -0.4636 0.0039 0.1827 0.2792 0.282 0.0909   

AMJ -0.5433 0.0005 -0.5697 0.0002 0.3319 0.0448 0.3364 0.0418   
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Table 7: KLO 

 

 

 Mean Temp (°C) Mean Max Temp 
(°C)  

Mean Min Temp 
(°C) 

Mean Max Temp 
Over 25 °C 

Mean Min Temp 
Under 0 °C 

Cor P-value Cor P-value Cor P-value Cor P-value Cor P-value 

Oct 0.2731 0.1019 0.2773 0.0966 0.2302 0.1706 -0.0927 0.5854 0.2608 0.119 

Nov -0.053 0.7554 -0.1344 0.4277 0.0085 0.9602 0 1 0.013 0.939 

Dec -0.1723 0.3078 -0.2862 0.0859 -0.0565 0.7398 0 1 0.0012 0.9946 

Jan 0.0473 0.781 0.0307 0.857 0.0744 0.6615 0 1 0.1736 0.3041 

Feb 0.1411 0.405 0.1796 0.2876 0.129 0.4468 0 1 0.1499 0.3757 

Mar 0.0357 0.8336 0.0314 0.8537 0.002 0.9907 0 1 -0.162 0.338 

Apr 0.1475 0.3837 0.1498 0.3761 0.0095 0.9557 0.0437 0.7972 0.1772 0.294 

May 0.1778 0.2924 0.1842 0.2751 0.0589 0.7291 0.099 0.56 -0.2221 0.1865 

Jun -0.0089 0.9585 0.0346 0.8389 -0.1908 0.258 -0.3079 0.0638 0 1 

Jul 

 

-0.1078 0.5254 -0.0726 0.6692 -0.1386 0.4132 0.1416 0.4031 0 1 

Aug 

 

-0.0533 0.754 -0.032 0.8507 -0.0957 0.5733 -0.0346 0.8389 0 1 

GS 0.0983 0.5628 0.0998 0.5567 0.0522 0.7588 -0.1422 0.4011 0.096 0.5721 

ON 0.1263 0.4563 0.0769 0.6509 0.1546 0.361 -0.0927 0.5854 0.2025 0.2293 

DJF 0.0529 0.7559 0.0368 0.8286 0.1006 0.5535 0 1 0.2039 0.226 

MAM 0.1746 0.3012 0.1748 0.3008 0.0346 0.8389 0.0936 0.5816 -0.1078 0.5252 

JJA -0.0846 0.6188 -0.0348 0.8379 -0.2117 0.2085 -0.0899 0.5968 0 1 

OND 0.0134 0.937 -0.0795 0.6401 0.0831 0.625 -0.0927 0.5854 0.1402 0.4077 

JFM 0.1182 0.4858 0.1298 0.4439 0.1159 0.4947 0 1 0.1253 0.4599 

AMJ 0.1471 0.3849 0.1772 0.294 -0.0608 0.7208 0.0747 0.6602 0.0505 0.7666 

 Sum Precipitation 
(mm) 

Mean Water 
Availability (mm) 

Mean VPD (hPa) Mean Rad 
(W/m2) 

 

Cor P-value Cor P-value Cor P-value Cor P-value   

Oct -0.0855 0.62 -0.0749 0.6642 -0.0804 0.6361 0.0914 0.596   

Nov -0.0604 0.7263 -0.0468 0.7866 -0.2764 0.0977 -0.2122 0.214   

Dec -0.1403 0.4143 -0.1353 0.4315 -0.1487 0.3796 -0.1967 0.2502   

Jan -0.3521 0.0326 -0.3516 0.0328 -0.0172 0.9193 -0.178 0.2918   

Feb -0.0854 0.6153 -0.0898 0.5969 0.0478 0.7787 0.1899 0.2604   

Mar 0.1341 0.4286 0.1102 0.5221 0.0191 0.9107 0.1209 0.476   

Apr -0.0338 0.8427 -0.0905 0.5942 0.172 0.3088 0.1849 0.2733   

May -0.3526 0.0323 -0.3666 0.0256 0.3154 0.0572 0.3165 0.0563   

Jun -0.2894 0.0824 -0.3297 0.0463 0.1675 0.3216 0.3179 0.0552   

Jul 

 

0.0258 0.8793 0.0272 0.8729 -0.0291 0.8642 0.0123 0.9425   

Aug 

 

-0.1545 0.3612 -0.1059 0.5326 -0.1051 0.5357 -0.005 0.9767   

GS -0.3051 0.0663 -0.3843 0.0189 0.0979 0.5643 0.131 0.4396   

ON 0.0037 0.9826 -0.0865 0.6159 -0.2127 0.2062 -0.0442 0.798   

DJF -0.3349 0.0428 -0.3787 0.0208 -0.042 0.8052 -0.0759 0.6554   

MAM -0.1331 0.4323 -0.1935 0.2511 0.2975 0.0738 0.3089 0.0629   

JJA -0.2189 0.193 -0.2226 0.1853 0.0086 0.9596 0.1806 0.2849   

OND -0.0272 0.8729 -0.1562 0.3631 -0.2821 0.0907 -0.1049 0.5427   

JFM -0.1505 0.3738 -0.1516 0.3704 0.0307 0.8568 0.1367 0.4198   

AMJ -0.389 0.0173 -0.4601 0.0042 0.3386 0.0404 0.424 0.0089   
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Table 8: NEU 

 

 

 Mean Temp (°C) Mean Max Temp 
(°C)  

Mean Min Temp 
(°C) 

Mean Max Temp 
Over 25 °C 

Mean Min Temp 
Under 0 °C 

Cor P-value Cor P-value Cor P-value Cor P-value Cor P-value 

Oct 0.1097 0.5181 -0.0171 0.9200 0.1777 0.2926 -0.1814 0.2825 -0.2304 0.1701 

Nov 0.0088 0.9589 -0.0613 0.7185 0.0397 0.8155 0.0000 1.0000 -0.1373 0.4176 

Dec -0.1390 0.4118 -0.1471 0.3850 -0.1500 0.3754 0.0000 1.0000 0.0271 0.8735 

Jan 0.0454 0.7894 0.0029 0.9863 0.0652 0.7014 0.0000 1.0000 0.0919 0.5884 

Feb 0.2967 0.0746 0.2696 0.1065 0.3182 0.0549 0.0000 1.0000 0.3555 0.0308 

Mar -0.0728 0.6686 -0.1144 0.5001 -0.0338 0.8428 0.0000 1.0000 0.0143 0.9329 

Apr 0.1854 0.2720 0.1622 0.3375 0.1856 0.2714 -0.1701 0.3141 0.1036 0.5419 

May 0.1508 0.3729 0.1527 0.3670 0.1322 0.4353 -0.0007 0.9967 0.0000 1.0000 

Jun -0.0028 0.9867 0.0296 0.8619 -0.0877 0.6058 -0.1387 0.4128 0.0000 1.0000 

Jul 

 

-0.1100 0.5169 -0.0903 0.5949 -0.1238 0.4654 -0.0919 0.5886 0.0000 1.0000 

Aug 

 

-0.0478 0.7788 -0.0936 0.5816 0.0062 0.9710 -0.0154 0.9279 0.0000 1.0000 

GS 0.1112 0.5121 0.0585 0.7308 0.1232 0.4677 -0.0248 0.8843 0.3303 0.0459 

ON 0.0747 0.6605 -0.0531 0.7549 0.1413 0.4041 -0.1814 0.2825 -0.2152 0.2009 

DJF 0.1555 0.3580 0.1252 0.4603 0.1669 0.3235 0.0000 1.0000 0.2910 0.0806 

MAM 0.1171 0.4901 0.0948 0.5769 0.1213 0.4743 -0.0929 0.5844 0.0533 0.7539 

JJA -0.0822 0.6287 -0.0785 0.6442 -0.1032 0.5432 -0.1199 0.4796 0.0000 1.0000 

OND -0.0106 0.9505 -0.1171 0.4900 0.0311 0.8548 -0.1814 0.2825 -0.1297 0.4443 

JFM 0.1547 0.3605 0.1022 0.5473 0.1965 0.2438 0.0000 1.0000 0.2544 0.1286 

AMJ 0.1631 0.3348 0.1788 0.2896 0.0984 0.5622 -0.1007 0.5531 0.1036 0.5419 

 Sum Precipitation 
(mm) 

Mean Water 
Availability (mm) 

Mean VPD (hPa) Mean Rad 
(W/m2) 

 

Cor P-value Cor P-value Cor P-value Cor P-value   

Oct -0.0046 0.9793 0.0373 0.8317 -0.3575 0.0298 -0.1464 0.3941   

Nov -0.0227 0.8955 -0.0228 0.8949 0.0438 0.7971 -0.0507 0.7690   

Dec -0.2585 0.1279 -0.2687 0.1130 0.0677 0.6907 0.2889 0.0875   

Jan -0.0792 0.6461 -0.0763 0.6582 -0.0906 0.5937 -0.1066 0.5300   

Feb 0.0977 0.5650 0.0950 0.5758 0.0852 0.6159 -0.0206 0.9037   

Mar 0.0251 0.8827 0.0227 0.8954 -0.1292 0.4458 -0.0521 0.7594   

Apr -0.2125 0.2068 -0.1888 0.2631 0.1389 0.4124 0.1361 0.4217   

May -0.1820 0.2811 -0.2465 0.1413 0.2798 0.0934 0.2472 0.1401   

Jun -0.2657 0.1119 -0.3131 0.0592 0.2147 0.2020 0.2582 0.1229   

Jul 

 

-0.0214 0.8999 -0.0128 0.9401 -0.0466 0.7841 -0.0824 0.6276   

Aug 

 

-0.0257 0.8799 -0.0045 0.9788 -0.1012 0.5512 -0.0521 0.7595   

GS -0.2055 0.2224 -0.2689 0.1075 0.0617 0.7167 -0.0309 0.8558   

ON 0.0861 0.6125 0.0221 0.8984 -0.2466 0.1412 -0.1430 0.4053   

DJF -0.1505 0.3738 -0.1742 0.3023 0.0372 0.8271 -0.0525 0.7578   

MAM -0.1746 0.3015 -0.2083 0.2160 0.1759 0.2978 0.1743 0.3021   

JJA -0.1460 0.3886 -0.1686 0.3186 0.0156 0.9272 0.0894 0.5987   

OND -0.0081 0.9622 -0.1193 0.4883 -0.2080 0.2167 -0.0492 0.7758   

JFM -0.0192 0.9101 -0.0020 0.9906 -0.0831 0.6247 -0.0698 0.6814   

AMJ -0.3757 0.0219 -0.4392 0.0065 0.3180 0.0551 0.3323 0.0445   



49 
 

Table 9: PAY 

 

 

 Mean Temp (°C) Mean Max Temp 
(°C)  

Mean Min Temp 
(°C) 

Mean Max Temp 
Over 25 °C 

Mean Min Temp 
Under 0 °C 

Cor P-value Cor P-value Cor P-value Cor P-value Cor P-value 

Oct 0.1728 0.3065 0.1739 0.3034 0.1245 0.4627 -0.0251 0.8828 0.0603 0.7231 

Nov 0.087 0.6086 0.0247 0.8847 0.1159 0.4945 0 1 -0.0747 0.6602 

Dec -0.205 0.2235 -0.2099 0.2124 -0.1736 0.3041 0 1 -0.0854 0.6154 

Jan 0.187 0.2678 0.1688 0.3179 0.2005 0.2342 0 1 0.2402 0.1522 

Feb 0.0736 0.6649 0.1198 0.4799 0.0671 0.6932 0 1 0.1323 0.4349 

Mar 0.0549 0.7469 0.1423 0.4008 -0.0543 0.7496 0 1 -0.1704 0.3133 

Apr 0.2496 0.1362 0.283 0.0897 0.0634 0.7093 0.0145 0.9322 0.027 0.8741 

May -0.0314 0.8536 0.0239 0.8886 -0.1829 0.2787 -0.0519 0.7604 0.0478 0.7785 

Jun 0.1517 0.3702 0.1612 0.3406 0.0463 0.7856 0.1649 0.3295 0 1 

Jul 

 

-0.1214 0.4742 -0.0771 0.6501 -0.2117 0.2085 0.09 0.5962 0 1 

Aug 

 

-0.0861 0.6125 -0.0705 0.6783 -0.1266 0.4553 -0.1214 0.4742 0 1 

GS 0.116 0.4941 0.1838 0.2761 0.0075 0.9647 0.0973 0.5669 -0.0003 0.9986 

ON 0.17 0.3144 0.1338 0.4299 0.1603 0.3433 -0.0251 0.8828 -0.033 0.8464 

DJF 0.0698 0.6815 0.0962 0.571 0.0797 0.6391 0 1 0.1907 0.2583 

MAM 0.1184 0.4851 0.2173 0.1964 -0.1077 0.5256 -0.0381 0.823 -0.1176 0.4884 

JJA -0.0212 0.9008 0.0072 0.9663 -0.1241 0.4642 0.0606 0.7215 0 1 

OND 0.0262 0.8775 0.011 0.9486 0.0296 0.8621 -0.0251 0.8828 -0.0677 0.6906 

JFM 0.1554 0.3583 0.2068 0.2194 0.1231 0.4679 0 1 0.1406 0.4067 

AMJ 0.1641 0.3318 0.2295 0.1718 -0.0524 0.7581 -0.0253 0.8818 0.0536 0.7525 

 Sum Precipitation 
(mm) 

Mean Water 
Availability (mm) 

Mean VPD (hPa) Mean Rad 
(W/m2) 

 

Cor P-value Cor P-value Cor P-value Cor P-value   

Oct 0.0369 0.8309 0.0375 0.8283 -0.1288 0.4475 0.1407 0.413   

Nov 0.0469 0.7858 0.0501 0.7719 -0.093 0.5839 -0.0116 0.9463   

Dec -0.0935 0.5877 -0.1012 0.5571 -0.0745 0.6613 0.2175 0.2026   

Jan -0.1682 0.3196 -0.167 0.3232 0.0101 0.9527 0.0624 0.7136   

Feb -0.1113 0.5121 -0.1199 0.4796 0.0865 0.6108 0.278 0.0957   

Mar -0.1206 0.477 -0.1251 0.4673 0.0039 0.9819 0.3062 0.0653   

Apr -0.1902 0.2595 -0.2168 0.1974 0.2899 0.0818 0.2812 0.0918   

May -0.3689 0.0246 -0.3723 0.0233 0.1877 0.2659 0.3302 0.0459   

Jun -0.1974 0.2417 -0.2553 0.1272 0.2263 0.178 0.345 0.0365   

Jul 

 

-0.0077 0.9641 -0.0456 0.7889 0.0523 0.7585 0.1397 0.4096   

Aug 

 

-0.1313 0.4387 -0.1 0.5558 -0.009 0.9579 0.0461 0.7862   

GS -0.276 0.0982 -0.3747 0.0223 0.1644 0.3308 0.3245 0.0501   

ON 0.1361 0.4219 0.059 0.7325 -0.1481 0.3817 0.1022 0.5531   

DJF -0.1673 0.3222 -0.2094 0.2136 0.0218 0.8983 0.2186 0.1938   

MAM -0.3522 0.0325 -0.3742 0.0225 0.2469 0.1407 0.4321 0.0076   

JJA -0.1875 0.2664 -0.2214 0.188 0.1116 0.5107 0.2939 0.0775   

OND 0.1168 0.4912 0.011 0.9491 -0.1778 0.2925 0.1559 0.3639   

JFM -0.1916 0.256 -0.1779 0.292 0.0481 0.7772 0.3669 0.0255   

AMJ -0.4581 0.0044 -0.5165 0.0011 0.3385 0.0404 0.5023 0.0015   
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Table 10: PUY 

 

 

 Mean Temp (°C) Mean Max Temp 
(°C)  

Mean Min Temp 
(°C) 

Mean Max Temp 
Over 25 °C 

Mean Min Temp 
Under 0 °C 

Cor P-value Cor P-value Cor P-value Cor P-value Cor P-value 

Oct 0.2316 0.1740 0.2456 0.1487 0.1947 0.2553 0.0194 0.9107 -0.1730 0.3129 

Nov 0.2412 0.1564 0.1692 0.3239 0.2562 0.1315 0.0000 1.0000 0.0919 0.5938 

Dec -0.2512 0.1395 -0.2664 0.1163 -0.2475 0.1456 0.0000 1.0000 -0.1948 0.2550 

Jan 0.1464 0.3944 0.1164 0.4991 0.1652 0.3356 0.0000 1.0000 0.0769 0.6557 

Feb 0.0776 0.6530 0.0951 0.5811 0.0557 0.7470 0.0000 1.0000 -0.0234 0.8923 

Mar 0.1027 0.5513 0.1395 0.4172 0.0595 0.7302 0.0000 1.0000 -0.1041 0.5455 

Apr 0.4157 0.0117 0.4189 0.0110 0.3759 0.0239 0.2927 0.0832 0.0989 0.5659 

May 0.0446 0.7962 0.0605 0.7261 -0.0078 0.9642 0.2239 0.1894 0.0000 1.0000 

Jun 0.2838 0.0935 0.2355 0.1669 0.3065 0.0690 0.1613 0.3472 0.0000 1.0000 

Jul 

 

0.0276 0.8730 -0.0089 0.9588 0.0039 0.9821 -0.0233 0.8928 0.0000 1.0000 

Aug 

 

0.0748 0.6648 0.0127 0.9414 0.1012 0.5570 0.0463 0.7885 0.0000 1.0000 

GS 0.2725 0.1078 0.2793 0.0991 0.2296 0.1779 0.0193 0.9111 -0.0720 0.6766 

ON 0.3173 0.0593 0.2789 0.0995 0.3085 0.0672 0.0194 0.9107 0.0783 0.6498 

DJF 0.0278 0.8722 0.0236 0.8914 0.0224 0.8970 0.0000 1.0000 -0.0622 0.7185 

MAM 0.2569 0.1303 0.2977 0.0778 0.1860 0.2774 0.3043 0.0712 -0.0556 0.7472 

JJA 0.1971 0.2493 0.1258 0.4648 0.1968 0.2499 0.0901 0.6012 0.0000 1.0000 

OND 0.1170 0.4966 0.0957 0.5789 0.1003 0.5605 0.0194 0.9107 -0.1075 0.5327 

JFM 0.1507 0.3804 0.1641 0.3390 0.1329 0.4399 0.0000 1.0000 -0.0083 0.9615 

AMJ 0.3335 0.0469 0.3482 0.0374 0.2905 0.0857 0.3110 0.0649 0.0989 0.5659 

 Sum Precipitation 
(mm) 

Mean Water 
Availability (mm) 

Mean VPD (hPa) Mean Rad 
(W/m2) 

 

Cor P-value Cor P-value Cor P-value Cor P-value   

Oct -0.1662 0.3476 -0.1794 0.3101 0.2169 0.2039 0.2838 0.0985   

Nov 0.1046 0.5498 0.1186 0.4973 -0.2720 0.1085 -0.1167 0.5043   

Dec 0.0043 0.9805 0.0004 0.9983 -0.0884 0.6082 0.1678 0.3354   

Jan -0.2299 0.1773 -0.2313 0.1746 0.0809 0.6391 0.2955 0.0802   

Feb -0.1238 0.4718 -0.1292 0.4526 0.0862 0.6170 0.4355 0.0079   

Mar -0.3503 0.0362 -0.3551 0.0364 0.1494 0.3846 0.3320 0.0479   

Apr -0.3372 0.0443 -0.3668 0.0278 0.4359 0.0079 0.4319 0.0085   

May -0.2063 0.2274 -0.2391 0.1602 0.1399 0.4158 0.2002 0.2418   

Jun -0.1147 0.5055 -0.1513 0.3784 0.1656 0.3345 0.1216 0.4798   

Jul 

 

0.0115 0.9475 -0.0990 0.5714 0.0613 0.7226 0.0510 0.7677   

Aug 

 

-0.0035 0.9841 -0.0308 0.8608 0.0187 0.9139 0.0457 0.7912   

GS -0.3365 0.0448 -0.4056 0.0141 0.2368 0.1644 0.3555 0.0334   

ON 0.0367 0.8317 -0.0352 0.8410 0.0156 0.9280 0.1752 0.3140   

DJF -0.1681 0.3270 -0.2159 0.2060 0.0416 0.8094 0.4210 0.0106   

MAM -0.4442 0.0066 -0.4759 0.0034 0.3658 0.0282 0.4786 0.0032   

JJA -0.1623 0.3444 -0.1642 0.3387 0.1082 0.5298 0.1347 0.4335   

OND 0.0651 0.7058 -0.0401 0.8193 -0.0248 0.8859 0.2093 0.2275   

JFM -0.3664 0.0279 -0.3631 0.0295 0.1583 0.3565 0.4994 0.0019   

AMJ -0.3714 0.0257 -0.4382 0.0075 0.3493 0.0368 0.4772 0.0033   
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Table 11: SHA 

 

 

 Mean Temp (°C) Mean Max Temp 
(°C)  

Mean Min Temp 
(°C) 

Mean Max Temp 
Over 25 °C 

Mean Min Temp 
Under 0 °C 

Cor P-value Cor P-value Cor P-value Cor P-value Cor P-value 

Oct 0.1534 0.3647 0.1454 0.3905 0.1786 0.2902 -0.1269 0.4541 -0.0576 0.7348 

Nov -0.0924 0.5865 -0.1097 0.5182 -0.0825 0.6275 0.0000 1.0000 0.0530 0.7555 

Dec -0.2269 0.1769 -0.2803 0.0929 -0.1721 0.3084 0.0000 1.0000 0.0017 0.9920 

Jan -0.0638 0.7114 -0.0782 0.6456 -0.0291 0.8640 0.0000 1.0000 0.1308 0.4403 

Feb -0.0344 0.8420 0.0143 0.9332 -0.0268 0.8748 0.0000 1.0000 0.0027 0.9872 

Mar -0.0147 0.9322 -0.0395 0.8162 0.0012 0.9942 0.0000 1.0000 -0.0918 0.5891 

Apr -0.0266 0.8776 -0.0085 0.9601 -0.0693 0.6838 -0.0169 0.9209 0.1041 0.5399 

May -0.1489 0.3860 -0.1016 0.5497 -0.2125 0.2067 -0.0953 0.5749 -0.1336 0.4305 

Jun -0.2004 0.2413 -0.1418 0.4025 -0.3321 0.0447 -0.2801 0.0932 0.0000 1.0000 

Jul 

 

-0.1256 0.4588 -0.0871 0.6082 -0.1800 0.2864 0.0126 0.9410 0.0000 1.0000 

Aug 

 

-0.2100 0.2123 -0.1449 0.3922 -0.3033 0.0680 -0.2189 0.1930 0.0000 1.0000 

GS -0.1890 0.2625 -0.1598 0.3447 -0.1891 0.2623 -0.1959 0.2451 0.0403 0.8128 

ON 0.0182 0.9148 0.0070 0.9672 0.0476 0.7799 -0.1269 0.4541 0.0188 0.9123 

DJF -0.1219 0.4724 -0.1205 0.4773 -0.0964 0.5702 0.0000 1.0000 0.0848 0.6178 

MAM -0.0893 0.6045 -0.0719 0.6722 -0.1318 0.4368 -0.0706 0.6781 -0.0510 0.7643 

JJA -0.2610 0.1187 -0.1926 0.2535 -0.3567 0.0302 -0.2608 0.1191 0.0000 1.0000 

OND -0.0944 0.5783 -0.1349 0.4260 -0.0452 0.7904 -0.1269 0.4541 0.0136 0.9365 

JFM -0.0546 0.7516 -0.0442 0.7949 -0.0295 0.8625 0.0000 1.0000 0.0418 0.8060 

AMJ -0.1735 0.3115 -0.1196 0.4808 -0.2791 0.0943 -0.0853 0.6156 0.0728 0.6685 

 Sum Precipitation 
(mm) 

Mean Water 
Availability (mm) 

Mean VPD (hPa) Mean Rad 
(W/m2) 

 

Cor P-value Cor P-value Cor P-value Cor P-value   

Oct -0.0298 0.8632 -0.0133 0.9387 -0.1883 0.2644 -0.0295 0.8643   

Nov -0.0098 0.9547 -0.0034 0.9843 -0.1059 0.5328 -0.1981 0.2468   

Dec -0.0894 0.6040 -0.0910 0.5977 -0.0389 0.8193 -0.1214 0.4806   

Jan -0.2763 0.1082 -0.2754 0.1093 -0.1130 0.5117 -0.2915 0.0846   

Feb -0.3062 0.0736 -0.3010 0.0790 -0.0291 0.8663 0.1405 0.4136   

Mar -0.0188 0.9132 -0.0157 0.9285 -0.0565 0.7434 -0.0419 0.8082   

Apr -0.1874 0.2739 -0.1597 0.3521 0.0282 0.8704 0.0341 0.8433   

May -0.3318 0.0515 -0.2989 0.0811 0.0735 0.6700 0.1486 0.3871   

Jun -0.1921 0.2616 -0.1940 0.2569 0.0545 0.7523 0.1646 0.3375   

Jul 

 

0.0218 0.8998 0.0563 0.7445 -0.1576 0.3516 0.0144 0.9324   

Aug 

 

-0.1068 0.5294 -0.0396 0.8159 -0.2056 0.2222 0.0539 0.7516   

GS -0.3702 0.0241 -0.3304 0.0458 -0.1412 0.4043 -0.0075 0.9649   

ON -0.0014 0.9933 -0.0115 0.9471 -0.1748 0.3008 -0.1248 0.4683   

DJF -0.4101 0.0117 -0.4710 0.0037 -0.0628 0.7118 -0.0236 0.8913   

MAM -0.2721 0.1033 -0.2574 0.1296 0.0384 0.8240 0.0855 0.6202   

JJA -0.1247 0.4623 -0.1039 0.5406 -0.1627 0.3359 0.1371 0.4184   

OND -0.0446 0.7932 -0.0706 0.6822 -0.1683 0.3195 -0.1429 0.4059   

JFM -0.3139 0.0585 -0.3168 0.0597 -0.0886 0.6073 -0.0228 0.8951   

AMJ -0.3560 0.0306 -0.3841 0.0207 0.0800 0.6429 0.1845 0.2813   
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Table 12: STG 

 

 

 Mean Temp (°C) Mean Max Temp 
(°C)  

Mean Min Temp 
(°C) 

Mean Max Temp 
Over 25 °C 

Mean Min Temp 
Under 0 °C 

Cor P-value Cor P-value Cor P-value Cor P-value Cor P-value 

Oct 0.3701 0.0241 0.3458 0.0360 0.3478 0.0349 0.0000 1.0000 0.2711 0.1045 

Nov -0.2657 0.1119 -0.2738 0.1011 -0.2387 0.1547 0.0000 1.0000 -0.0991 0.5594 

Dec -0.2722 0.1031 -0.2607 0.1191 -0.2649 0.1131 0.0000 1.0000 -0.1965 0.2436 

Jan 0.1999 0.2354 0.2350 0.1615 0.1819 0.2813 0.0000 1.0000 0.2274 0.1758 

Feb 0.1747 0.3011 0.1815 0.2825 0.1778 0.2924 0.0000 1.0000 0.2114 0.2091 

Mar 0.0624 0.7137 0.0872 0.6078 0.0238 0.8890 0.0000 1.0000 0.0103 0.9517 

Apr 0.0922 0.5872 0.0791 0.6418 0.1090 0.5207 -0.0711 0.6760 0.2001 0.2350 

May 0.0139 0.9352 0.0181 0.9155 -0.0258 0.8794 0.0104 0.9512 -0.0106 0.9506 

Jun 0.1980 0.2402 0.2237 0.1833 0.1252 0.4605 -0.2698 0.1064 0.0000 1.0000 

Jul 

 

-0.1347 0.4265 -0.1287 0.4479 -0.1459 0.3888 0.1955 0.2463 0.0000 1.0000 

Aug 

 

-0.1661 0.3258 -0.1870 0.2677 -0.1410 0.4050 -0.0209 0.9025 0.0000 1.0000 

GS 0.0807 0.6350 0.0938 0.5810 0.0640 0.7067 0.0416 0.8069 0.1856 0.2714 

ON 0.0155 0.9274 -0.0163 0.9238 0.0309 0.8559 0.0000 1.0000 0.0763 0.6536 

DJF 0.1048 0.5371 0.1314 0.4381 0.1086 0.5224 0.0000 1.0000 0.1958 0.2454 

MAM 0.0834 0.6234 0.0926 0.5859 0.0513 0.7632 -0.0114 0.9468 0.0940 0.5798 

JJA -0.0413 0.8083 -0.0444 0.7939 -0.0592 0.7279 -0.1406 0.4065 0.0000 1.0000 

OND -0.1383 0.4143 -0.1566 0.3545 -0.1180 0.4868 0.0000 1.0000 -0.0651 0.7018 

JFM 0.2182 0.1945 0.2460 0.1422 0.1992 0.2373 0.0000 1.0000 0.2383 0.1556 

AMJ 0.1385 0.4136 0.1459 0.3888 0.0942 0.5793 -0.1259 0.4577 0.1928 0.2530 

 Sum Precipitation 
(mm) 

Mean Water 
Availability (mm) 

Mean VPD (hPa) Mean Rad 
(W/m2) 

 

Cor P-value Cor P-value Cor P-value Cor P-value   

Oct -0.3037 0.0762 -0.3072 0.0727 0.2589 0.1217 0.1802 0.2928   

Nov 0.0310 0.8596 0.0610 0.7279 -0.4351 0.0071 -0.2911 0.0850   

Dec 0.0407 0.8139 0.0531 0.7583 -0.2756 0.0988 -0.0732 0.6715   

Jan -0.3196 0.0574 -0.3193 0.0577 0.0767 0.6566 0.1082 0.5298   

Feb -0.3516 0.0355 -0.3556 0.0333 0.1245 0.4692 0.3307 0.0489   

Mar -0.0929 0.5954 -0.0868 0.6199 0.1736 0.3114 0.2711 0.1098   

Apr -0.1922 0.2615 -0.1936 0.2578 0.1448 0.3993 0.1124 0.5139   

May -0.4122 0.0125 -0.3742 0.0245 0.1300 0.4497 0.1300 0.4497   

Jun -0.4869 0.0026 -0.5260 0.0010 0.3312 0.0484 0.4397 0.0073   

Jul 

 

0.2854 0.0915 0.2416 0.1558 -0.0704 0.6835 -0.1768 0.3024   

Aug 

 

0.1933 0.2518 0.1900 0.2600 -0.1074 0.5270 -0.1638 0.3326   

GS -0.1348 0.4265 -0.2122 0.2074 0.1489 0.3789 -0.0427 0.8020   

ON -0.0966 0.5697 -0.1601 0.3581 -0.1455 0.3904 0.0094 0.9568   

DJF -0.2130 0.2056 -0.3791 0.0226 0.0038 0.9823 0.2406 0.1576   

MAM -0.2369 0.1579 -0.4027 0.0149 0.2103 0.2184 0.2384 0.1614   

JJA 0.1220 0.4718 0.0270 0.8740 0.0628 0.7119 0.1204 0.4777   

OND -0.0373 0.8264 -0.1096 0.5247 -0.2601 0.1201 -0.0250 0.8847   

JFM -0.2678 0.1090 -0.4743 0.0035 0.1838 0.2833 0.3998 0.0157   

AMJ -0.3627 0.0274 -0.5933 0.0001 0.3042 0.0713 0.3503 0.0362   
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Table 13: WYN 

 

 

 Mean Temp (°C) Mean Max Temp 
(°C)  

Mean Min Temp 
(°C) 

Mean Max Temp 
Over 25 °C 

Mean Min Temp 
Under 0 °C 

Cor P-value Cor P-value Cor P-value Cor P-value Cor P-value 

Oct 0.2279 0.1750 0.1911 0.2573 0.1989 0.2379 -0.1523 0.3682 -0.1187 0.4841 

Nov 0.0922 0.5874 -0.0324 0.8492 0.1107 0.5143 0.0000 1.0000 -0.0901 0.5960 

Dec -0.1806 0.2848 -0.2259 0.1788 -0.1496 0.3768 0.0000 1.0000 -0.0464 0.7853 

Jan 0.0999 0.5562 0.0827 0.6264 0.1305 0.4413 0.0000 1.0000 0.2345 0.1625 

Feb 0.2224 0.1858 0.2943 0.0770 0.1847 0.2737 0.0000 1.0000 0.2276 0.1754 

Mar 0.1394 0.4108 0.2313 0.1684 -0.0340 0.8418 0.0000 1.0000 -0.0209 0.9021 

Apr 0.2761 0.0981 0.2976 0.0736 0.0785 0.6443 0.0693 0.6838 0.2295 0.1719 

May 0.2105 0.2110 0.2537 0.1297 0.0277 0.8706 0.0965 0.5699 -0.0611 0.7194 

Jun 0.1589 0.3475 0.1863 0.2697 -0.0046 0.9784 -0.0706 0.6781 0.0000 1.0000 

Jul 

 

-0.0968 0.5687 -0.0886 0.6022 -0.0912 0.5912 0.0348 0.8379 0.0000 1.0000 

Aug 

 

0.0471 0.7821 0.0129 0.9395 0.1049 0.5368 0.0429 0.8010 0.0000 1.0000 

GS 0.2438 0.1458 0.2963 0.0750 0.1295 0.4451 -0.0074 0.9654 0.0880 0.6044 

ON 0.2025 0.2294 0.1044 0.5385 0.2041 0.2256 -0.1523 0.3682 -0.1526 0.3671 

DJF 0.1242 0.4641 0.1587 0.3482 0.1245 0.4630 0.0000 1.0000 0.2628 0.1161 

MAM 0.2967 0.0745 0.3846 0.0188 0.0228 0.8934 0.1118 0.5099 0.0524 0.7580 

JJA 0.0546 0.7484 0.0587 0.7300 -0.0063 0.9706 0.0355 0.8348 0.0000 1.0000 

OND 0.0646 0.7041 -0.0212 0.9010 0.0684 0.6873 -0.1523 0.3682 -0.1312 0.4390 

JFM 0.2354 0.1608 0.3065 0.0651 0.1712 0.3111 0.0000 1.0000 0.2608 0.1189 

AMJ 0.2958 0.0755 0.3629 0.0273 0.0420 0.8051 0.1056 0.5339 0.1648 0.3297 

 Sum Precipitation 
(mm) 

Mean Water 
Availability (mm) 

Mean VPD (hPa) Mean Rad 
(W/m2) 

 

Cor P-value Cor P-value Cor P-value Cor P-value   

Oct -0.0916 0.5953 -0.0810 0.6386 -0.2794 0.0940 0.0970 0.5737   

Nov -0.0316 0.8546 -0.0216 0.9005 -0.2203 0.1901 -0.1163 0.4992   

Dec -0.0472 0.7847 -0.0455 0.7923 -0.1087 0.5217 0.0827 0.6316   

Jan -0.4510 0.0051 -0.4499 0.0052 -0.1426 0.4000 -0.1182 0.4860   

Feb -0.0605 0.7222 -0.0608 0.7207 0.0508 0.7654 0.2356 0.1603   

Mar -0.1169 0.4908 -0.1389 0.4191 0.1547 0.3608 0.2993 0.0719   

Apr -0.1577 0.3512 -0.1757 0.2982 0.1565 0.3549 0.2539 0.1295   

May -0.3196 0.0538 -0.3554 0.0309 0.3578 0.0297 0.4305 0.0078   

Jun -0.3075 0.0681 -0.3451 0.0393 0.1817 0.2817 0.3979 0.0147   

Jul 

 

0.2113 0.2230 0.1703 0.3280 -0.1371 0.4184 0.0966 0.5697   

Aug 

 

-0.0301 0.8595 -0.0056 0.9737 -0.1678 0.3208 0.0832 0.6245   

GS -0.3625 0.0275 -0.4311 0.0077 0.0302 0.8590 0.2661 0.1114   

ON 0.0542 0.7501 -0.0709 0.6811 -0.2855 0.0867 0.0153 0.9296   

DJF -0.2962 0.0751 -0.3485 0.0345 -0.0863 0.6114 0.0276 0.8712   

MAM -0.3059 0.0656 -0.3501 0.0336 0.3426 0.0379 0.4696 0.0034   

JJA -0.1738 0.3037 -0.1654 0.3280 -0.0540 0.7508 0.3320 0.0447   

OND 0.0761 0.6545 -0.0933 0.5883 -0.2754 0.0990 0.0383 0.8246   

JFM -0.3604 0.0284 -0.3481 0.0348 0.0746 0.6609 0.3029 0.0684   

AMJ -0.4999 0.0016 -0.5266 0.0008 0.3538 0.0317 0.5717 0.0002   
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Table 14: All stations, first 19 years (appears in Figs. 4 and 6)  

 

 

 Mean Temp (°C) Mean Max Temp 
(°C)  

Mean Min Temp 
(°C) 

Mean Max Temp 
Over 25 °C 

Mean Min Temp 
Under 0 °C 

Cor P-value Cor P-value Cor P-value Cor P-value Cor P-value 

Oct 0.2098 0.3887 0.2117 0.3843 0.1991 0.4138 -0.1418 0.5625 -0.0581 0.8131 

Nov 0.1744 0.4753 0.1328 0.5879 0.1720 0.4814 0.0000 1.0000 0.2277 0.3486 

Dec 0.0346 0.8883 -0.0971 0.6924 0.1976 0.4175 0.0000 1.0000 0.2506 0.3007 

Jan 0.1190 0.6274 0.1047 0.6698 0.1562 0.5232 0.0000 1.0000 0.2341 0.3346 

Feb 0.0556 0.8211 0.1369 0.5762 0.0110 0.9645 0.0000 1.0000 0.0398 0.8715 

Mar -0.0168 0.9456 0.1065 0.6644 -0.1288 0.5993 0.0000 1.0000 -0.2285 0.3468 

Apr -0.0699 0.7763 -0.0405 0.8692 -0.0446 0.8561 0.0000 1.0000 -0.0695 0.7775 

May -0.1091 0.6565 -0.0167 0.9458 -0.2345 0.3339 0.2126 0.3822 -0.1167 0.6343 

Jun -0.0161 0.9480 0.0653 0.7905 -0.2321 0.3389 -0.1292 0.5981 0.0000 1.0000 

Jul 

 

-0.2299 0.3438 -0.1447 0.5545 -0.4638 0.0455 -0.0856 0.7275 0.0000 1.0000 

Aug 

 

-0.2172 0.3718 -0.0788 0.7486 -0.4320 0.0647 -0.1395 0.5690 0.0000 1.0000 

GS 0.0061 0.9801 0.1326 0.5884 -0.1102 0.6535 -0.2844 0.2379 0.3235 0.1768 

ON 0.2663 0.2705 0.2317 0.3398 0.2508 0.3004 -0.1418 0.5625 0.1736 0.4771 

DJF 0.1106 0.6523 0.1194 0.6262 0.1624 0.5064 0.0000 1.0000 0.2805 0.2448 

MAM -0.0945 0.7002 0.0394 0.8728 -0.2121 0.3834 0.2126 0.3822 -0.2307 0.3419 

JJA -0.2785 0.2483 -0.1232 0.6153 -0.5238 0.0214 -0.1574 0.5198 0.0000 1.0000 

OND 0.2475 0.3070 0.1868 0.4438 0.2785 0.2483 -0.1418 0.5625 0.2720 0.2600 

JFM 0.0773 0.7532 0.1640 0.5022 0.0314 0.8984 0.0000 1.0000 0.0743 0.7625 

AMJ -0.1045 0.6702 -0.0054 0.9824 -0.2409 0.3205 0.1422 0.5613 -0.0990 0.6868 

 Sum Precipitation 
(mm) 

Mean Water 
Availability (mm) 

Mean VPD (hPa) Mean Rad 
(W/m2) 

 

Cor P-value Cor P-value Cor P-value Cor P-value   

Oct -0.0123 0.9601 -0.0036 0.9883 -0.3116 0.1940 0.0666 0.7864   

Nov -0.0397 0.8716 -0.0323 0.8955 -0.1049 0.6691 -0.1863 0.4452   

Dec -0.0165 0.9464 -0.0015 0.9950 -0.1842 0.4504 -0.4762 0.0393   

Jan -0.2347 0.3335 -0.2322 0.3387 -0.0806 0.7429 -0.1163 0.6353   

Feb -0.4023 0.0877 -0.4238 0.0706 0.2613 0.2799 0.4263 0.0687   

Mar -0.2319 0.3395 -0.3057 0.2031 0.1707 0.4846 0.4011 0.0888   

Apr -0.1310 0.5929 -0.0984 0.6887 0.0228 0.9262 -0.0607 0.8050   

May -0.4347 0.0629 -0.3847 0.1039 0.1039 0.6722 0.2045 0.4011   

Jun -0.3027 0.2078 -0.3682 0.1209 0.3414 0.1526 0.3293 0.1686   

Jul 

 

-0.0539 0.8266 -0.1431 0.5590 0.0415 0.8661 0.2632 0.2764   

Aug 

 

-0.1107 0.6518 -0.1579 0.5184 -0.0137 0.9556 0.2277 0.3485   

GS -0.6062 0.0059 -0.6508 0.0026 0.1335 0.5859 0.5340 0.0185   

ON -0.0338 0.8907 -0.0231 0.9251 -0.2843 0.2381 -0.0282 0.9087   

DJF -0.3724 0.1164 -0.3854 0.1032 0.0502 0.8382 0.0877 0.7210   

MAM -0.4298 0.0663 -0.3936 0.0955 0.1371 0.5758 0.2410 0.3203   

JJA -0.2771 0.2507 -0.3839 0.1047 0.1745 0.4750 0.4691 0.0427   

OND -0.0453 0.8538 -0.0263 0.9148 -0.3543 0.1366 -0.1340 0.5844   

JFM -0.4250 0.0697 -0.4671 0.0438 0.1760 0.4712 0.5192 0.0227   

AMJ -0.4987 0.0298 -0.5206 0.0223 0.2556 0.2909 0.2956 0.2193   
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Table 15: All stations, last 18 years (appears in Figs. 5 and 7) 

 
 Mean Temp (°C) Mean Max Temp 

(°C)  
Mean Min Temp 
(°C) 

Mean Max Temp 
Over 25 °C 

Mean Min Temp 
Under 0 °C 

Cor P-value Cor P-value Cor P-value Cor P-value Cor P-value 

Oct -0.1162 0.6461 -0.1177 0.6418 -0.1064 0.6743 0.0000 1.0000 -0.2239 0.3718 

Nov -0.2408 0.3357 -0.2434 0.3304 -0.3190 0.1970 0.0000 1.0000 -0.5428 0.0199 

Dec -0.5555 0.0167 -0.5071 0.0317 -0.5421 0.0201 0.0000 1.0000 -0.6157 0.0065 

Jan -0.0034 0.9893 0.0341 0.8933 -0.0548 0.8291 0.0000 1.0000 -0.0402 0.8741 

Feb 0.1636 0.5167 0.2705 0.2777 0.0976 0.7002 0.0000 1.0000 0.1376 0.5862 

Mar 0.0571 0.8218 0.0547 0.8294 -0.0099 0.9689 0.0000 1.0000 -0.1004 0.6917 

Apr 0.1785 0.4786 0.2089 0.4055 -0.0004 0.9987 0.0111 0.9651 -0.1750 0.4872 

May 0.0466 0.8543 0.1352 0.5927 -0.1197 0.6360 -0.0454 0.8579 0.1007 0.6910 

Jun 0.0012 0.9963 -0.0297 0.9068 0.0501 0.8436 -0.0500 0.8439 0.0000 1.0000 

Jul 

 

-0.2322 0.3539 -0.2381 0.3415 -0.3140 0.2045 -0.0368 0.8848 0.0000 1.0000 

Aug 

 

-0.2539 0.3094 -0.2485 0.3201 -0.3092 0.2118 -0.0822 0.7457 0.0000 1.0000 

GS -0.1737 0.4906 -0.1036 0.6824 -0.3211 0.1938 -0.1346 0.5945 -0.3825 0.1172 

ON -0.2369 0.3439 -0.2682 0.2819 -0.2474 0.3223 0.0000 1.0000 -0.5629 0.0150 

DJF -0.1147 0.6503 -0.0063 0.9801 -0.2206 0.3791 0.0000 1.0000 -0.2633 0.2912 

MAM 0.1380 0.5851 0.1910 0.4478 -0.0652 0.7971 -0.0226 0.9289 -0.1625 0.5193 

JJA -0.2528 0.3115 -0.2632 0.2913 -0.3099 0.2108 -0.0964 0.7035 0.0000 1.0000 

OND -0.4468 0.0630 -0.4488 0.0617 -0.4625 0.0533 0.0000 1.0000 -0.6690 0.0024 

JFM 0.1191 0.6378 0.1895 0.4515 0.0343 0.8924 0.0000 1.0000 0.0219 0.9312 

AMJ 0.1221 0.6294 0.1751 0.4871 -0.0344 0.8921 -0.0253 0.9207 -0.1088 0.6675 

 Sum Precipitation 
(mm) 

Mean Water 
Availability (mm) 

Mean VPD (hPa) Mean Rad 
(W/m2) 

 

Cor P-value Cor P-value Cor P-value Cor P-value   

Oct -0.1648 0.5134 -0.1680 0.5052 -0.0565 0.8239 -0.0296 0.9071   

Nov -0.0348 0.8911 -0.0353 0.8893 0.0847 0.7382 -0.1454 0.5649   

Dec 0.2050 0.4146 0.2001 0.4260 -0.1303 0.6062 0.1639 0.5157   

Jan -0.3522 0.1518 -0.3548 0.1485 0.0160 0.9497 0.2545 0.3082   

Feb -0.0650 0.7979 -0.0668 0.7922 -0.0204 0.9358 0.3180 0.1985   

Mar -0.2553 0.3066 -0.2262 0.3667 -0.0370 0.8841 0.1239 0.6242   

Apr -0.0152 0.9522 -0.1023 0.6861 0.2437 0.3299 0.2878 0.2468   

May -0.2194 0.3817 -0.2569 0.3034 0.2058 0.4127 0.2638 0.2903   

Jun -0.1249 0.6216 -0.0613 0.8092 0.0220 0.9311 -0.0444 0.8610   

Jul 

 

-0.1045 0.6800 -0.0600 0.8129 -0.0980 0.6989 0.0184 0.9423   

Aug 

 

0.0757 0.7652 0.1292 0.6094 -0.2116 0.3993 -0.0685 0.7871   

GS -0.2723 0.2743 -0.2369 0.3438 -0.0359 0.8875 0.2249 0.3695   

ON -0.1269 0.6159 -0.1276 0.6140 0.0196 0.9384 -0.1076 0.6708   

DJF -0.1076 0.6708 -0.1141 0.6520 -0.0516 0.8388 0.4187 0.0837   

MAM -0.2322 0.3538 -0.2693 0.2798 0.2239 0.3717 0.3165 0.2006   

JJA -0.0732 0.7727 0.0063 0.9802 -0.1428 0.5720 -0.0510 0.8409   

OND 0.0199 0.9375 0.0154 0.9516 -0.0367 0.8849 -0.0029 0.9910   

JFM -0.4037 0.0967 -0.3692 0.1316 -0.0255 0.9201 0.2796 0.2612   

AMJ -0.2036 0.4179 -0.2508 0.3155 0.2045 0.4157 0.2780 0.2640   
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