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Abstract 

Agricultural intensification and climate change are among the main causes for current 

biodiversity losses. The effects of environmental changes on species richness may be assessed 

with statistical modelling approaches. In this study, a two-part hurdle model was implemented 

to predict present and future distribution patterns of plant richness in grasslands within the 

catchment of the Broye river, an intensively managed area in the Western Swiss Plateau. This 

approach allowed identifying environmental factors affecting significantly the presence and/or 

abundance of selected species. Mean winter temperatures and the intensity of pasture 

management were very significant drivers over all groups of species. These predictors were 

thus used to define future climatic and land use scenarios. An extensification of grasslands 

(20% of pastures area from intensive to extensive) under warmer conditions (+ 2° C in mean 

winter temperature) resulted to be a particularly profitable strategy for the highland of the 

Broye region in terms of species richness. Moreover, we conclude that the incorporation of 

land use data and stakeholder-based scenarios in species richness modelling approaches could 

substantially improve the identification and implementation of future biodiversity conservation 

areas. 

 

  



ii 
 

Table of Contents 
 

Abstract ...................................................................................................................................... i 

List of Figures .......................................................................................................................... iv 

List of Tables ........................................................................................................................... iv 

1. Introduction .......................................................................................................................... 1 

1.1 Research Motivation ........................................................................................................ 1 

1.2 TALE Project ................................................................................................................... 2 

1.3 Biodiversity Indicators ..................................................................................................... 3 

1.4 Biodiversity Modelling .................................................................................................... 4 

1.5 Project Aim and Research Questions ............................................................................... 5 

1.6 Project Design .................................................................................................................. 5 

2. Theoretical Background ...................................................................................................... 7 

2.1 Modelling Approaches ..................................................................................................... 7 

2.2 Regression Models for Count Data .................................................................................. 8 

2.2.1 Generalized Linear Models ....................................................................................... 8 

2.2.1.1 Poisson ................................................................................................................ 9 

2.2.1.2 Quasi-Poisson ..................................................................................................... 9 

2.2.1.3 Negative Binomial .............................................................................................. 9 

2.2.2 Zero-Inflated Models ............................................................................................... 10 

2.2.2.1 Mixture Models: ZIP and ZINB ....................................................................... 10 

2.2.2.2 Two-Part Models: Hurdle ................................................................................. 11 

3 Materials and Methods ....................................................................................................... 12 

3.1 Study Site ....................................................................................................................... 12 

3.2 Selection of Biodiversity Indicators ............................................................................... 13 

3.3 Selection of Predictors ................................................................................................... 15 

3.4 Data Processing .............................................................................................................. 17 

3.5 Model Specification ....................................................................................................... 20 

3.6 Model Validation............................................................................................................ 22 

3.7 Future Scenarios ............................................................................................................. 23 

4 Results .................................................................................................................................. 25 

4.1 Model Performance ........................................................................................................ 25 

4.2 Model Predictions .......................................................................................................... 27 

4.2.1 Present Distribution ................................................................................................. 27 

4.2.1.1 Guild 1 - Moist and Nutrients Poor................................................................... 29 



iii 
 

4.2.1.2 Guild 2 – Moist and Nutrients Rich .................................................................. 29 

4.2.1.3 Guild 4 – Dry and Nutrients Poor ..................................................................... 30 

4.2.1.4 Guild 5 – Dry and Nutrients Rich ..................................................................... 31 

4.2.1.5 Guild 7 – Fresh and Nutrients Poor .................................................................. 31 

4.2.1.6 Absolute Sum .................................................................................................... 32 

4.2.1.7 Standardized model predictions ........................................................................ 33 

4.2.1.8 Comparison between model prediction and observation .................................. 34 

4.2.2 Future Predictions .................................................................................................... 35 

4.2.2.1 Climate Scenarios ............................................................................................. 36 

4.2.2.2 Land Use Scenarios........................................................................................... 37 

4.2.2.3 Combined Scenario ........................................................................................... 38 

5 Discussion............................................................................................................................. 40 

6 Conclusions and Outlook ................................................................................................... 47 

6.1 Summary and Conclusion .............................................................................................. 47 

6.2 Outlook ........................................................................................................................... 48 

References ............................................................................................................................... 50 

Appendix ................................................................................................................................. 56 

Annex 1............................................................................................................................. 56 

Annex 2............................................................................................................................. 57 

Annex 3............................................................................................................................. 58 

 

  



iv 
 

List of Figures 

 

Figure 1: Biodiversity indicators in relation to agriculture.................................. 4 

Figure 2: Broye catchment ................................................................................. 12 

Figure 3: Observation data ................................................................................. 14 

Figure 4: Resources, direct and indirect environmental gradients .................... 16 

Figure 5: Raster with 1x1km cells ..................................................................... 19 

Figure 6: Histogram of species abundance ........................................................ 21 

Figure 7: Emissions and temperature scenarios CH2011 .................................. 23 

Figure 8: Species richness predictions for the single guilds (1, 2, 4, 5, 7) ........ 28 

Figure 9: Absolute map ...................................................................................... 32 

Figure 10: Standardized map ............................................................................. 33 

Figure 11: Difference between absolute map and observed count .................... 34 

Figure 12: Species richness predictions for climate scenarios .......................... 36 

Figure 13: Species richness predictions for extensification .............................. 37 

Figure 14: Species richness predictions for a land sharing and land sparing .... 38 

Figure 15: Difference combined scenario and absolute sum ............................. 39 

 

List of Tables 

 

Table 1: List of environmental variables. .......................................................... 16 

Table 2: List of species grouped in the five guilds ............................................ 18 

Table 3: Model evaluation for 20x Monte-Carlo cross-validation. ................... 25 

Table 4: Predictors of the guilds in the hurdle model ........................................ 26 

 

 



1 
 

1. Introduction 

1.1 Research Motivation 

Biodiversity at a global scale is changing rapidly due to climate change and human activities. 

Loss, degradation and fragmentation of natural habitats, overexploitation of natural resources, 

increasing nutrient inputs, invasive alien species and global warming are some of the major 

causes for biodiversity loss (Secretariat of the Convention on Biological Diversity, 2014). 

Modern agriculture striving maximisation in productivity, requires the homogenization of the 

environment’s structure over vast areas and depends only on a handful of varieties (for its major 

crops) and on external nutrients inputs (Altieri, 1999). This type of intensive agriculture is one 

of the main forms of pressure on biodiversity. On the other side, species diversity plays a key 

role in agroecosystems (Reidsma et al., 2006). Biodiversity loss in agricultural landscapes 

affects not only the production of food, but also a wide range of ecological services (ESS). 

High levels of biodiversity in agroecosystems provide a large variety of beneficial ESS such 

as pollination, soil formation, invasion resistance, and human well-being in general due to 

microclimate regulation, water purification, cultural values, etc. (Altieri, 1999; Herzog et al., 

2012, BAFU, 2017a). However, modern intense agricultural management has been growing 

worldwide during the past decades and considering the actual population growth, it is likely to 

continue (Reidsma et al., 2006).  

Since the post-war period, agriculture policies in Switzerland support production growth and 

rationalization in order to ensure national food security. Technical progress (e.g. 

mechanization, mineral fertilizers, pesticides etc.) and economic development led to an 

intensification of grass- and arable land (BAFU & BLW, 2008). This evolution reduced the 

richness in plant and animal species especially in the lowlands, where suitable habitats have 

been strongly reduced. Population sizes have fallen and today, almost half of the habitats and 

one third of the plant and animal species are endangered (BAFU & BLW, 2008; BAFU, 2017a). 

Since the 1990’s, the conservation and promotion of biodiversity in agriculture has become an 

explicit target of the Swiss agrarian policy (BAFU & BLW, 2013). Nowadays, protection of 

biological diversity is stipulated in the Swiss federal constitution and in international treaties 

(BAFU, 2017a). On the 6th of September 2017, the Federal Council adopted the action plan of 

the Swiss Biodiversity Strategy, which aims to ensure the long-term conservation and 

promotion of biodiversity, ecosystem services and habitats (BAFU, 2017b). This highlights the 

social awareness for past, present and future efforts in preserving biodiversity.  
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Conservation strategies aiming to maintain high levels of diversity in the future, need to 

consider the changing climatic conditions evolving from anthropogenic greenhouse gas 

emissions. Biodiversity will get into additional pressure through climate change at all stages, 

from organism to biome (Bellard et al, 2012). In order to develop adequate adaption strategies, 

a better understanding of the response of species richness to changing temperature and 

precipitations regimes is needed (BAFU, 2017a). To efficiently invest the available resources 

for conservation, it is crucial to foster the knowledge of how ecosystems and species diversity 

will respond in future to different land management and climate change scenarios. 

One of the main goals in conservation ecology research is to understand and model factors and 

processes generating patterns in species composition, so that if conditions alter, changes in the 

patterns can be predicted (D’Amen et al., 2017). In recent years, many studies investigated the 

effects of climate change on future biodiversity, mostly at coarser (global or continental) spatial 

scales (i.e. Root et al., 2003; Adler et al., 2009; Bellard et al., 2012). Furthermore, impacts of 

agriculture on species richness has been studied by McLaughlin & Mineau, 1995; Plantureux 

et al., 2005; Reidsma et al., 2006. Although several studies already investigated the response 

of species richness to both climate and land use changes (Pearson et al., 2004; Pompe et al., 

2008; Steinmann et al., 2009), less efforts have been put into the prediction of biodiversity 

shifts at regional, landscape or community scale (Shoyama, & Yamagata, 2014; Mossman et 

al. 2015; Schirpke et al., 2017). Research in this field provides important tools for 

implementing biodiversity conservation strategies, as these decisions are in many cases a 

matter of regional political stakeholders. This study focusses on the consideration of this 

aspects and aims to assess current and future biodiversity distribution within a regional 

agroecosystem as function of climate and land use factors. 

1.2 TALE Project 

In 2015, the interdisciplinary research project TALE (Towards multifunctional Agricultural 

Landscapes in Europe – Assessing and governing synergies between food production 

biodiversity and ecosystem services) was started. The TALE project aims to unravel and 

quantify synergies between agricultural production, biodiversity, and ESS in different 

European landscapes. Human population, market globalization, dietary shifts, and urbanization 

are increasing the pressure on natural resources. The demand driven land use changes come at 

a cost in form of trade-offs between food or bioenergy production, biodiversity conservation 

and other ESS. TALE aims to deepen the knowledge regarding these trade-offs and to help 
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developing policy strategies by assessing and governing synergies between these factors. The 

end-product of TALE should provide a platform that supports the design and evaluation of 

policy options helping to reconcile conflicting demands, while at the same time ensuring 

conservation of biodiversity and the provision of ESS within a changing environment. The 

project is accompanied by local involvement to achieve a high level of policy coherence (UFZ, 

2015). Agroscope, the Swiss centre for agricultural and sustainability research, is conducting 

the TALE case study for Switzerland. The main project of this case study consists of an analysis 

and prediction of changes in water supply under future social-economic and climatic scenarios. 

This master’s thesis serves as an additional input and focuses on biodiversity responses to 

climate and land use scenarios by investigating dependencies of different biodiversity 

indicators on habitat characteristics. 

1.3 Biodiversity Indicators 

Ideally, conservation planning is based on a complete and detailed knowledge of the 

distribution of all different components of biodiversity (genes, populations, species 

communities, ecosystems) in the region of interest. In reality, the knowledge of biodiversity 

and its single aspects, is far from complete (Ferrier, 2002). The complexity and 

multidimensionality of biodiversity does not allow to measure it as a single entity. However, it 

is possible to characterise some aspects of biodiversity using surrogate measures, the so-called 

biodiversity indicators (Büchs, 2003). In general indicators are defined as “pieces of 

information that provide insight into matter of larger significance and make perceptible trends 

that are not immediately detectable” (Hammond et al., 1995). 

Indicators are used to face the complexity of biodiversity. In the case of biodiversity, do not 

measure directly the change within the biological system, but rather reveal information about 

the change of a phenomenon or activity, that if left unaltered, will lead to impacts on 

biodiversity (Duelli & Obrist, 2003). For this study, indicators should express biodiversity as 

a whole and be sensitive to environmental conditions and to agricultural activities. However, 

it is very complicated to find indicators that fulfil all these requirements (Herzog et al., 2012). 

The huge number of species and the complexity of ecological processes within agricultural 

habitats, complicates the choice of appropriate indicators that can robustly represent the link 

between biodiversity, environment and agricultural management (Duelli & Obrist, 2003; 
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Herzog et al., 2012). In the agricultural landscape, biodiversity can be divided into three levels: 

genetic, species and ecosystem diversity, each with its respective indicators (see Figure 1). 

For this study, the focus is set on the species richness as indicator for biodiversity and it refers 

to the total number of species of a functional group (species that share common characteristics 

within a community) per site and reflects the quality of an agroecosystem. The subset of species 

used in this study are selected vascular plants representing the quality of meadows and pastures 

in the study region (Chapter 3.2). Natural or weakly managed grasslands provide habitat for 

many plants and animals and are essential for agroecosystems; but their distribution is 

shrinking (Herzog et al., 2012; BAFU and BLW, 2013; BAFU, 2017). In previous studies, the 

application of plants richness as general indicator for biodiversity has been valuated as reliable 

(Duelli et al. 1999; Peters et al. 2016) and grasslands as suitable to assess simultaneously the 

effect of climate and land use changes on biodiversity (Pearson et al., 2004; Shoyama & 

Yamagata, 2014; Schirpke et al., 2017). In this study, the selected indicators are used in a 

statistical modelling approach to first identify regions of high plant diversity in grasslands and 

second to predict the shift of these hotspots under future climatic and land use scenarios. 

1.4 Biodiversity Modelling 

To directly measure changes in biodiversity, detailed information on the distribution of 

different taxa would be necessary. However, this spatial data is rarely available and usually of 

poor quality (Mossman et al., 2015).  By using a selection of indicators and a set of certain 

modelling techniques, it is possible approximate the assessments and quantification of different 

aspects of biodiversity and their spatial pattern (Pfestorf et al., 2013, Mossman et al., 2015). 

Since the mid 1990’s, predictive geographical modelling has been increasingly used as a tool 

to assess the impact of land use and other environmental change on the distribution of 

organisms, and to prioritize conservation efforts (Guisan & Zimmermann, 2000; Mossman et 

al., 2015). Today, there exist a variety of different modelling approaches, but the prediction of 

spatial patterns of species richness remains challenging (D’amen et al. 2017). Among these 

Figure 1: Biodiversity indicators in relation to agriculture (OECD, 2001) 
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approaches, statistical modelling provides suitable tools to quantify the relation between 

biological data and environmental predictors. (Guisan & Zimmermann, 2000; Ferrier & 

Guisan, 2006). With this method, biological survey data may be linked to easily available 

environmental variables, and it provides a powerful mean for filling geographical gaps in the 

coverage of the usually sparse and coarse biodiversity data records (Ferrier et al., 2002; 

Mossman et al., 2015). After a selection process among different statistical models, a two-part 

hurdle model for count data has been chosen to be suitable for this study (Chapter 3.5). 

The implementation of diversity models in agricultural landscapes is more complicated than in 

other unaffected environments, because agricultural production and biodiversity conservation 

often imply contrasting types of land use. Therefore, management strategies need to strike a 

balance between food production and biological variety considering local socioeconomic 

constraints and trade-offs (Grau et al., 2013). In order to find the best strategies for optimizing 

these trade-offs, it is necessary to generate a deep understanding of the complex relationships 

between species richness, agricultural management and environment. 

1.5 Project Aim and Research Questions 

The here presented master thesis focuses therefore on the development of a statistical model 

and attempts to identify current potential biodiversity hotspot regions in the grasslands of the 

Broye catchment. In addition, it aims to predict their future changes under different climate 

and land management scenarios. The evolving research questions can be summed in the 

following points: 

• Which climatic and land use factors affect current biodiversity patterns of 

grasslands within the Broye catchment, and is it possible to predict them with a 

statistical modelling approach? 

• What is the effect of future changes regarding climatic drivers and land use practices 

on patterns of species richness? 

• Is it possible to identify potential regions for conservation or agricultural 

extensification? 

1.6 Project Design 

In order to answer the above-mentioned research questions, this master thesis project included 

the following work steps: 
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1. Data Selection: To compile the set of biodiversity indicators a restricted number of 

grassland plants was selected. In a next step, the related topographical, climatic, soil 

and land use explanatory variables, have been chosen to be used as predictors in the 

statistical model (Chapters 3.2 & 3.3). 

 

2. Data Preparation: To model the current distribution of indicator species, the 

dataset had to be prepared in order to relate their abundances to the predictors. The 

species were grouped in guilds, their spatial observations and the environmental 

predictors were merged into a grid (Chapter 3.4). 

 

 

3. Model Design: Once the dataset was prepared, the best possible statistical model 

had to be chosen based on the characteristics of the explanatory variable, species 

richness (Chapter 3.5). 

 

4. Model Implementation: The hurdle model for every guild was run and cross-

validated to produce values for current distribution maps (Chapter 3.6) 

 

 

5. Predictions: In order to predict future species richness maps, two climate and four 

land use scenarios were defined, applied to the dataset and new prediction maps 

were produced (Chapter 3.7). 

 

6. Results Description: The model outputs were used to investigate the effect of the 

predictors on the guilds, and the prediction maps to identify present and future 

biodiversity hotspots (Chapters 4.1 & 4.2). 

 

 

7. Discussion and Outlook: In this section, the whole study is reviewed from the 

original data to the models’ outputs. The strength and weaknesses of the applied 

approach and the results of this study are discussed and some improvements for 

future applications are proposed (Chapter 5). 
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2. Theoretical Background 

To arrange the choice of the best suitable model for the type of data used in this study, a short 

technical review has been integrated in the thesis. First, different modelling approaches for 

species richness at community-level are introduced and then regression models for count data 

are briefly described. 

2.1 Modelling Approaches 

There are two broadly used strategies to model species richness. The most popular way, is to 

model the distributions of the species one by one, in relation to predictors, and then assemble 

the results. This method is referred to as cumulative approach. The output allows the 

reconstruction of community composition and some attributes from single species. The second 

method is called macroecological approach and it first combines the data from multiple species, 

e.g. by building groups of species with similar properties. Then, the distribution within these 

groups of species are modelled in relation to the explanatory variables. The outputs consist of 

cumulative community attributes, usually richness prediction, but they do not provide any 

information on the single species. (Guisan & Zimmermann, 2000; Ferrier, 2002; Ferrier et al., 

2002; Ferrier & Guisan, 2006; Guisan & Rahbek, 2011; D’Amen et al., 2017). 

Both approaches have their strength and limits. The cumulative approach allows to take into 

account the properties of the single species and thereby to model their distribution more 

precisely. The results should hence reflect a more realistic distribution (Guisan & 

Zimmermann, 2000). Additional difficulties evolve if the aim is to predict species richness 

distribution. Modelling individual species is only possible if enough spatial data is available. 

Rare species are infrequently surveyed and not a lot of information is given about their 

occurrence. Furthermore, modelling single species can be a very time-consuming process 

(Ferrier, 2002; Ferrier & Guisan 2006).  

On the other hand, the macroecological approach allows to include multiple species in the 

modelling, process which is an advantage if the species are recorded infrequently. Moreover, 

the computational effort is lower and it simplifies the detection of environmental responses of 

rarely recorded species and makes complex data more comprehensive (Ferrier & Guisan, 

2006). A main argument against this approach is the fact that plant species assemblages or 

communities are very variable over time due to changing environmental conditions and 

interactions between the species. Therefore, it is difficult to predict future distributions of 

communities in case they are treated as one entity (Guisan & Zimmermann, 2000). 
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2.2 Regression Models for Count Data 

Due to previous personal knowledge and the widespread use in conservation biology, this study 

focuses on statistical models, more precisely on linear regressions. These types of models are 

frequently used to quantify the relationship between species richness and environmental 

variables (Guisan & Zimmermann, 2000; Lehmann, 2002; Potts & Elith, 2006; Steinmann et 

al., 2009; Zuur et al. 2009). 

The knowledge about the species as well as the characteristics of the available raw data define 

the choice of the suitable statistical model (Latimer et al., 2006). It this study, the focus is set 

on the analysis of the interactions between grassland plant richness in agricultural landscapes 

and the environmental/land-use factors. The dependent variable to be modelled in this study is 

the abundance of species, which means the number of species observed in a defined area and 

is usually given as count and discrete data (only non-negative integer values). This type of 

response variable follows a Poisson or a negative binomial distribution and their respective 

models are special types of generalized linear models (GLM) (Guisan & Zimmermann, 2000; 

Zeileis et al., 2008; Zuur et al., 2009). 

2.2.1 Generalized Linear Models 

Linear regression relates a response variable to a combination (multiple regression) of 

predictors (or explanatory variables). In case of a simple linear regression, the response variable 

must be normally distributed and the variance does not change as a function of the mean 

(homoscedasticity). The GLM is a more flexible type of regression model, which allows to 

model also response variables with other distributions than normal and with non-constant 

variance functions (heteroscedasity) (Guisan & Zimmermann, 2000). 

To maintain the predictions within the range of coherent values for the response variable, the 

link function in the regression, is used for the transformation to linearity (Zuur et al.,2009). If 

the response variable is non-linear with a predictor, a transformed term of the latter can be 

included in the model. This characteristic of GLM allows to model data with Gaussian, Poisson, 

Binomial or Gamma distribution (Guisan & Zimmermann, 2000). Since in this study the 

response variable (species richness) consists of a count data, the following sub-chapters cover 

only model specifications for this type of data. 
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(1) 

(2) 

2.2.1.1 Poisson 

Poisson is the simplest and most common model specified for count data. The Poisson 

distribution is a special case of GLM, where variance in the data is equal to the mean. This 

characteristic is called equi-dispersion (φ = 1). The link between response variable and 

predictors is a log-linear relationship:  

log(𝑝) = ln(𝑝) = 𝛽0 + 𝛽1𝑋1 + … + 𝛽𝑛𝑋𝑛 

where 𝑝 is the probability of an event occurring, 𝑋𝑛 the nth independent variable and 𝛽𝑛 the 

regression coefficient (Potts & Elith, 2006). The regression coefficients are estimated with a 

maximum likelihood function (Cameron & Trivedi, 1999). The classical Poisson regression 

model for count data is often limited, especially for empirical count data sets. This modelling 

method is not able to address two properties that often occur in ecological data sets: First, the 

variance is often bigger than the mean (overdispersion) and second, if there exists an excess 

number of zeros (zero-inflation) (Zeileis et al., 2008). 

2.2.1.2 Quasi-Poisson 

To address the issue of overdispersion, the Poisson regression model can be modified by 

estimating the dispersion parameter 𝜃 (= variance/mean) from the data instead of being fixed 

at 1 (Zeileis et al., 2008). The dispersion parameter can be modified to be larger than 1 if 

overdispersion is present. Let 𝑌 be a random variable such that 

𝐸(𝑌) =  𝜇  

𝑣𝑎𝑟(𝑌) = 𝑣𝑃𝑜𝑖(𝜇) =  𝜃𝜇 

where 𝐸(𝑌) =  𝜇 is the expected mean of 𝑌 and 𝑣𝑎𝑟(𝑌) the variance (Ver Hoef & Boveng, 

2007). The model coefficients (𝐸 and 𝑣𝑎𝑟) and the log-link function remain the same as the 

standard Poisson model (Zeileis et al., 2008). The advantage of the quasi-Poisson model is, 

besides accounting for overdispersion, leaving the parameters in a natural and easy 

interpretable state (Ver Hoef & Boveng, 2007). 

2.2.1.3 Negative Binomial 

A second way of modelling overdispersed count data is to assume a negative binomial (NB) 

distribution of the random variable Y. This model is the standard parametric model to account 

for overdispersion (Potts & Elith, 2006). Here, the overdispersion is a multiplicative factor 1 +

𝑘𝜇2 which is dependent on the mean of Y. The model coefficients look like the following:  
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(4) 

(3) 
𝐸(𝑌) =  𝜇 

𝑣𝑎𝑟(𝑌) = 𝑣𝑁𝐵(𝜇) =  𝜇 + 𝑘𝜇2 

In case the original data has far more zeros, than it would be expected from a Poisson or NB 

distribution, there is a strong indication for zero-inflation. When using zero-inflated data with 

one of the former models, it may cause biased parameters, standard errors or overdispersion 

(Zuur et al., 2009). Zero-inflated models are a set of methods capable of dealing with this issue. 

2.2.2 Zero-Inflated Models 

It is a common problem for ecological data collected in the field, to have high portion of zero 

values in the dataset. In Zuur et al. (2009), the causes for zeros in species abundance 

observations are divided into four types of potential errors: 

1) Structural errors: Species is not present because the habitat is not suitable. 

2) Design error: Inaccurate experimental design or sampling practices. 

3) Observer error: Mismatch or omission of species by the observer. 

4) Species error: The habitat is suitable, but the species is not present. 

The last three types of zeros are also called ‘false negatives’, whereas a structural error is also 

referred to as ‘true negatives’. Zero-inflated models are divided into mixture models and two-

part models, which differ in how they deal with the different types of zeros. 

2.2.2.1 Mixture Models: ZIP and ZINB 

The term, two-component mixture models evolves from their ability to represent two or more 

ecological processes by combining probability distributions. The modelled zeros come from 

two different processes, a binomial process and the count process. The count process can also 

model zeros, which are true negatives, whereas the binomial process only generates false 

negatives (point mass at zero) and measures their probability. The count model is normally a 

Poisson GLM, also called Zero-Inflated Poisson (ZIP) or a Zero-Inflated Negative Binomial 

(ZINB) (Potts & Elith, 2006; Zeileis et al., 2008; Zuur et al., 2009).  

If Yi is assumed to be the expected number of species on the ith area, the model specification 

𝑌𝑖   {   
0,                             𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑝𝑖

𝑃𝑜𝑖𝑠𝑠𝑜𝑛 (𝜆𝑖),              𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 1 − 𝑝𝑖
 

implies that zero observations may arise with the probability 𝑝𝑖, signifying that the zero is a 

true negative observation. Otherwise, the zero observation may arise from the parametric 
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(5) 

distribution (e.g 𝑃𝑜𝑖𝑠𝑠𝑜𝑛) with probability 1 – 𝑝𝑖, implying that the observed zero is a false 

negative observation, it means the habitat is suitable, but not occupied (Potts & Elith, 2006). 

This type of model is a good option to account for zero-inflation, but it does not explicitly 

account for overdispersion and the interpretation of the parameters (e.g. average plant richness) 

is less straightforward than in the two-part models (Martin et al., 2005; Potts & Elith, 2006). 

2.2.2.2 Two-Part Models: Hurdle 

Another model that accounts for overdispersion and zero-inflation within the data set is the 

hurdle model. This type of model was developed in 1971 and published in an econometrics 

journal, research field where it is still mostly used (Cameron & Trivedi, 1999). The hurdle 

model is a two-part model that specifies one process for zeros and another process for positive 

counts. The zero part can be either a binomial or a censored count distribution. The second part 

models the probability of a count value with a truncated count model (zeros cannot occur), such 

as Poisson or negative binomial. The advantage of fitting the model for two different parts 

allows to have more possibilities shaping the model structure. The idea is that positive counts 

occur only once a threshold is crossed. If the hurdle cannot be overcome, the count will be 0. 

The main difference to ZIP and ZINB is that there is no discrimination between the four types 

of zeros, they are all simply seen as zeros (Martin et al., 2005; Potts & Elith, 2006; Zeileis et 

al., 2008; Zuur et al., 2009).  

The model specification may be resumed by the following example of a probability function: 

𝑓ℎ𝑢𝑟𝑑𝑙𝑒(𝑦)  

{
 

 
   

𝑓𝑏𝑖𝑛(0)                         𝑖𝑓 𝑦 = 0
 

1 −  𝑓𝑏𝑖𝑛(0)

1 −  𝑓𝑝𝑜𝑖(0) 
𝑓𝑝𝑜𝑖(𝑦)  𝑖𝑓 𝑦 ≥ 1

 

The model is divided in zero part with binomial function 𝑓𝑏𝑖𝑛(0) and the count part, where the 

ratio is the probability of a non-zero from the first process (1 −  𝑓𝑏𝑖𝑛(0)) divided by the 

probability of a non-zero in the second untruncated process (1 −  𝑓𝑝𝑜𝑖(0)), and then multiplied 

with the conditional mean 𝑓𝑝𝑜𝑖(𝑦) from the Poisson distribution (Cameron & Trivedi, 1999). 

In the case of species richness modelling, a grid-cell needs to cross a hurdle to produce a non-

zero value and the count process has to exclude the probability of zero values. The zero part 

models the probability for presence or absence of the species and the count part gives the 

probabilities of the species counts. 
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3 Materials and Methods 

3.1 Study Site 

 For the TALE project, five different case study regions in Europe were selected in Switzerland, 

Germany, Netherlands, Spain and Austria. For Switzerland, the region of the Broye catchment 

on the western plateau was chosen due to the catchment scale, its intense and diverse 

agricultural management, the presence of different habitats, and because of a previous study 

focussing on water supply in the same region; see Fuhrer et al., 2013. The catchment covers an 

area of 598 km2 and the elevation goes from 400 to approx. 900 m.a.s.l. It is crossed by the 

Broye river, which discharges into Lake Morat (Figure 2). The region can be divided into a 

rather flat, more intensively used area in the north (lowland), and a hilly, less intensively used 

area in the south (upland). In the lowland, land use is dominated by arable crop production 

(potato, maize, tobacco, sugar beat), and some of the water of the Broye is used for irrigation. 

In the upland a dairy farming dominates, which is why coverage with meadows and pastures 

is more frequent (Fuhrer et al., 2013). Environmental conditions differ slightly between the two 

regions: In the lowland, the annual average temperature is 9.6 °C and the annual precipitation 

is 886 mm (Payerne weather station), whereas in the upland it is slightly colder and moister 

(7.1 °C and 1,535 mm, Semsales weather station - MeteoSchweiz, 2016). 

Figure 2: Broye catchment. (Swisstopo, 2001) 
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3.2 Selection of Biodiversity Indicators 

The process of model-building can be divided into two parts: structure and specification. The 

model structure includes the choice of environmental characteristics (predictors or explanatory 

variables) that are assumed to affect the species abundances (response variable) and the 

intended shape of the modelled response (i.e. linear) (Potts & Elith, 2006). This selection 

process for species and predictors is described in this chapter and chapter 3.3. Chapter 3.4 

describes how the selected data has been arranged to be integrated into the model.  

Nowadays, more than one third of the Swiss territory is used for agriculture. Grasslands occupy 

about 75% of this area and can be separated into meadows (unregularly grazed and for 

production of hay) and pastures (mainly grazing). Especially the less intensively managed 

grasslands are, besides providing quality food for ruminants, habitat of a high diversity of 

plants and animals being essential for our ecosystems and for cultural values of the population 

(Herzog et al., 2012). Due to urban sprawl and agricultural intensification, the species richness 

and the extent of these habitats are decreasing. Especially highly diverse dry meadows and 

pastures (Fettwiesen and -weiden) and the less intensively managed meadows 

(Fromentalwiesen) have drastically shrank during the last decades and are therefore important 

for future conservation (BAFU, 2017a). Due to the high potential for biodiversity conservation 

of grasslands in Switzerland and the strong relation to agriculture management, in this study 

only vascular plants growing in meadows and pastures were selected and used as indicators for 

species richness.  

Spatial extension data of species are often provided by scientific or voluntary surveys. This 

distributional information can be used for analysing spatial patterns in biodiversity.  Here, the 

spatial information of selected species originates from survey data of plants developed by the 

National Data and Information Center on the Swiss Flora (25.01.2017 – InfoFlora, 2017), a 

non-profit foundation that documents and promotes wild plants in Switzerland. Among many 

other information, it provides a floristic database for research projects promoting conservation 

and promotion of native plants. The occurrence of the species is given at different resolutions 

throughout Switzerland or for specific regions. For this project, the most precise floristic data 

provided by Info Flora was used, given as presence-only data at a resolution of 100x100 m. 

Unfortunately, no information about the certain absence of species or the number of elements 

within the parcel is given. 
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To maintain the multifunctional characteristics of agricultural landscapes, a new policy was 

put into place for the period 2014-2017 including a system of direct payments to farmers who 

promote biodiversity (BAFU and BLW, 2013). Farms aiming for such a contribution need to 

fulfil a certificate of ecological performance, which requires areas for biodiversity promotion 

(Biodiversitätsförderflächen; BFF). The subsidies for improving biodiversity are payed for the 

quality (divided in level I and II) as well as the interconnection of the BFFs. One part of the 

quality evaluation consists of the count of a minimum number of species present on specific 

lists for each habitat (BLW, 2014). Therefore, a first selection criteria was to choose among 

plants present in the BFF list of meadow and pasture (BLW,2014). Secondly, the species need 

to possibly grow within the Broye region, wherefore alpine plants were excluded. In order to 

increase the number of observations, further species being present in the Swiss environmental 

goals for agriculture (Umweltziele Landwirtschaft - BAFU & BLW, 2013) were included. 

These are mostly species classified as endangered and have therefore a high ecological value. 

Since the provided floristic data set for the Broye region only was too limited to produce robust 

models, the input data included also observations from regions around the Broye catchment 

with similar environmental and land use conditions. The total area (Figure 3) corresponds to 

the sub-regions 2.5 and 2.6 from BAFU & BLW (2013).  
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Figure 3: Distribution of observation data from InfoFlora (2017). Pink points 

represent the 100x100m surveyed cells. (Swisstopo, 2001) 
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The final subset of indicators is composed by a total of 118 species; 85 of them are species that 

are valid for the BFF quality contribution, the remaining 33 species are species with high 

priority for conservation, because rated as vulnerable or endangered. This final set of 

biodiversity indicators (listed in Annex 1) should represent a balance between target species 

important for conservation and plants that are easily observed in the agricultural landscape and 

necessary for the farmers to get the contributions. The observations points (pink points) of the 

resulting set of species are illustrated in Figure 3. It is possible to see how the dots are 

concentrated around lakes (e.g. lake Neuchatel), rivers (e.g. Broye), cities (e.g. Bern in the 

centre-right) and in the natural reserves (e.g. Parc Jorat western Broye). This disparate 

distribution is due to the patterns of observation. Data from InfoFlora is very heterogeneous, 

many species, especially the more frequents, are underrepresented, because not part of an 

inventory like biodiversity monitoring or protected areas. Areas near inhabited zones, places 

of interest or leisure time are more frequented and species are more surveyed. Once the 

predictors have been selected, suitable explanatory factors had to be chosen. 

3.3 Selection of Predictors 

For the predictive modelling of species richness, a set of suitable predictors (or explanatory 

variables) needs to be selected. They should be able to explain the actual distribution of species 

but also future shifts under changing climate and land use management. An overview of all 

factors influencing the geographical distribution of plants is given in Figure 4. For this study, 

a subset of different parameters was selected, in order to explain the presence and abundance 

of species in the study region. The set of predictors is composed by variables reflecting 

topography, climate, soil, and land use conditions in the Broye catchment. The complete initial 

set of predictors used in this study is shown in Table 1. They are given in form of digital raster 

data sets at different spatial scales (Table 1). We decided to work with this type of data because 

it is easily available and already prepared for applications without the need for additional 

homogenisation and computational efforts. They are provided by different secure and proofed 

sources. From this initial set of variables, a more specific selection was compiled during the 

data processing (chapter 3.4) 
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Table 1: List of environmental variables, given as raster data from different sources 

Figure 4: Conceptual framework for relationships between resources, direct and indirect 

environmental gradients and their influence on growth, performance and geographical 

distribution of vascular plants. Green circled are the categories of factors adopted in this 

study. (Mod et al., 2016 adapted from Guisan & Zimmermann, 2000 
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The main set of variables in Table 1 includes some of the major driving forces for the 

distribution of the species. The digital elevation model (DEM) contains information about the 

elevation of each grid cell and provides the basis for the computation of height, slope and 

aspect. This are indirect predictors because they have no direct physiological relevance for the 

plants. Topography is strongly related to the climatic variables temperature and precipitation. 

Therefore, height can be used as approximation for these two climatic variables. In contrast to 

elevation, Temperature is a direct predictor, affecting directly the physiology of the plants 

(Mod et al., 2016). Information data about temperature (average) and precipitation (sum) is 

given in the form of seasonal and annual mean. The following predictors representing aspects 

of soil conditions, are variables that influence the natural resources of the plants which they 

need for growth (i.e. nutrients, water availability). 

Figure 3 showed the heterogenous distribution of observation points, which were concentrated 

around cities and lakes. This is probably the effect of the observation bias, it means species are 

more probable to be recorded near places where people are likely to be. It is possible to account 

for this effect, by modelling presence data as function of known observer variables (Warton et 

al., 2013). Here, distance to buildings was integrated into the set of variables as observer bias 

variable. 

The different types of agricultural management are given in percent values. Important for this 

study is the proportion between extensive and intensive meadows or pasture. The two grassland 

management types differ mainly in terms of fertilization (extensive: none; intensive: mostly 

nitrogen as manure or compost) and cultivation regimes (extensive: 1-2 cuts per year; intensive: 

4-6 cuts per year). The last category in the list of predictors consist of a classification of 72 

land use types (see Annex 2) provided by the Swiss Areal Statistics (BFS, 2016). 

3.4 Data Processing 

After the selection of the raw data, multiple steps of data processing were required to ensure 

the applicability of the linear regression model. First, the relationships between the single 

species and the variables were analysed. A big portion of the species have been rarely observed. 

Moreover, some more frequent species did not show enough observations in order to model 

the distribution of the individual species. The correlations between single species observations 

and predictors were not satisfactory. This excluded the option to apply the cumulative approach 

which would have been also very time consuming for such a big data set. Therefore, modelling 

the species richness with the macroecological approach, was considered to be the best option. 
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To do so, the plants were grouped by similar biotic characteristics which increased the 

correlations. 

As reference for the grouping we use the ecological indicator values from Landolt et al., (2010) 

consisting of a set of ecological and biological properties of plants. It resulted difficult to build 

coherent groups by including all the ecological indicators, therefore, a manual merging was 

conducted by dividing the species into 9 guilds (group of plants with similar ecological niche) 

only based on soil-related properties: humidity and nutrients availability. It was decided to not 

include the climatological factors for defining the guilds, because on average, these values were 

supposed to not vary significantly over the Broye region. The complete list of species divided 

in guilds can be seen in Annex 1. As the guilds 3, 6, 8 and 9 showed the lowest number of 

species observations, only the guilds 1, 2, 4, 5 and 7 were used for the analysis. At the same 

time, these guilds were the ones with the most contrasting humidity and nutrient values. The 

final guilds used for the modelling process are listed in Table 2. 

Table 2: List of species grouped in the five guilds with different moisture and nutrient habitat conditions 

The number of species within the guilds varies significantly. The “dry guilds” (4 and 5) 

consisted of less species than the moister ones, leading to less observations to be used for the 

model. The grouping of species into guilds did not supply enough count of species per 

100x100m raster cell, to achieve robust correlation between the number of species and the 

predictors. Only a few cells counted more than one species per guild and therefore the 

correlation between the number of species and the climatic and land use variables was 

insignificant (low Pearson’s correlation). As the macroecological approach, required modelling 
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the number of different species per area, higher counts per grid cell were needed. To increase 

the counts and to fill gaps within the spatial coverage of the plant distribution, simple methods 

of spatial interpolation are commonly used in the ecological model approaches. At the scale of 

our catchment, it was reasonable to adopt the interpolation technique of assign in plants records 

to larger grid cells (Ferrier, 2002). In a geographic information system ArcGIS (version 10.3.1), 

the tool Fishnet, allowed to create a matrix with 1x1km cell size, which was lied over the 

original floristic data and every variable was assigned to this new raster. The resulting count 

values for the cells were notably higher than at the original 100x100m spatial resolution. 

However, the correlation coefficients between guild counts and the predictor variables 

remained rather low. As further step, all the cells without any share of meadow or pasture were 

eliminated from the raster, what slightly increased the correlations. The resulting grid is 

illustrated in Figure 5. 

 

Figure 5: Raster with 1x1km cells, floristic observation data (pink points) and Broye 

catchment (black line). (InfoFlora, 2017; Swisstopo, 2001) 
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Since this initial set of predictors still consisted of too many variables to include them all in the 

model, a selection process had to be conducted. For each of the five guilds, the selection of 

predictors was based on the following criteria: 

1. Variables with the highest Pearson’s correlation coefficients concerning the species 

count and significant p-value (<0.05) 

2. Check for multicollinearity: Remove collinear predictors with low correlations 

regarding the guild counts 

3. Keep only guild-specific meaningful variables – exclude clear noise variables 

 

This results of the selection process described above were five matrices, one for every guild, 

with the species presence count and the interpolated predictor variables for every matrix cell. 

These data sets were ready to be integrated into a model and the selection process for the most 

suitable model could be undertaken. 

3.5 Model Specification 

The model specification defines how the selected variables are related to another by choosing 

the most appropriate functional form (Potts & Elith, 2006). The first step in the model selection 

process consisted of checking the characteristics of the response variable (number of species 

per cell) and its associated probability distribution (density function). As mentioned above, the 

response variable is composed of count data, with no negative data. This type of data follows 

a Poisson or a negative binomial distribution (Guisan & Zimmermann, 2000), for which the 

best suitable statistical model had to be chosen (see chapter 2.2). 

The choice of the best model should be based on the knowledge of the species and 

characteristics of the available data (Pott & Elith, 2006). First, we looked at the distribution of 

the response variables. Figure 6 shows the histogram of the abundances of species per raster 

cell for all guilds. The most striking feature is the very high number of cells with no species 

observations. The exact amount of zero cells is 2355, from a total of 3623 cells. 1268 guild 

cells count at least one observation of the species of the five different guilds, which is equal to 

almost half of the zeros. This is a clear evidence for zero-inflation in the dataset. Due to this 

trait of the data, the focus was put on zero-inflated models. The next step was to choose between 

a mixture model or a two-part model.  
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The given floristic data consisted of presence information only and many regions of the study 

area were probably not surveyed. These facts suggest insufficient knowledge about true 

negatives (areas where in reality the habitat is not suitable for the species to grow). Since we 

do not need to differentiate between true and false negatives but rather focus on the higher 

species counts and the correlation with predictors, the use of a two-part model was decided to 

be most appropriate. The output of hurdle models facilitates the interpretation of the predictors, 

defining the absence or presence of species and affecting the richness (Pott & Elith, 2006). 

Moreover, the interpretation is more straightforward when the effects on all zero counts are 

directly modelled (Cameron & Trivedi, 1999). 

In a next step, we had to choose the type of distribution to be used for the zero part and which 

one for the count part of the hurdle model. The zero part modelling presence or absence, was 

ordinary fitted with a binomial distribution. However, the distribution for the count part of the 

hurdle model had to be defined, by choosing between a Poisson or a negative binomial. 

Therefore, the single guilds have been tested for both distribution types. One criteria for the 

selection of the correct distribution was based on the overdisperson of the count data. Another 

selection criteria was the Akaike Information Criterion (AIC). This relative measure helps to 

compare the models and corresponds to an estimation for model quality by evaluating the trade-

off between goodness of fit and the complexity of the model (Zuur et al., 2009). Other 

Figure 6: Histogram of species abundance: with n° of species per 

cell on the x-axis and n° of cells on the y-axis 
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evaluation criteria for the model performance are the Pearson’s correlation coefficient r, which 

provides an indication of similitude between observed and predicted values (perfect correlation 

= 1); and the Root Mean Square Error (RMSE), which measures the difference between 

observed and predicted values (Pott & Elith, 2006).  For each guild, the AIC value was lower 

for the hurdle model with a NB distribution than with a Poisson distribution. However, the 

other evaluation parameters (Pearson’s correlation and RMSE) showed better results for the 

Poisson distributed count model. By comparing the coefficients of the model, the significance 

of the predictors did not change substantially between the two models. Since there were no 

clear indicators for a overdispersion in the count data and as the Pearson’s coefficients for 

guilds 1 and 2 showed considerably better correlations between observed and predicted values, 

the hurdle model with Poisson distribution was used for the count part. Once the best model 

was specified, a validation process had to be conducted to measure the quality of the fit and 

evaluate its performance. 

3.6 Model Validation 

The high number of grid cells (3623) in the dataset allowed to apply a cross-validation. This 

validation method fits the model using only a part of the data set. The dataset on which the 

model is run is called training data and the subset of removed data is called testing data. 

Afterwards, the model fitted with the training data was used to predict the responses for the 

observations in the testing data. The comparison of the results is used as estimation goodness 

(Korner-Nievergelt et al., 2015). Here, a repeated random sub-sampling validation, also 

referred to as Monte-Carlo cross-validation, was applied. With this method, the separation 

between training and testing data is done randomly and repeated several times. The fraction 

between training and testing data is defined manually, such as for the number of repetitions 

(Xu, 2004).  

In our case, the fraction of training data was set at 75% and at 25% for testing data. The random 

separation process was repeated 20 times. These decisions were based on the analysis of the 

evaluation statistics (Pearson’s correlation and RMSE) of the predictions for the training and 

validation data for different number of repetitions. For the case of less than 20 repetitions, the 

average of the evaluation parameters varied strongly. From more than 20 repetitions, the mean 

of the parameters remained stable (see Table 3). Afterward, the models for each guild were 

reiterated 20 times with different randomly chosen training data and the average of the model’s 

coefficients was used to fit the predictive models. 
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After the first run of cross-validation only the predictors that were still significant (p< 0.05) for 

the respective parts of the hurdle model of each guild were retained for a second run. The final 

set of predictors for every guild is displayed in Table 4. In order to ensure comparable scales 

between the predictors a standardisation of the remaining variables was conducted before the 

last model run (scale{base}, R-3.2.5). The resulting coefficients of the models (Annex 3) allow 

a relative comparison between the predictors and an evaluation of the weight of each predictor 

within the linear regression model (Vittinghoff et al., 2012). The values of the coefficients vary 

between -1 (negative correlation) and + 1 (positive correlation). A detailed comparison of the 

different predictors is described in chapter 4.2.1. 

3.7 Future Scenarios 

To assess possible shifts in grassland plants richness under changing climatic and land use 

conditions, the values in the input dataset of relevant predictors have been modified. After 

running and validating the models (chapter 4.1) the predictors mean winter temperature and 

pasture intensive were the only significant variables still present in all guilds’ models (see 

Table 4). By altering the values of this predictor future scenarios could be produced (chapter 

4.2.2.1). 

The two future climate scenarios were represented by a mean winter temperature increase of 2 

°C and 4 °C. According to the Swiss Climate Change Report (CH2011, 2011) an increase of 

Figure 7: Left: Three scenarios for total global anthropogenic greenhouse gas 

emissions. Right: related potential temperature increase for the 30-year average 

centred at 2085 (aggregated from the four seasons and three representative regions). 

(CH2011, 2011) 
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only 2° C in the next 70 years would only be possible if greenhouse gases emissions were 

decreasing by now, while an increase of 4° C until 2085 is probable to occur if the emissions 

were to continue with the current trend. 

The four land use scenarios were divided into two moderate and two extreme scenarios. For 

the first two, intensive pasture was reduced by 20% and 40%. The thresholds were arbitrarily 

set, but took into account feasible targets within an agropolicy context that strives for less 

intensive agriculture. Two additional extreme forms of land use scenarios have been applied in 

the Broye catchment: land sharing and land sparing, which are currently under discussion as 

potential trade-off strategies to balance food production and biodiversity (Grau et al. 2013, 

Fischer et al. 2014). The first one refers to a broad extensification of agriculture and to an 

improvement of agroecosystems by expanding nature conservation into agricultural areas. The 

second, land sparing, seeks to stimulate production to achieve nationwide self-sufficiency 

regarding food production. Whereas intensive agriculture is concentrated in areas with fertile 

soils, mild climate and sufficient water supply. Less suitable areas are supposed to become 

fully protected natural hotspots.  

Land use management strategies to address trade-offs between food production and 

biodiversity conservation must be imbedded in a local socioeconomic context (Grau et al. 

2013). In order to not only address the theoretical aspect of these extreme conservation 

strategies, stakeholders in the TALE project were actively included in the production of the 

scenarios and allowed to take into account the management implications. The stakeholders 

presented concrete actions for a hypothetical land sharing or sparing scenario in the Broye 

region, which were implemented in the modelling process. The land sharing scenario implies 

an extensification of all pastures and meadows, which means that all pasture intensive present 

in a cell is changed to pasture extensive use (chapter 4.2.2.2). In order to ensure high 

productivity (with unlimited irrigation in the flat and suitable region) the land sparing scenario 

was defined as follows: all actual meadow and pastures were intensified, the crop regions with 

a slope bigger than 7.5 % and with a good soil suitability were converted to intensive meadow 

and the ones with bad soil suitability were converted to forest. This leads to a general 

intensification of grassland and increase in natural woods (chapter 4.2.2.2). Reflecting potential 

future warming in the next decades (Figure 7) and current course of agropolicies towards less 

intense managing, it was decided to combine the +2° C increase in winter and the 20% 

extensification to produce a species richness prediction map for a plausible future scenario 

(chapter 4.2.2.3). 
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4 Results 

After fitting the hurdle model for each guild, the models were run by using the open-source 

integrated development environment for R-3.2.5, RStudio (hurdle{pscl}). This chapter shows 

and describes the results from the model outputs. In section 4.1, the results from the cross-

validation process are listed in order to give an estimate for the model performances. 

Furthermore, the types of correlation (negative vs. positive) between the predictors and 

response variables are described. Section 4.2 consists of an illustration and description of all 

relevant prediction maps.  

4.1 Model Performance 

The average of all the regression coefficients from 20x model outputs was used to produce the 

final model for each guild. To validate these models, two commonly used statistical 

performance coefficients have been applied: The Pearson’s correlation coefficient r and the 

Root Mean Square Error (RMSE) (see chapter 3.6). Table 3 shows the averaged validation 

coefficients for the 20 randomised Monte-Carlo cross-validations for each guild. 

 

 

 

 

 

 

 

 

It is noticeable that the goodness of model performance varies between the different guilds. 

The models for guild 1 (moist and nutrient poor) and 2 (moist and nutrient rich) show the 

highest correlation coefficients, meaning that the predicted counts of species are in better 

agreement with the observed counts compared to the other guilds. The dry guilds (4 and 5) 

show the lowest coefficients with 0.229 and 0.274 respectively. Concerning the RMSE, guild 

2 shows the highest value with 2.04. This suggests a rather large discrepancy between 

predictions and observations. On the other hand, guild 5 shows the best results in terms of the 

 Testing Data 

 r RMSE 

Guild 1 0.519 1.025 

Guild 2 0.480 2.040 

Guild 4 0.229 1.081 

Guild 5 0.274 0.810 

Guild 7 0.317 1.117 

Table 3: Model evaluation coefficients r and 

RMSE for the testing data of the five guilds after 

a 20x Monte-Carlo cross-validation. 
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RMSE (0.81). The causes for the differences in performance between the guilds can be 

explained with help of the regression coefficients estimated by the models (see Annex 3), which 

are described in the next sections. 

Table 4 shows the types of correlations between the response variable (number of species of 

the guild) and the selected predictors (environmental variables). The plus (+) stands for positive 

correlations and minus (-) for negative correlations. A green symbol indicates that the predictor 

is highly significant with a p-value lower than 0.001, whereas the black coloured symbols 

stands for significance with a p-value lower than 0.05. The predictors above the line account 

for the zero-part, whereas the ones below the line stand for the count-part of the hurdle model. 

It may be noticed that each guild has a different amount of predictors. However, the comparison 

with the model validation results in Table 3 reveals that the number of predictors has no effect 

on the goodness of the model. Most of the variables are highly significant with p-values smaller 

0.001. Mean winter temperature and pasture intensive management are the only predictors 

present in all guilds. During the predictors selection process, mean winter temperature showed 

higher correlation with the guilds, than the other seasonal temperature means. Same for pasture 

intensive, which had always the highest correlation in comparison to the other pasture or 

meadow shares. Mean winter temperature is present in the zero part of every model and shows 

a throughout positive correlation with the presence of the guilds’ species. In guilds 4 and 7, 

mean winter temperature is also significantly present in the count-part, which indicates that 

Table 4: Significant predictors for the zero (above line) and count part (below line) of the hurdle model for all 

five guilds. Green plus: p-value < 0.001; black plus: p-value 0.05 



27 
 

higher winter temperatures would lead to higher counts (or abundances) in these guilds. Intense 

pasture management is only present in the zero-parts, resulting in a negative effect on the 

presence of the species.  

The variable accounting for the observational bias (distance to buildings) is only significantly 

present in two of the five guilds. Whereas it is slightly negatively correlated with the zero-part 

(absence of species) in both guilds, only guild 2 reveals a similar correlation with the count-

part (presence of species). Once the model performance could not be enhanced, the 

corresponding significant predictors and their coefficients were used to form the linear 

regression models for each guild allowing for the calculation of the prediction maps. 

4.2 Model Predictions 

The resulting maps are divided in two categories according to their time horizon: Maps of 

predicted present distributions (chapter 4.2.1) and prediction maps for future climate and land 

management scenarios (chapter 4.2.2). 

4.2.1 Present Distribution 

The maps with the potential present distribution throughout the study area and its surroundings 

enable the identification of areas that would be potentially suitable habitats for the 

corresponding species. In the following sections, the maps for every guild are described and 

the visible patterns of species richness are being related to the different predictors (model 

outputs in Annex 3).  
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Figure 8: Species richness predictions for the single guilds (1, 2, 4, 5, 7) 
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4.2.1.1 Guild 1 - Moist and Nutrients Poor 

Overall, the prediction map for the species of guild 1 shows only a few scattered patches 

reaching higher values than two species per grid cell. Nevertheless, a distinctive pattern of high 

biodiversity is present at the southern shore of lake Neuchatel, where the number of predicted 

species reaches almost 30. These values are much higher than the in the rest of the prediction 

area. Such high values only exist for the same grid cells of guild 2 (max. 34.293). Within the 

Broye catchment, only a few cells in the highlands show an elevated number of species, 

whereas the rest of the catchment the species richness for this guild is low. Around the city of 

Bern, the values are slightly increasing, which is probably due to higher density of observations 

(observational bias). The model of guild 1 predicts a total of 174.75 (± 0.338) species for the 

Broye region, 34.247 (or 16.38 %) less than to the total summed species observations. The 

presence of the species of guild 1 (zero part) is strongly dependent on the predictor wetlands 

due the high correlation coefficient of 0.6412 (see Annex 4 – Guild 1). Furthermore, the 

removal of the predictor wetlands from the model led to significantly lower correlations 

between predicted and observed values. The negative correlation with pasture intensive is 

highly significant, meaning that the higher the share of intense pasture management gets, the 

less probable is the presence of the species from guild 1. In the count part, the negative 

correlation with distance to water shows the highest correlation coefficients, what is 

comprehensible since moist plant habitats are usually close to water bodies.    

4.2.1.2 Guild 2 – Moist and Nutrients Rich  

The pattern of the moist and nutrient rich guild 2 is very similar to guild 1, although the 

maximum number of predicted species is higher with values of up to 34 species per grid cell. 

Nevertheless, the highest values are also located at the southern shore of Lake Neuchatel. 

Within the Broye catchment, a zone of higher diversity spreads on both sides of the river. Some 

grasslands in the highland also seem to provide suitable habitats for the species of this guild. 

For the Broye region, the model of guild 2 predicts 16.56 % less total species, than have been 

observed on the field (equivalent to – 100.68 ±0.51 species). Overall, guild 2 has the largest 

number of predictors, nine for the zero part and seven for the count part (Table 4). Again, the 

predictor wetland shows the strongest correlation with the presence of species with a value of 

0.846, what could explain the similarities between the patterns of guild 1 and 2. Surprisingly, 

natural meadows are negatively correlated with the presence of species. This might be due to 

the fact that natural meadows are mostly found within a rather steep and hilly topography, 

while wet soil conditions are mostly found in flat lowlands. Since meadows and pastures are 
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less presents in the lowland than in the highland, this negative correlation is reasonable. 

Although the species of this guild are supposed to prefer nutrient rich habitats, the predictor 

meadow intensive shows a negative correlation with the zero part, and pasture intensive is 

negatively correlated the count part. This could point towards an indirect effect due to divergent 

locations of the predictor and response variable. The predictor for observational bias distance 

to buildings shows a significant negative correlation with the count part of the model, which 

means that closely to densely populated areas the presence of more than one species from this 

guild is more likely. For the zero part of the model the observer bias variable does not shows 

very significant correlation, nevertheless it was included in the model, because the model 

outputs did not vary in performance. 

4.2.1.3 Guild 4 – Dry and Nutrients Poor  

Diversity predictions for species preferring dry and nutrients poor habitats show different 

patterns compared to the moist guilds. This model predicts for the the Broye catchment, the 

most alike total number of species in comparison to the observations with an underestimation 

of 5.45 %. Overall, the highest values are found closely to water bodies as well as generally on 

south-orientated slopes (i.e. along the Jura and just north of the Lake of Geneva). The latter 

pattern may be explained by the negative correlation between temperature and soil moisture. 

Further evidence evolves from the fact that the predictor winter mean temperature is 

significantly correlated with the zero and also the count part of the model. The surprisingly 

larger area with greenish colours (compared to guild 1 and 2) indicating high species 

abundances needs to be interpreted carefully. This effect is mostly due to a change of the scale, 

which only varies between 0.2 and 2.5 species per grid cell. As guild 4 only includes 10 species, 

the number of species could be too low for the usually very diverse dry and nutrient poor 

grasslands. Therefore, the low predictions may reflect the scarce representation of this guild. 

The higher species richness around lakes and rivers is most probably due to different reasons 

than for the moist guilds 1 and 2, since wetland and distance to water are not present in the set 

of correlated predictors. Slope correlates positively with the zero part, because in steeper 

meadows and pastures water may drain and wash out the nutrients. Hence, highly diverse dry 

meadows (Trockenwiesen) are often found on steep terrain, where cultivation is not profitable. 

Nitrogen load is the second predictor affecting species abundance by a strong negative 

correlation. Therefore, the greenish areas in the map are supposed to be the ones with lower 

nitrogen inputs. 
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4.2.1.4 Guild 5 – Dry and Nutrients Rich 

The distribution pattern of guild 5 does not substantially differ from guild 4, although a 

different set of predictors is used for the models (Table 4). In comparison to guild 4, the 

predicted values are even lower, with a maximum of 1.58 and Figure 8 (Guild 5) shows overall 

more greenish and less reddish cells. Since the range of predicted values is smaller, it is also 

more probable that a cell plot takes a rather greenish colour. For the Broye region, the model 

predicts relatively high values over a big portion of the area with a maximum in the western 

central part (around Moudon). The underestimation of predictions in comparison to 

observations is 14.52%. Although slope shows the highest correlation coefficients in the zero 

part, increased levels of nutrients cannot be explained by drainage processes. 

4.2.1.5 Guild 7 – Fresh and Nutrients Poor 

Guild 7 is composed by species that have no preference for either dry or moist conditions 

(“fresh”), but that grow on nutrient poor soils. Nevertheless, the patterns of species richness 

distribution are more similar to the dry guilds. The more diverse regions are generally located 

around lakes, rivers, and cities but also on the slopes just north of Lake Geneva. The model 

predicted for the Broye catchment 58.08 ±0.3 less species than the total observed amount. Guild 

7 includes predictors previously seen in the regression models of the moist (narrow wood, 

distance to buildings) and of the dry (slope and road green) guilds or in both (winter 

temperature, pasture intensive). Additionally, permeability (the capacity of the soil allowing 

for water to pass through) is negatively correlated to the zero and count part of the model. 

Therefore, the species from guild 7 seem to prefer less permeable soil textures like loam or 

clay. 
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4.2.1.6 Absolute Sum 

In order to make inferences about the total species richness of the study area, the predictions 

of the five guilds were merged into a new map by summing up the absolute number of predicted 

species of every grid cell. The resulting map (Figure 9) includes the predictions of all five 

guilds species as well as all the observation points of the plants survey (black dots). 

The number of predicted species per grid cell varies between 0.466 and 65.115. The regions 

with highest values are again situated along the southern shore of Lake Neuchatel. Moreover, 

the distinct pattern of enhanced species richness around populated areas and waterbodies points 

towards a dominating effect of the observational bias despite the removal attempts during the 

modelling process. A second explanation originates from the higher weight in the total sum of 

the two moist guilds (overrepresentation), since they account for more species and show higher 

N° of species 

Figure 9: Absolute map: Sum of current species richness predictions of all guilds and observation points 

(black). (InfoFlora, 2017) 



33 
 

correlations than the other models. Within the Broye region, the intensively managed lowland 

in the northern part with less grasslands shows rather low species numbers. Along the river 

itself and towards the southern part, the number of species increases. In the highland, the same 

patches with high counts as in guild 1 and 2 appear. This map of absolute numbers may help 

to give an impression about the species richness, but is not very representative for the ecological 

value of the patterns because it does not allow making inferences about the detailed species 

composition of each grid cell. Furthermore, the guilds with higher maximum numbers of 

projected species are overrepresented. 

4.2.1.7 Standardized model predictions 

In order to face the above-mentioned bias probably originating from the overrepresentation of 

the moist guilds, the predictions were standardized. Therefore, the predicted average value of 

each grid cell was divided by the maximum of predicted values of each guild. The resulting 

scale of each guild ranged from 0 to 1, which allows for a direct comparison of the different 

guilds. For example, the value 0.5 means that half of the potential number of predicted species 

of a specific guild is present in that cell. These values are referred to as “Guild Levels”. Figure 

10 illustrates the sum of the standardized values from each grid with a potential scale ranging 

from 0 to 5. 

Guild Levels 

[0-5] 

Figure 10: Standardized map of summed current species richness predictions. 
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One may still recognize distinct patterns around rivers and lakes, although weaker than in the 

absolute map. Therefore, the effect of the observational bias seems to be present in all guilds. 

The regions with the highest guilds levels (1.5 - 2.5) are found along the northern shore of   

Lake Neuchatel with some cells also on the southern shore. Other hotspot-regions are located 

at the northern shore of Lake Morat and around the northern top of Lake Biel. High guild levels 

are also present at the very bottom of the modelled area, namely on the northern slopes of Lake 

Geneva. By comparing this map with the ones of the single guilds, is possible to attribute the 

high values on the southern shore of Lake Neuchatel mostly to the moist guilds, whereas the 

high numbers of species on the northern shores of the lakes (south-facing) may mostly linked 

to the impact of dry guilds. For the Broye region, regions of higher values are located around 

the city of Moudon to the west and a buffer zone along the river bend to the north. However, 

the comparison with the observations points (Figure 10 above) indicates a possible effect of 

the observational bias. 

4.2.1.8 Comparison between model prediction and observation 

Figure 11 illustrates the difference between the predicted species richness (chapter 4.2.1.6) and 

the observed number of species for each grid cell. The cells with positive values are 

N° of species 

Figure 11: Difference between absolute map of current species richness 

predictions and observed count of species per cell 
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predominating the negative ones. Most of the blue cells are just slightly positive, this is due to 

many cells having no observations at all (compare with Figure 5 or 9). This could erroneously 

lead to the conclusion, that the hurdle model overestimates the number of species over most of 

the modelled region, but per definition the hurdle model, does not predict zeros, but the 

probability of them (formula 5 in chapter 2.2.2.2). The cells with a probability for positive 

counts that outreaches the hurdle threshold will produce higher values. The darker blue cells 

are regions of overestimation and the areas with darker red cells is where the model 

underestimated the number of species present in comparison to the observations. The 

underestimated areas, have considerably bigger margin of error, than in the overestimated (see 

legend). These are some singles cells, where the model was not able to predict the high amount 

of species. If we compare these results with the distribution of the observation points (Figure 

5 or 9), we can recognise that areas with more observations tend to be underestimated. The 

brightest cells, are regions where predictions and observations agree the most. The highest 

number of species predicted in a cell is 65.115, whereas the highest number of surveyed species 

per cell is 99. Regarding the Broye region, the models, predict in total about 260 less species 

(-13.78 %) than observed in the region. 

4.2.2 Future Predictions 

In order to evaluate the impact of future climatic changes and potential land management 

strategies on the species richness of grasslands within the study area, six different scenarios 

were applied to the five guilds ‘models. The sum of the predictions (as for the absolute map in 

chapter 4.2.1.6) are displayed in the next sub-chapters. 
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4.2.2.1 Climate Scenarios 

 

Figure 12: Species richness predictions for potential future mean winter temperature increase of 2° C (left) and 

4° C (right). [n° of species] 

As illustrated in Figure 12, an increase in mean winter temperatures would generally lead to an 

increase in the absolute number of predicted species (max number of species respectively 

72.556 and 105.561). In contrast to these substantial increases concerning the absolute number 

of species, the spatial distribution patterns remain more or less stable. Compared to the model 

predictions for the present situation (Figure 9), the total number of species increases by 65.73% 

for the +2° C scenario and by 89.86% for the +4° C scenario. However, an increase in mean 

winter temperatures by 4° C would have a clearly stronger effect on grassland species than on 

the + 2° C scenario, which reflects the linear relationship in the model of this predictor with 

the species richness. Given that temperature winter mean is only significantly present in the 

count part of the model for guild 4 and 7 (Table 4), species growing on rather dry soils with 

low nutrient concentrations would probably profit the most from an increase in winter 

temperatures. 

+ 2° C + 4° C 
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4.2.2.2 Land Use Scenarios 

 

 

The first two land use scenarios describe a moderate conversion of intensively managed pasture 

to a form of extensive management. For the scenarios of 20% and 40% extensification, the 

absolute sums of predicted species do not increase as significantly as for the climate scenarios. 

In the Broye catchment, an extensification by 20% would lead to an average increase of 

21.35%. For the scenario of a stronger extensification (-40%), the number of species increases 

by 36.94%. The small differences regarding the two scenarios may be explained by the absence 

of the predictor pasture intensive in the count part of the models of all guilds. Therefore, this 

variable accounts only for the presence or absence and not for the amount of species. 

The “extreme” version of the previous scenarios, would be to change all pastures from intensive 

to extensive management (100% extensification), this is represented here by the land sharing 

scenario (Figure 14). The species richness is predicted to increase in some specific patches 

along some northern parts of the Broye river. In the highland, the number of species is generally 

much higher, which is probably due to the higher share of grasslands compared to the lowland. 

Therefore, the highland, some parts of the river surroundings, and the area around the river 

estuary seem to profit the most from a rigorous reduction of intensive grassland management. 

According to this model, an overall extensification of meadows and pasture in the Broye, would 

lead to an increase of 60.88% in total species. 

- 20 % - 40 % 

Figure 13: Species richness predictions for 20% (left) and 40% (right) extensification of pastures [n° of 

species] 
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In accordance with its definition, the predictions for the land sparing scenario show a less 

homogeneous picture compared to the land sharing scenario. There are no large areas with high 

species richness, but rather single scattered patches or pixels. The maximum values are lower 

than for the land sharing scenario and areas of poor diversity are much more pronounced. An 

intensification of the grasslands in the Broye region as defined by the land sparing scenario 

(chapter 3.7) would lead to a 14.57% decrease in total species. The focus of the conservation 

efforts is set on forests, which do not directly promote a higher diversity of grasslands plants. 

An interesting feature evolves from the several green patches along the river within the 

intensively cultivated region in the north, suggesting that in the context of a land sparing 

scenario it might be profitable to create protected areas close to the Broye river.  

 

4.2.2.3 Combined Scenario 

In order to evaluate a plausible combination of rather moderate climate and land use scenarios 

within the next decades (i.e. until 2050), the effects of an increase in mean winter temperature 

by 2° C as well as an extensification by 20% on the species richness of grasslands were 

combined. The general increase in species richness is 70.96%. This result was expected due to 

the combination of linear effects of the positive correlation with winter temperature and the 

negative correlation with intensive pasture.  

N° of 

species 

Figure 14: Species richness predictions for a land sharing (left) and land sparing (right) 

scenario (Broye). 
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For the assessment of specific regions that would profit the most from a less intense pasture 

management combined with a warmer winter temperatures, the differences between the 

combined future scenario and the present predictions (absolute sum in chapter 4.2.1.6) were 

calculated and illustrated in Figure 15. The zones that would increase the most in species 

richness, are mostly regions with already high diversity (compare with figure 9), like at the 

northern shore of lake Morat, near the lake Geneva, some cells around lake Neuchatel and the 

upland in the Broye. These are regions mostly occupied by the dry guilds. It could be 

interpreted, that a warmer climate and less intensive pastures, would increase significantly the 

number of dry-loving species in regions where they are already have suitable habitat. These 

regions, provide already a hotspot for biodiversity and will probably remain diverse if no 

additional land use activities. Thereby and are therefore worthy to conserve. The greener areas 

in the southern part of the Broye region and the pre-alpine zones, are the areas where species 

richness in pastures and meadows would profit the most and therefore a less intense land 

management could be profitable. 

  

N° of 

species 

 

N° of 

species 

Figure 15: Difference between species 

richness predictions for plausible future 

scenario, as combination of +2° C mean 

winter temperature and -20% intensive 

pasture, and the current predictions. 
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5 Discussion 
The following chapter consists of an interpretation and discussion of the methodological 

aspects of the study as well as the resulting findings. Following the research questions posed 

in the introduction, outcomes, strengths, and limitations of the study are being critically 

discussed and set into context with available literature. 

Which climatic and land use factors affect current biodiversity patterns of grasslands 

within the Broye catchment, and is it possible to predict them with a statistical modelling 

approach? 

Using a simple statistical model like the two-part hurdle model (Pott & Elith, 2006; Zeileis et 

al. 2008; Zuur et al. 2009;), it was possible to assess different climatic and land use factors 

affecting current species richness of grasslands at catchment scale. The current distribution of 

different guilds consisting of sets of species with similar preferences in terms of nutrient and 

water supply, was modelled to identify spatial patterns of species richness. The hurdle model 

allowed distinguishing between predictors accounting for the presence as well as for the count 

of species. The number and composition of predictors varied among the different guilds (see 

chapter 4.1). The results indicate that the models for the moist guilds performed better and the 

predictions showed overall higher counts than the ones for the dry guilds (see chapter 4.1 and 

4.2.1). While the models for the dry guilds produced lower abundances of species, the potential 

habitats covered a larger area (see chapter 4.2.1.3, 4.2.1.4 & 4.2.1.5). By merging the 

predictions for all guilds, it was possible to identify regions within the Broye catchment 

offering potential habitats for the selected grassland species (chapter 4.2.1.6 / figure 9). 

Although the estimated species richness was generally lower in the lowland compared to the 

highland, some areas along the river also showed exceptionally high numbers of species within 

the intensively cultivated areas. These results on one hand highlight the potential of the 

presented approach regarding the analysis of relationships between selected environmental 

factors and species richness. On the other hand, the predictive capacities of the models were 

not fully satisfactory, and therefore the modelling approach as well as the data selection and 

processing steps need to be revised for further improvement.  

Among the three different aspects of biodiversity (see figure 1), the focus of this study was set 

on species richness. Considerable problems regarding the assessment of the overall species 

richness in agricultural landscapes can be avoided by using particular taxa as indicators for 

general biodiversity (Billeter et al., 2008; Herzog et al., 2012). The richness in vascular plants 
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was identified to be a good general indicator for biodiversity (Duelli et al., 1999; Peters et al., 

2016), and grasslands offer suitable ecological traits to assess simultaneously the effect of 

climate and land use changes on biodiversity (Pearson et al., 2004; Shoyama & Yamagata, 

2014; Schirpke et al., 2017). 

Using a selection of species as indicator for biodiversity requires the existence of empirically 

collected data with sufficient spatial coverage (Ferrier, 2002). Such species surveys are getting 

more precise and cover larger areas thanks to digitally based platforms like InfoFlora, where 

everyone may contribute to the sampling. However, a considerable part of the information is 

still unknown for most regions (Peters et al., 2016). In case of the Broye region, the available 

species distribution data revealed some limitations: The accumulation of observations around 

densely populated areas was attempted to be taken into account by introducing the variable 

distance to building. However, the removal of this observational bias was not fully possible 

and was visible in the prediction maps (chapter 4.2). This source of error is a common problem 

for ecological modelling approaches using survey data recorded by volunteers (Morrison, 

2016). Different solutions to overcome sampling biases have already been proposed: Stolar & 

Nielsen (2015) suggest a sample weighting term estimated as the inverse of probability of 

sampling, and Bird et al. (2014) introduced alternative modelling approaches (i.e. mixed-effect 

and hierarchical models). A second limitation regarding the raw data is the missing information 

about true negatives. Presence-only data is a very common characteristic of directly surveyed 

biological data sets. In this study, a zero-inflated model was applied, but other approaches, i.e. 

pseudo-absences, could have been implemented for the type of data used in this study. This 

method, in case a species has not being observed at a certain location, where others are, the not 

surveyed species is treated as absent, true negative (Ferrier & Guisan, 2006; Pearce & Boyce, 

2006). A third, possible constrain of the raw data is the autocorrelation between the observation 

points. If this effect of similarity in characteristics of two elements been located near to each 

other, is reproduced in the residuals of the model, it can affect the modelling results, in general 

causing overestimation (Dormann et al., 2007). In this study, the presence of this bias was not 

tested. 

In the presented modelling approach, guilds of similar species were formed to enhance the 

correlations between the species and environmental variables. Moreover, this allowed 

producing species counts that were not given by the raw presence-only data. The resulting 

guilds were created manually based on only two ecological indicator values (moisture and 

nutrients). However, the ecological niche of a specific plant includes many other variables than 
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just the availability of moisture and nutrients. This might be the reason why the spatial patterns 

of the guilds did not fully correspond to the topographical distribution of their traits. In regions 

with high concentrations of observations, species of multiple guilds were present. This suggests 

that grouping the indicator species with respect to only these two variables was not sufficient 

to allow for a distinction between the different habitats. Alternative approaches for the 

grouping of species (i.e. in community types) could have provided better results than in 

functional groups (guilds) (Guisan & Rahbek, 2011; D’Amen et al., 2017). 

The unique characteristic of this study was the attempt of modelling directly the number 

(abundance) of species by relating it to available environmental predictors. The floristic data 

was processed without reaching satisfactory amount of species counts per grid cell. Given the 

characteristics and quality of the raw data, which not allowed to build sufficient abundance 

data, a binary model, where the probability of presence of species is modelled instead of the 

abundance, may be more suitable (Ferrier & Guisan, 2006; Bird et al., 2014; Stolar & Nielsen; 

2015). This could have been implemented in a macroecological approach without losing its 

benefits: The potential presence or absence of the guilds is modelled by using a GLM or GAM 

in order to generate distribution maps of the guilds consisting of the probability of occurrence 

for each grid-cell (Guisan & Zimmermann, 2000; Zuur et al. 2009). By merging the different 

distribution maps into one, it would be then possible to identify the cells with highest 

probability of occurrence for all the guilds. In case the ecological value of each guild would 

have to be investigated, grid cells could be assigned to the guild with the highest predicted 

probability of occurrence (Ferrier et al., 2002). A second commonly used type of modelling 

within the macroecological approach is to fit a single model to all guilds simultaneously by 

using a classification by regression trees (e.g. random forest or BIOCLIM). By the use of a 

recursive portioning technique generating discrete environmental rules, the grid cells are then 

assigned to the different communities (Ferrier & Guisan, 2006). 

The models’ outputs were than used to produce distribution maps of species richness for every 

guild. Due to the guilds’ model quality (Table 3), the different spatial distribution and diverging 

maximal number of predicted species per cell (chapter 4.2), it could be distinguished between 

two groups: moist and dry guilds (including guild 7). Moist guilds showed better model 

performance and higher maximal predicted values in comparison to the dryer ones. The high 

number of total predicted moist species could be attributed to the fact that these guilds were 

originally composed by higher number of species (Table 2). However, guild 7 is composed by 

more species than guild 1 and the maximal predicted value is merely 3.567. This could let 
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deduce that in the models of the moist guilds a correlation with some predictor is causing high 

predictions Indeed, by analysing the models’ coefficients (see Annex 3), it emerged that 

wetlands have the strongest correlation of all guilds models’ coefficients. This is in accordance 

with Steinmann et al. 2009, where they compared two modelling approaches and for both it 

resulted, that perennial plants richness in wetlands of Switzerland where the best predicted and 

resulted in high local abundance. The moist species require specific habitat conditions to grow, 

which are found in floodplains and moors. In Switzerland, these habitats are relatively well 

protected and inventoried (BAFU & BLW 2013). This would explain the observation pattern 

on the southern shore of lake Neuchatel (see Figure 5). Wetlands account mainly for the zero 

part of the moist guilds’ model; other variables show higher correlations for the prediction of 

counts. For guild 1, distance to water is apparently a driver for higher counts, while in guild 2 

(nutrient rich), intensive agriculture (intensive pasture and nitrogen load) leads to higher 

number of species. The variable narrow wood has a significant positive correlation with 

presence and count of guild 2. What is leading to this relationship is unclear. Marchand & 

Houle (2006) and Bailey et al. (2014) analysed the variation in species richness as a function 

of distance to forest edge in temperate southern Quebec, Canada. They found, that soil moisture 

and organic matter were higher at the edge than in the forest interior. These conditions would 

promote growth of guild 2. They also detected that plant species richness decreased with 

distance to the forest edge. These finding are possible explanations for the detected correlation 

of species richness with narrow wood in our model. 

The models of the dry guilds have more predictors representing the absence/presence process 

than the count. Road green, cropland (guild 4) and winter rape (guild 5) have a positive 

correlation in the zero part. These predictors could be an effect of observation bias, explained 

above. Observations of plants are more probable to occur near roads and farmers must survey 

species, if they seek direct payments. Low number of predicted species in guild 4 and 5 are 

probably caused by insufficient predictors for the count part of the hurdle model (Table 4) 

ans/or by the low number of species representing them (Table 2). The inclusion of additional 

variables, could have improved the performance of these models. For example, the presence 

and intensity of herbivories could be worthy to integrate, since it has a strong impact on the 

habitat of dry grassland species (Zulka et al. 2014; Moore et al. 2015). 

The sum of all guilds’ predictions, was used to display the total species richness in the study 

area (Figure 9 ). Generally, regions with more observations points coincide with the cells with 

higher predicted species richness. This indicates that the observation bias could not 
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successfully be removed during the model processing and it is affecting all guilds predictions. 

Hence, it is difficult to identify present valuable biodiversity hotspots. An attempt to highlight 

more valuable regions was done by standardising the predictions and trying to identify potential 

areas of occurrence for multiple guilds simultaneously, also described as functional diverse 

regions. Functionally diverse communities have more stable ecosystem functioning, and are 

resilient against stress or shock and are less likely to change their behaviour (Allan et al. 2011; 

Laurila-Pant et al. 2015). In the Broye region, these ecological valuable areas, where identified 

on the western part of Moudon and direction north along the river shore (Figure 10). 

What is the effect of future changes regarding climatic drivers and land use practices on 

patterns of species richness? 

The models of every guild, where run with modified datasets to produce species richness 

distribution maps for two future climate scenarios and four land use scenarios. The result of 

these models showed that warmer winter temperatures strongly increased the number of species 

in the region. Extensification of pastures had a clear positive effect on the number of species 

but only if implemented wide-ranging on all grasslands (land-sharing). The land-sparing 

scenario applied in this study, caused fragmentation of species richness and a significant 

decrease in total species amount. 

The climate scenarios applied in this study (i.e. increasing the mean winter temperature by 2°C 

and 4°C) are a very simplified form. They do not take into account other aspects of climate 

change which also affect species richness, such as changes in precipitation patterns or extreme 

events (Theurillat & Guisan, 2001; de Chazal, 2009; CH2011, 2011; Bellard et al. 2012, Oijen 

et al. 2017). Only winter temperature increase is not a full representation of complex future 

climate in Switzerland and possible side-effects caused by an increase in temperature in winter, 

cannot be observed in these results. During the last 50 years the average temperatures in 

Switzerland increased while winter and spring precipitation decreased. This led to shifts in 

species distribution and composition, e.g. short-living and drought resistant species increased 

significantly (BAFU, 2017). Near the alpine region, warm-loving species tend to expand into 

higher altitudes (CH2011, 2011; Bellard et al. 2012). This may partly explain the higher 

increase rate of species richness in the upland of the Broye catchment in comparison to the 

lowland (Figure 12). However, through the predicted number of species, it is not possible to 

analyse the future composition of the species and the functional diversity, but only analyse the 

estimated total number of species. Bühler & Roth (2011) assessed the current trend in grassland 
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vascular plants richness and dissimilarity (difference in composition between two sites) in 

Switzerland for the time periods 2001-2004 and 2006-2009. They found an increase in species 

richness but a decrease in dissimilarity which suggests a local-scale homogenization of 

grassland due to the spread of the more common species adapted to high nutrients and moderate 

temperature levels. 

Cumulative and macroecological approaches assume that species are in a state of equilibrium 

(static) with the factors that determine their distribution, but group of specie (guilds or 

communities) are not moving as an entity under changing climatic conditions (D’Amen et al. 

2017). With the macroecological approach it is not possible to simulate the individualistic 

behaviour of species, e.g. migration, seed dispersal, migration and adaptation (Guisan & 

Zimmermann, 2000; Latimier et al. 2006). By including these properties, as well as between-

species interactions in the modelling process should improve the prediction in community 

shifts. Under this aspect, the cumulative approach is more suitable, because it is capable of 

taking into account responses as well as migration rates of different species (Ferrier & Guisan, 

2006).  

Of the four land use scenarios applied, three were different shares of extensive vs. intensive 

pasture. Under the moderate scenarios, with 20% and 40% extensification the species richness 

increased overall in the study area, but not as strong as for the temperature increase scenarios. 

The spatial pattern remained almost the same, as for the total current prediction map (Figure 

9). In the land sharing scenario, all intensive pastures were converted into extensive ones 

(Figure 14 – land sharing). Here, a much clearer spatial pattern could be observed, with high 

number of species in the upland, probably due to more grasslands, and less species in the 

lowland. In contrary, the land sparing scenarios led to overall fewer species then the sharing 

scenario and no spatial subdivision could be observed. The scenarios proposed by the 

stakeholders were simplified into few criteria, in order to easily shape the dataset. Some other 

more precise aspects of the scenarios, could be integrated in the model (e.g. buffer zone around 

river, hedges, etc.) to produce more detailed prediction maps. Especially for the land sparing 

scenario, the results would probably show higher number of species. 

In the research field of conservation biology, it is still highly debated, which strategy should 

provide the best results (Fischer et al. 2014, Barral et al. 2015). Land sharing would probably 

imply lower food production and only an extensification of grasslands could be insufficient to 

protect species, because conservation should achieve a network of high-quality grassland 
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patches (Zulka et al. 2014). Land sparing would maintain constant food supply, but not provide 

fundamental interconnections between biodiversity hotspots. In addition, a community with 

low species richness, but composed by rare species is as important to protect as hotspots with 

a high number of species (Marchese, 2015). 

Is it possible to identify potential regions for conservation or agricultural extensification? 

The results produced by this study, do not allow to define clear and reliable present and future 

hotspot biodiversity regions. The different causes, where discussed in the previous sections. To 

predict such an output would require additional information about the species distribution in 

the region and maybe adopt another modelling approach. Spatial differences in species richness 

could be observed within the Broye region, mainly between the intensively managed lowland, 

which in average had lower species richness through all scenarios and the upland in the south. 

Based on what emerged from the stakeholders’ scenario and the local management strategies, 

the land management strategy in the Broye region would be a combination of the two extreme 

scenarios presented in this study. However, the current trend is more toward a land sharing 

strategy, dictated by new measures (e.g. direct payments) promoting less intensive agriculture, 

while areas of intensive cropland (e.g. in the fertile lowland) and natural reservoirs (e.g. along 

river, forests) would be maintained or extended. Extensification of agricultural management 

would mainly take place in the upland and this would be supported by the results of this 

master’s thesis. 
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6 Conclusions and Outlook 

6.1 Summary and Conclusion 

This study aimed at predicting future biodiversity hotspots, under climatic and land use changes 

within the Broye region. Loss of biodiversity is mainly caused by anthropogenically driven 

environmental changes. Among the major sources of pressure are climate change and 

intensification of agriculture (Secretariat of the Convention on Biological Diversity, 2014). To 

stem the persisting decrease in species richness it is important to understand the reaction of 

biodiversity to such changes. As shown in this study, statistical modelling represents a helpful 

tool to investigate these interactions. Biodiversity has been modelled for an agroecosystem at 

regional scale, with integration of both climate and land use predictors. 

For the Broye catchment, the application of a statistical hurdle model technique allowed to 

recognize significant interactions between the species richness in grasslands and a selection of 

environmental factors. Common and rare grassland species of the region were selected and 

used as biodiversity indicators. These were merged into five guilds according to their 

preferences in moisture and nutrients availability. The combination of predictors and the 

strength of interactions varied between the five different guilds. For the two moist guilds the 

model performance was better than for the dryer groups. By merging the predicted distribution 

maps of all guilds it allowed to recognize spatial patterns of potential grassland species 

richness. However, the results could not be efficiently uncoupled from the observation bias, 

which influenced the distribution maps of all guilds. Therefore, the spatial patterns did not vary 

substantially in the single guilds and in the summed maps. Nevertheless, future changes in 

grassland plant species richness could be modelled by changing significantly correlated 

predictors. Mean winter temperature was increased to predict species richness under two 

scenarios of warmer climate. Furthermore, four land use scenarios (two levels of pastures 

extensification, a land sharing and a land sparing scenario) were implemented to assess the 

impacts of different agriculture management on grassland plants richness. An increase in winter 

temperature considerably increased the number of species. On the other hand moderate 

extensification of pastures did not show a high increase in species abundance. For the extreme 

land use scenarios, land sharing and land sparing, the first one demonstrated higher count 

values over an extended area; while for the second one the number of predicted species 

decreased, with exception for a few patches. To identify potential biodiversity hotspot regions 

that could be particularly worthy to be protected or extensified in the next 30 years, a combined 

scenario, with a 2° C increase in winter temperature and a 20% extensification of pastures was 



48 
 

applied. The results suggested that the actual spatial pattern of regions with high species 

richness would remain more or less stable. For this future scenario, the upland of the Broye 

catchment would profit the most in terms of total amount of grassland species. 

Although biodiversity is too complex to be modelled as a single entity, this study showed that 

some aspects of it, with regard to specific species in particular habitats can be analysed by 

simple statistical approaches like a general linear regression model. However, this depends on 

the existence of reliable observation data which is not always available. The combination of 

bioclimatic, edaphic and land use variables can improve the model performance compared to 

a pure bioclimatic model (Pompe et al. 2008). The correlations between environmental factors 

and species richness can be analysed with a linear regression model, while understanding the 

complex interactions which cause actual and future shifts in grassland biodiversity of 

agroecosystems requires more precise data and may a different methodical approach. 

Biodiversity conservation strategies are imbedded in local socioeconomic contexts. Modelling 

at a regional scale can help to better understand the relevant environmental processes. To 

predict and identify potential future biodiversity conservation areas, involving local 

stakeholders in the definition of future land use scenarios, can improve the applicability of the 

results. 

6.2 Outlook 

Biodiversity is the basis of many ecosystem services. Biodiversity-ecosystem functioning 

relationships are affected by the number and identities of species, with species rich 

communities tending to perform better than species poor systems (Allan et al., 2011; Laurila-

Pant et al., 2015; Oijen et al. 2017). Predicting spatial patterns of species richness remains 

challenging (D’Amen et al., 2017). Coarse and unsystematically surveyed biological data do 

not provide a reliable assessment of species distribution and of conservation areas across a 

landscape (Mossman et al., 2015). More collection data from all types of habitats will be 

required in the future to enhance the predictive capacity of biodiversity models. Improvements 

have been achieved with regard to integrating collection data from the field with remote-sensed 

data (Ferrier et al. 2017). To achieve more efficient regional conservation strategies in 

agroecosystems, more efforts should be put on improving biodiversity modelling at a landscape 

scale (Billeter et al., 2008). New methods that consider multiple aspects of biodiversity could 

help to provide new insights into the mechanisms that determine the current patterns of 

biological diversity (Marchese 2015). Modelling interactions between climate change, 
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biodiversity and agricultural productivity could benefit from integrating different modelling 

approaches across different spatial scales (Oijen et al.; 2017). There is still a huge margin of 

improvement and very high potential available for biodiversity modelling in the years to come. 
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Annex 2 
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Annex 3 

 

Guild 1  - zero         

  estimate_mean std_mean p_mean  p < 0.05 

(Intercept) -2.1998 0.0675 2.00E-228  p < 0.01 

scale(AS_67) 0.6412 0.0942 4.59E-09  

p < 
0.001 

scale(Temp_Winter_mean) 0.2749 0.0677 0.000571879   

scale(Pasture_Intensive) -0.2721 0.0578 3.85E-05   

scale(N_Load_mean) -0.2375 0.0724 0.002587678   

Guild 1  - count         

(Intercept) 0.1455 0.0718 0.108421382   

scale(AS_67) 0.0988 0.0081 5.75E-22   

scale(AS_56) 0.0744 0.0149 0.002096383   

scale(Dist_Water_mean) -0.3422 0.0706 0.000423223   

scale(N_Load_mean) -0.1875 0.0661 0.018545666   

      

Guild 2  - zero         

  estimate_mean std_mean p_mean   

(Intercept) -1.0864 0.0480 1.07E-106   

scale(AS_67) 0.8459 0.1260 6.12E-11   

scale(AS_51) 0.1662 0.0453 0.000830332   

scale(Temp_Winter_mean) 0.1650 0.0553 0.009731697   

scale(Waterlogging_major) 0.1272 0.0466 0.012623898   

scale(Dist_Buildungs_mean) -0.0867 0.0475 0.109465315   

scale(AS_42) -0.2441 0.0677 0.001005215   

scale(N_Load_mean) -0.3227 0.0558 2.12E-07   

scale(Pasture_Intensive) -0.2522 0.0467 2.83E-07   

scale(Meadow_Intensive) -0.2056 0.0649 0.004448759   

Guild 2  - count         

(Intercept) 0.6931 0.0325 2.24E-83   

scale(AS_67) 0.1157 0.0070 1.12E-47   

scale(AS_51) 0.1090 0.0213 0.000138499   

scale(AS_62) 0.1157 0.0189 0.000341848   

scale(Waterlogging_major) 0.2250 0.0213 9.37E-20   

scale(Dist_Buildungs_mean) -0.1257 0.0261 0.000784145   

scale(N_Load_mean) -0.1713 0.0335 0.000147212   

scale(Meadow_Intensive) -0.1648 0.0305 8.37E-05   
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Guild 4  - zero       

  estimate_mean std_mean p_mean 

(Intercept) -1.6258 0.0541 6.45E-195 

scale(Temp_Winter_mean) 0.3788 0.0568 1.81E-09 

scale(Slope_std) 0.2796 0.0558 3.99E-06 

scale(AS_18) 0.1478 0.0467 0.004033822 

scale(CropLand) 0.3093 0.1372 0.038869479 

scale(N_Load_mean) -0.3695 0.1459 0.01784855 

scale(Pasture_Intensive) -0.2632 0.0495 8.84E-07 

Guild 4  - count       

(Intercept) 0.3179 0.0506 4.17E-07 

scale(Temp_Winter_mean) 0.1954 0.0384 3.94E-05 

scale(N_Load_mean) -0.3903 0.0522 3.05E-11 

    

Guild 5 - zero       

  estimate_mean std_mean p_mean 

(Intercept) -2.0122 0.0640 1.74E-215 

scale(Temp_Winter_mean) 0.2415 0.0642 0.000411384 

scale(Winter_Rape) 0.3084 0.0546 3.48E-07 

scale(Slope_std) 0.3898 0.0640 1.14E-08 

scale(AS_50) -0.3833 0.0768 2.13E-06 

scale(Pasture_Intensive) -0.3335 0.0527 3.21E-08 

Guild 5 - count       

(Intercept) 0.2162 0.0584 0.001318245 

scale(Prec_Autumn_mean) 0.1424 0.0407 0.011333543 

scale(Aspect_std) -0.2369 0.0550 0.000200831 

    

Guild 7 - zero       

  estimate_mean std_mean p_mean 

(Intercept) -1.7883 0.0586 4.17E-202 

scale(Temp_Winter_mean) 0.3925 0.0576 4.67E-10 

scale(AS_51) 0.1309 0.0499 0.016931105 

scale(AS_18) 0.1836 0.0481 0.002628109 

scale(Slope_std) 0.3719 0.0549 1.73E-10 

scale(Dist_Buildungs_mean) -0.2311 0.0629 0.000945804 

scale(Permeability_major) -0.1296 0.0495 0.018578901 

scale(Pasture_Intensive) -0.3021 0.0507 1.79E-08 

Guild 7 - count       

(Intercept) 0.4297 0.0488 4.85E-11 

scale(Temp_Winter_mean) 0.3224 0.0420 5.57E-10 

scale(Prec_Summer_mean) 0.1962 0.0503 0.002782373 

scale(Permeability_major) -0.1556 0.0294 2.99E-05 
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