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Abstract

Agricultural intensification and climate change are among the main causes for current
biodiversity losses. The effects of environmental changes on species richness may be assessed
with statistical modelling approaches. In this study, a two-part hurdle model was implemented
to predict present and future distribution patterns of plant richness in grasslands within the
catchment of the Broye river, an intensively managed area in the Western Swiss Plateau. This
approach allowed identifying environmental factors affecting significantly the presence and/or
abundance of selected species. Mean winter temperatures and the intensity of pasture
management were very significant drivers over all groups of species. These predictors were
thus used to define future climatic and land use scenarios. An extensification of grasslands
(20% of pastures area from intensive to extensive) under warmer conditions (+ 2° C in mean
winter temperature) resulted to be a particularly profitable strategy for the highland of the
Broye region in terms of species richness. Moreover, we conclude that the incorporation of
land use data and stakeholder-based scenarios in species richness modelling approaches could
substantially improve the identification and implementation of future biodiversity conservation

areas.
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1. Introduction

1.1 Research Motivation

Biodiversity at a global scale is changing rapidly due to climate change and human activities.
Loss, degradation and fragmentation of natural habitats, overexploitation of natural resources,
increasing nutrient inputs, invasive alien species and global warming are some of the major
causes for biodiversity loss (Secretariat of the Convention on Biological Diversity, 2014).
Modern agriculture striving maximisation in productivity, requires the homogenization of the
environment’s structure over vast areas and depends only on a handful of varieties (for its major
crops) and on external nutrients inputs (Altieri, 1999). This type of intensive agriculture is one
of the main forms of pressure on biodiversity. On the other side, species diversity plays a key
role in agroecosystems (Reidsma et al., 2006). Biodiversity loss in agricultural landscapes
affects not only the production of food, but also a wide range of ecological services (ESS).
High levels of biodiversity in agroecosystems provide a large variety of beneficial ESS such
as pollination, soil formation, invasion resistance, and human well-being in general due to
microclimate regulation, water purification, cultural values, etc. (Altieri, 1999; Herzog et al.,
2012, BAFU, 2017a). However, modern intense agricultural management has been growing
worldwide during the past decades and considering the actual population growth, it is likely to

continue (Reidsma et al., 2006).

Since the post-war period, agriculture policies in Switzerland support production growth and
rationalization in order to ensure national food security. Technical progress (e.g.
mechanization, mineral fertilizers, pesticides etc.) and economic development led to an
intensification of grass- and arable land (BAFU & BLW, 2008). This evolution reduced the
richness in plant and animal species especially in the lowlands, where suitable habitats have
been strongly reduced. Population sizes have fallen and today, almost half of the habitats and
one third of the plant and animal species are endangered (BAFU & BLW, 2008; BAFU, 2017a).
Since the 1990’s, the conservation and promotion of biodiversity in agriculture has become an
explicit target of the Swiss agrarian policy (BAFU & BLW, 2013). Nowadays, protection of
biological diversity is stipulated in the Swiss federal constitution and in international treaties
(BAFU, 2017a). On the 6™ of September 2017, the Federal Council adopted the action plan of
the Swiss Biodiversity Strategy, which aims to ensure the long-term conservation and
promotion of biodiversity, ecosystem services and habitats (BAFU, 2017b). This highlights the

social awareness for past, present and future efforts in preserving biodiversity.



Conservation strategies aiming to maintain high levels of diversity in the future, need to
consider the changing climatic conditions evolving from anthropogenic greenhouse gas
emissions. Biodiversity will get into additional pressure through climate change at all stages,
from organism to biome (Bellard et al, 2012). In order to develop adequate adaption strategies,
a better understanding of the response of species richness to changing temperature and
precipitations regimes is needed (BAFU, 2017a). To efficiently invest the available resources
for conservation, it is crucial to foster the knowledge of how ecosystems and species diversity

will respond in future to different land management and climate change scenarios.

One of the main goals in conservation ecology research is to understand and model factors and
processes generating patterns in species composition, so that if conditions alter, changes in the
patterns can be predicted (D’Amen et al., 2017). In recent years, many studies investigated the
effects of climate change on future biodiversity, mostly at coarser (global or continental) spatial
scales (i.e. Root et al., 2003; Adler et al., 2009; Bellard et al., 2012). Furthermore, impacts of
agriculture on species richness has been studied by McLaughlin & Mineau, 1995; Plantureux
et al., 2005; Reidsma et al., 2006. Although several studies already investigated the response
of species richness to both climate and land use changes (Pearson et al., 2004; Pompe et al.,
2008; Steinmann et al., 2009), less efforts have been put into the prediction of biodiversity
shifts at regional, landscape or community scale (Shoyama, & Yamagata, 2014; Mossman et
al. 2015; Schirpke et al.,, 2017). Research in this field provides important tools for
implementing biodiversity conservation strategies, as these decisions are in many cases a
matter of regional political stakeholders. This study focusses on the consideration of this
aspects and aims to assess current and future biodiversity distribution within a regional
agroecosystem as function of climate and land use factors.

1.2 TALE Project

In 2015, the interdisciplinary research project TALE (Towards multifunctional Agricultural
Landscapes in Europe — Assessing and governing synergies between food production
biodiversity and ecosystem services) was started. The TALE project aims to unravel and
quantify synergies between agricultural production, biodiversity, and ESS in different
European landscapes. Human population, market globalization, dietary shifts, and urbanization
are increasing the pressure on natural resources. The demand driven land use changes come at
a cost in form of trade-offs between food or bioenergy production, biodiversity conservation

and other ESS. TALE aims to deepen the knowledge regarding these trade-offs and to help



developing policy strategies by assessing and governing synergies between these factors. The
end-product of TALE should provide a platform that supports the design and evaluation of
policy options helping to reconcile conflicting demands, while at the same time ensuring
conservation of biodiversity and the provision of ESS within a changing environment. The
project is accompanied by local involvement to achieve a high level of policy coherence (UFZ,
2015). Agroscope, the Swiss centre for agricultural and sustainability research, is conducting
the TALE case study for Switzerland. The main project of this case study consists of an analysis
and prediction of changes in water supply under future social-economic and climatic scenarios.
This master’s thesis serves as an additional input and focuses on biodiversity responses to
climate and land use scenarios by investigating dependencies of different biodiversity

indicators on habitat characteristics.

1.3 Biodiversity Indicators

Ideally, conservation planning is based on a complete and detailed knowledge of the
distribution of all different components of biodiversity (genes, populations, species
communities, ecosystems) in the region of interest. In reality, the knowledge of biodiversity
and its single aspects, is far from complete (Ferrier, 2002). The complexity and
multidimensionality of biodiversity does not allow to measure it as a single entity. However, it
is possible to characterise some aspects of biodiversity using surrogate measures, the so-called
biodiversity indicators (Biichs, 2003). In general indicators are defined as “pieces of
information that provide insight into matter of larger significance and make perceptible trends

that are not immediately detectable” (Hammond et al., 1995).

Indicators are used to face the complexity of biodiversity. In the case of biodiversity, do not
measure directly the change within the biological system, but rather reveal information about
the change of a phenomenon or activity, that if left unaltered, will lead to impacts on
biodiversity (Duelli & Obrist, 2003). For this study, indicators should express biodiversity as
a whole and be sensitive to environmental conditions and to agricultural activities. However,
it is very complicated to find indicators that fulfil all these requirements (Herzog et al., 2012).
The huge number of species and the complexity of ecological processes within agricultural
habitats, complicates the choice of appropriate indicators that can robustly represent the link
between biodiversity, environment and agricultural management (Duelli & Obrist, 2003;



Herzog et al., 2012). In the agricultural landscape, biodiversity can be divided into three levels:

genetic, species and ecosystem diversity, each with its respective indicators (see Figure 1).

Biodiversity level Indicators
Genetic Vari Domesticated crop varieties and
ariety livestock breeds
Species " Wild species abundance, richness,
P Quality and non-native species
Ecosystem Quantity Habitat area

Figure 1: Biodiversity indicators in relation to agriculture (OECD, 2001)

For this study, the focus is set on the species richness as indicator for biodiversity and it refers
to the total number of species of a functional group (species that share common characteristics
within a community) per site and reflects the quality of an agroecosystem. The subset of species
used in this study are selected vascular plants representing the quality of meadows and pastures
in the study region (Chapter 3.2). Natural or weakly managed grasslands provide habitat for
many plants and animals and are essential for agroecosystems; but their distribution is
shrinking (Herzog et al., 2012; BAFU and BLW, 2013; BAFU, 2017). In previous studies, the
application of plants richness as general indicator for biodiversity has been valuated as reliable
(Duelli et al. 1999; Peters et al. 2016) and grasslands as suitable to assess simultaneously the
effect of climate and land use changes on biodiversity (Pearson et al., 2004; Shoyama &
Yamagata, 2014; Schirpke et al., 2017). In this study, the selected indicators are used in a
statistical modelling approach to first identify regions of high plant diversity in grasslands and

second to predict the shift of these hotspots under future climatic and land use scenarios.

1.4 Biodiversity Modelling

To directly measure changes in biodiversity, detailed information on the distribution of
different taxa would be necessary. However, this spatial data is rarely available and usually of
poor quality (Mossman et al., 2015). By using a selection of indicators and a set of certain
modelling techniques, it is possible approximate the assessments and quantification of different
aspects of biodiversity and their spatial pattern (Pfestorf et al., 2013, Mossman et al., 2015).
Since the mid 1990’s, predictive geographical modelling has been increasingly used as a tool
to assess the impact of land use and other environmental change on the distribution of
organisms, and to prioritize conservation efforts (Guisan & Zimmermann, 2000; Mossman et
al., 2015). Today, there exist a variety of different modelling approaches, but the prediction of

spatial patterns of species richness remains challenging (D’amen et al. 2017). Among these
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approaches, statistical modelling provides suitable tools to quantify the relation between
biological data and environmental predictors. (Guisan & Zimmermann, 2000; Ferrier &
Guisan, 2006). With this method, biological survey data may be linked to easily available
environmental variables, and it provides a powerful mean for filling geographical gaps in the
coverage of the usually sparse and coarse biodiversity data records (Ferrier et al., 2002;
Mossman et al., 2015). After a selection process among different statistical models, a two-part

hurdle model for count data has been chosen to be suitable for this study (Chapter 3.5).

The implementation of diversity models in agricultural landscapes is more complicated than in
other unaffected environments, because agricultural production and biodiversity conservation
often imply contrasting types of land use. Therefore, management strategies need to strike a
balance between food production and biological variety considering local socioeconomic
constraints and trade-offs (Grau et al., 2013). In order to find the best strategies for optimizing
these trade-offs, it is necessary to generate a deep understanding of the complex relationships

between species richness, agricultural management and environment.

1.5 Project Aim and Research Questions

The here presented master thesis focuses therefore on the development of a statistical model
and attempts to identify current potential biodiversity hotspot regions in the grasslands of the
Broye catchment. In addition, it aims to predict their future changes under different climate
and land management scenarios. The evolving research questions can be summed in the

following points:

e Which climatic and land use factors affect current biodiversity patterns of
grasslands within the Broye catchment, and is it possible to predict them with a
statistical modelling approach?

e What is the effect of future changes regarding climatic drivers and land use practices
on patterns of species richness?

e Is it possible to identify potential regions for conservation or agricultural

extensification?

1.6 Project Design

In order to answer the above-mentioned research questions, this master thesis project included

the following work steps:



Data Selection: To compile the set of biodiversity indicators a restricted number of
grassland plants was selected. In a next step, the related topographical, climatic, soil
and land use explanatory variables, have been chosen to be used as predictors in the
statistical model (Chapters 3.2 & 3.3).

Data Preparation: To model the current distribution of indicator species, the
dataset had to be prepared in order to relate their abundances to the predictors. The
species were grouped in guilds, their spatial observations and the environmental

predictors were merged into a grid (Chapter 3.4).

Model Design: Once the dataset was prepared, the best possible statistical model
had to be chosen based on the characteristics of the explanatory variable, species
richness (Chapter 3.5).

Model Implementation: The hurdle model for every guild was run and cross-

validated to produce values for current distribution maps (Chapter 3.6)

Predictions: In order to predict future species richness maps, two climate and four
land use scenarios were defined, applied to the dataset and new prediction maps

were produced (Chapter 3.7).

Results Description: The model outputs were used to investigate the effect of the
predictors on the guilds, and the prediction maps to identify present and future
biodiversity hotspots (Chapters 4.1 & 4.2).

Discussion and Outlook: In this section, the whole study is reviewed from the
original data to the models’ outputs. The strength and weaknesses of the applied
approach and the results of this study are discussed and some improvements for

future applications are proposed (Chapter 5).



2. Theoretical Background

To arrange the choice of the best suitable model for the type of data used in this study, a short
technical review has been integrated in the thesis. First, different modelling approaches for
species richness at community-level are introduced and then regression models for count data

are briefly described.

2.1 Modelling Approaches

There are two broadly used strategies to model species richness. The most popular way, is to
model the distributions of the species one by one, in relation to predictors, and then assemble
the results. This method is referred to as cumulative approach. The output allows the
reconstruction of community composition and some attributes from single species. The second
method is called macroecological approach and it first combines the data from multiple species,
e.g. by building groups of species with similar properties. Then, the distribution within these
groups of species are modelled in relation to the explanatory variables. The outputs consist of
cumulative community attributes, usually richness prediction, but they do not provide any
information on the single species. (Guisan & Zimmermann, 2000; Ferrier, 2002; Ferrier et al.,
2002; Ferrier & Guisan, 2006; Guisan & Rahbek, 2011; D’Amen et al., 2017).

Both approaches have their strength and limits. The cumulative approach allows to take into
account the properties of the single species and thereby to model their distribution more
precisely. The results should hence reflect a more realistic distribution (Guisan &
Zimmermann, 2000). Additional difficulties evolve if the aim is to predict species richness
distribution. Modelling individual species is only possible if enough spatial data is available.
Rare species are infrequently surveyed and not a lot of information is given about their
occurrence. Furthermore, modelling single species can be a very time-consuming process
(Ferrier, 2002; Ferrier & Guisan 2006).

On the other hand, the macroecological approach allows to include multiple species in the
modelling, process which is an advantage if the species are recorded infrequently. Moreover,
the computational effort is lower and it simplifies the detection of environmental responses of
rarely recorded species and makes complex data more comprehensive (Ferrier & Guisan,
2006). A main argument against this approach is the fact that plant species assemblages or
communities are very variable over time due to changing environmental conditions and
interactions between the species. Therefore, it is difficult to predict future distributions of

communities in case they are treated as one entity (Guisan & Zimmermann, 2000).
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2.2 Regression Models for Count Data

Due to previous personal knowledge and the widespread use in conservation biology, this study
focuses on statistical models, more precisely on linear regressions. These types of models are
frequently used to quantify the relationship between species richness and environmental
variables (Guisan & Zimmermann, 2000; Lehmann, 2002; Potts & Elith, 2006; Steinmann et
al., 2009; Zuur et al. 2009).

The knowledge about the species as well as the characteristics of the available raw data define
the choice of the suitable statistical model (Latimer et al., 2006). It this study, the focus is set
on the analysis of the interactions between grassland plant richness in agricultural landscapes
and the environmental/land-use factors. The dependent variable to be modelled in this study is
the abundance of species, which means the number of species observed in a defined area and
is usually given as count and discrete data (only non-negative integer values). This type of
response variable follows a Poisson or a negative binomial distribution and their respective
models are special types of generalized linear models (GLM) (Guisan & Zimmermann, 2000;
Zeileis et al., 2008; Zuur et al., 2009).

2.2.1 Generalized Linear Models

Linear regression relates a response variable to a combination (multiple regression) of
predictors (or explanatory variables). In case of a simple linear regression, the response variable
must be normally distributed and the variance does not change as a function of the mean
(homoscedasticity). The GLM is a more flexible type of regression model, which allows to
model also response variables with other distributions than normal and with non-constant

variance functions (heteroscedasity) (Guisan & Zimmermann, 2000).

To maintain the predictions within the range of coherent values for the response variable, the
link function in the regression, is used for the transformation to linearity (Zuur et al.,2009). If
the response variable is non-linear with a predictor, a transformed term of the latter can be
included in the model. This characteristic of GLM allows to model data with Gaussian, Poisson,
Binomial or Gamma distribution (Guisan & Zimmermann, 2000). Since in this study the
response variable (species richness) consists of a count data, the following sub-chapters cover

only model specifications for this type of data.



2.2.1.1 Poisson

Poisson is the simplest and most common model specified for count data. The Poisson
distribution is a special case of GLM, where variance in the data is equal to the mean. This
characteristic is called equi-dispersion (¢ = 1). The link between response variable and

predictors is a log-linear relationship:

log(p) =In(p) = By + X1 + ... +BrXn (1)

where p is the probability of an event occurring, X,, the nth independent variable and g,, the
regression coefficient (Potts & Elith, 2006). The regression coefficients are estimated with a
maximum likelihood function (Cameron & Trivedi, 1999). The classical Poisson regression
model for count data is often limited, especially for empirical count data sets. This modelling
method is not able to address two properties that often occur in ecological data sets: First, the
variance is often bigger than the mean (overdispersion) and second, if there exists an excess

number of zeros (zero-inflation) (Zeileis et al., 2008).

2.2.1.2 Quasi-Poisson
To address the issue of overdispersion, the Poisson regression model can be modified by
estimating the dispersion parameter 8 (= variance/mean) from the data instead of being fixed
at 1 (Zeileis et al., 2008). The dispersion parameter can be modified to be larger than 1 if
overdispersion is present. Let Y be a random variable such that

EY)=pn @

var(Y) = vpoi(u) = Op

where E(Y) = u is the expected mean of Y and var(Y) the variance (Ver Hoef & Boveng,
2007). The model coefficients (E and var) and the log-link function remain the same as the
standard Poisson model (Zeileis et al., 2008). The advantage of the quasi-Poisson model is,
besides accounting for overdispersion, leaving the parameters in a natural and easy
interpretable state (Ver Hoef & Boveng, 2007).

2.2.1.3 Negative Binomial

A second way of modelling overdispersed count data is to assume a negative binomial (NB)
distribution of the random variable Y. This model is the standard parametric model to account
for overdispersion (Potts & Elith, 2006). Here, the overdispersion is a multiplicative factor 1 +

ku? which is dependent on the mean of Y. The model coefficients look like the following:



EY)=pu @)

var(Y) = vyg(u) = p + ky?

In case the original data has far more zeros, than it would be expected from a Poisson or NB
distribution, there is a strong indication for zero-inflation. When using zero-inflated data with
one of the former models, it may cause biased parameters, standard errors or overdispersion

(Zuur et al., 2009). Zero-inflated models are a set of methods capable of dealing with this issue.

2.2.2 Zero-Inflated Models

It is a common problem for ecological data collected in the field, to have high portion of zero
values in the dataset. In Zuur et al. (2009), the causes for zeros in species abundance
observations are divided into four types of potential errors:

1) Structural errors: Species is not present because the habitat is not suitable.

2) Design error: Inaccurate experimental design or sampling practices.

3) Observer error: Mismatch or omission of species by the observer.

4) Species error: The habitat is suitable, but the species is not present.
The last three types of zeros are also called ‘false negatives’, whereas a structural error is also
referred to as ‘true negatives’. Zero-inflated models are divided into mixture models and two-

part models, which differ in how they deal with the different types of zeros.

2.2.2.1 Mixture Models: ZIP and ZINB

The term, two-component mixture models evolves from their ability to represent two or more
ecological processes by combining probability distributions. The modelled zeros come from
two different processes, a binomial process and the count process. The count process can also
model zeros, which are true negatives, whereas the binomial process only generates false
negatives (point mass at zero) and measures their probability. The count model is normally a
Poisson GLM, also called Zero-Inflated Poisson (ZIP) or a Zero-Inflated Negative Binomial
(ZINB) (Potts & Elith, 2006; Zeileis et al., 2008; Zuur et al., 2009).

If Yi is assumed to be the expected number of species on the ith area, the model specification

{ 0, with probability p; (4)
t | Poisson (1), with probability 1 — p;

implies that zero observations may arise with the probability p;, signifying that the zero is a

true negative observation. Otherwise, the zero observation may arise from the parametric

10



distribution (e.g Poisson) with probability 1 — p;, implying that the observed zero is a false

negative observation, it means the habitat is suitable, but not occupied (Potts & Elith, 2006).

This type of model is a good option to account for zero-inflation, but it does not explicitly
account for overdispersion and the interpretation of the parameters (e.g. average plant richness)
is less straightforward than in the two-part models (Martin et al., 2005; Potts & Elith, 2006).

2.2.2.2 Two-Part Models: Hurdle

Another model that accounts for overdispersion and zero-inflation within the data set is the
hurdle model. This type of model was developed in 1971 and published in an econometrics
journal, research field where it is still mostly used (Cameron & Trivedi, 1999). The hurdle
model is a two-part model that specifies one process for zeros and another process for positive
counts. The zero part can be either a binomial or a censored count distribution. The second part
models the probability of a count value with a truncated count model (zeros cannot occur), such
as Poisson or negative binomial. The advantage of fitting the model for two different parts
allows to have more possibilities shaping the model structure. The idea is that positive counts
occur only once a threshold is crossed. If the hurdle cannot be overcome, the count will be 0.
The main difference to ZIP and ZINB is that there is no discrimination between the four types
of zeros, they are all simply seen as zeros (Martin et al., 2005; Potts & Elith, 2006; Zeileis et
al., 2008; Zuur et al., 2009).

The model specification may be resumed by the following example of a probability function:

fpin(0) ify=0

frurdate (V) 1-— fbin(o) . (5)
mfpoi(y) Lfy =1

The model is divided in zero part with binomial function f;;,,(0) and the count part, where the
ratio is the probability of a non-zero from the first process (1 — f3,;,(0)) divided by the
probability of a non-zero in the second untruncated process (1 — f,,;(0)), and then multiplied

with the conditional mean f,,;, from the Poisson distribution (Cameron & Trivedi, 1999).

In the case of species richness modelling, a grid-cell needs to cross a hurdle to produce a non-
zero value and the count process has to exclude the probability of zero values. The zero part
models the probability for presence or absence of the species and the count part gives the

probabilities of the species counts.
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3 Materials and Methods

3.1 Study Site

For the TALE project, five different case study regions in Europe were selected in Switzerland,

Germany, Netherlands, Spain and Austria. For Switzerland, the region of the Broye catchment
on the western plateau was chosen due to the catchment scale, its intense and diverse
agricultural management, the presence of different habitats, and because of a previous study
focussing on water supply in the same region; see Fuhrer et al., 2013. The catchment covers an
area of 598 km? and the elevation goes from 400 to approx. 900 m.a.s.l. It is crossed by the
Broye river, which discharges into Lake Morat (Figure 2). The region can be divided into a
rather flat, more intensively used area in the north (lowland), and a hilly, less intensively used
area in the south (upland). In the lowland, land use is dominated by arable crop production
(potato, maize, tobacco, sugar beat), and some of the water of the Broye is used for irrigation.
In the upland a dairy farming dominates, which is why coverage with meadows and pastures
is more frequent (Fuhrer et al., 2013). Environmental conditions differ slightly between the two
regions: In the lowland, the annual average temperature is 9.6 °C and the annual precipitation
is 886 mm (Payerne weather station), whereas in the upland it is slightly colder and moister
(7.1 °C and 1,535 mm, Semsales weather station - MeteoSchweiz, 2016).

La”ke
Neuchatgl
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Figure 2: Broye catchment. (Swisstopo, 2001)
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3.2 Selection of Biodiversity Indicators

The process of model-building can be divided into two parts: structure and specification. The
model structure includes the choice of environmental characteristics (predictors or explanatory
variables) that are assumed to affect the species abundances (response variable) and the
intended shape of the modelled response (i.e. linear) (Potts & Elith, 2006). This selection
process for species and predictors is described in this chapter and chapter 3.3. Chapter 3.4

describes how the selected data has been arranged to be integrated into the model.

Nowadays, more than one third of the Swiss territory is used for agriculture. Grasslands occupy
about 75% of this area and can be separated into meadows (unregularly grazed and for
production of hay) and pastures (mainly grazing). Especially the less intensively managed
grasslands are, besides providing quality food for ruminants, habitat of a high diversity of
plants and animals being essential for our ecosystems and for cultural values of the population
(Herzog et al., 2012). Due to urban sprawl and agricultural intensification, the species richness
and the extent of these habitats are decreasing. Especially highly diverse dry meadows and
pastures (Fettwiesen and -weiden) and the less intensively managed meadows
(Fromentalwiesen) have drastically shrank during the last decades and are therefore important
for future conservation (BAFU, 2017a). Due to the high potential for biodiversity conservation
of grasslands in Switzerland and the strong relation to agriculture management, in this study
only vascular plants growing in meadows and pastures were selected and used as indicators for

species richness.

Spatial extension data of species are often provided by scientific or voluntary surveys. This
distributional information can be used for analysing spatial patterns in biodiversity. Here, the
spatial information of selected species originates from survey data of plants developed by the
National Data and Information Center on the Swiss Flora (25.01.2017 — InfoFlora, 2017), a
non-profit foundation that documents and promotes wild plants in Switzerland. Among many
other information, it provides a floristic database for research projects promoting conservation
and promotion of native plants. The occurrence of the species is given at different resolutions
throughout Switzerland or for specific regions. For this project, the most precise floristic data
provided by Info Flora was used, given as presence-only data at a resolution of 100x100 m.
Unfortunately, no information about the certain absence of species or the number of elements

within the parcel is given.
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To maintain the multifunctional characteristics of agricultural landscapes, a new policy was
put into place for the period 2014-2017 including a system of direct payments to farmers who
promote biodiversity (BAFU and BLW, 2013). Farms aiming for such a contribution need to
fulfil a certificate of ecological performance, which requires areas for biodiversity promotion
(Biodiversitatsforderflachen; BFF). The subsidies for improving biodiversity are payed for the
quality (divided in level I and II) as well as the interconnection of the BFFs. One part of the
quality evaluation consists of the count of a minimum number of species present on specific
lists for each habitat (BLW, 2014). Therefore, a first selection criteria was to choose among
plants present in the BFF list of meadow and pasture (BLW,2014). Secondly, the species need
to possibly grow within the Broye region, wherefore alpine plants were excluded. In order to
increase the number of observations, further species being present in the Swiss environmental
goals for agriculture (Umweltziele Landwirtschaft - BAFU & BLW, 2013) were included.
These are mostly species classified as endangered and have therefore a high ecological value.
Since the provided floristic data set for the Broye region only was too limited to produce robust
models, the input data included also observations from regions around the Broye catchment
with similar environmental and land use conditions. The total area (Figure 3) corresponds to
the sub-regions 2.5 and 2.6 from BAFU & BLW (2013).

Moudon
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represent the 100x100m surveyed cells. (Swisstopo, 2001)
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The final subset of indicators is composed by a total of 118 species; 85 of them are species that
are valid for the BFF quality contribution, the remaining 33 species are species with high
priority for conservation, because rated as vulnerable or endangered. This final set of
biodiversity indicators (listed in Annex 1) should represent a balance between target species
important for conservation and plants that are easily observed in the agricultural landscape and
necessary for the farmers to get the contributions. The observations points (pink points) of the
resulting set of species are illustrated in Figure 3. It is possible to see how the dots are
concentrated around lakes (e.g. lake Neuchatel), rivers (e.g. Broye), cities (e.g. Bern in the
centre-right) and in the natural reserves (e.g. Parc Jorat western Broye). This disparate
distribution is due to the patterns of observation. Data from InfoFlora is very heterogeneous,
many species, especially the more frequents, are underrepresented, because not part of an
inventory like biodiversity monitoring or protected areas. Areas near inhabited zones, places
of interest or leisure time are more frequented and species are more surveyed. Once the

predictors have been selected, suitable explanatory factors had to be chosen.

3.3 Selection of Predictors

For the predictive modelling of species richness, a set of suitable predictors (or explanatory
variables) needs to be selected. They should be able to explain the actual distribution of species
but also future shifts under changing climate and land use management. An overview of all
factors influencing the geographical distribution of plants is given in Figure 4. For this study,
a subset of different parameters was selected, in order to explain the presence and abundance
of species in the study region. The set of predictors is composed by variables reflecting
topography, climate, soil, and land use conditions in the Broye catchment. The complete initial
set of predictors used in this study is shown in Table 1. They are given in form of digital raster
data sets at different spatial scales (Table 1). We decided to work with this type of data because
it is easily available and already prepared for applications without the need for additional
homogenisation and computational efforts. They are provided by different secure and proofed
sources. From this initial set of variables, a more specific selection was compiled during the

data processing (chapter 3.4)
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Figure 4: Conceptual framework for relationships between resources, direct and indirect

environmental gradients and their influence on growth, performance and geographical

distribution of vascular plants. Green circled are the categories of factors adopted in this
study. (Mod et al., 2016 adapted from Guisan & Zimmermann, 2000

VARIABLE DESCRIPTION [unit] SOURCE

Height [m G.M] Swisstopo (2001)
Slope [%] Swisstopo (2001)
Aspect ] Swisstopo (2001)

Annual and seasonal Temperature [°C]

MeteoSchweiz (2016)

Annual and seasonal Precipitation [mm]

MeteoSchweiz (2016)

Nitrogen load in soil [kg/year]

BAFU (2015)

Phosphorus load in soil [kg/year]

BAFU (2015)

Soil Suitability for cultivation [1: very low — BFS (2012)
4: very high]

[0: very high — 6: very low] BFS (2012)
[0: very high — 6:very low] BFS (2012)
[0: very high — 6:very low] BFS (2012)

Distance to water bodies [m]

BAFU (2013)

Distance to buildings [m]

BAFU (2013)

1) Different crop shares [%] of the arable
land per grid cell

2) Share of extensive and intensive meadow
(sum = 100%) per grid cell

3) Share of extensive and intensive pasture
(sum = 100%) per grid cell

BLW (2015)

Arealstatistik in area Classes and Groupings
(m?)

(see Annex 2 for classes)

BFS (2016)

Table 1: List of environmental variables, given as raster data from different sources
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The main set of variables in Table 1 includes some of the major driving forces for the
distribution of the species. The digital elevation model (DEM) contains information about the
elevation of each grid cell and provides the basis for the computation of height, slope and
aspect. This are indirect predictors because they have no direct physiological relevance for the
plants. Topography is strongly related to the climatic variables temperature and precipitation.
Therefore, height can be used as approximation for these two climatic variables. In contrast to
elevation, Temperature is a direct predictor, affecting directly the physiology of the plants
(Mod et al., 2016). Information data about temperature (average) and precipitation (sum) is
given in the form of seasonal and annual mean. The following predictors representing aspects
of soil conditions, are variables that influence the natural resources of the plants which they

need for growth (i.e. nutrients, water availability).

Figure 3 showed the heterogenous distribution of observation points, which were concentrated
around cities and lakes. This is probably the effect of the observation bias, it means species are
more probable to be recorded near places where people are likely to be. It is possible to account
for this effect, by modelling presence data as function of known observer variables (Warton et
al., 2013). Here, distance to buildings was integrated into the set of variables as observer bias

variable.

The different types of agricultural management are given in percent values. Important for this
study is the proportion between extensive and intensive meadows or pasture. The two grassland
management types differ mainly in terms of fertilization (extensive: none; intensive: mostly
nitrogen as manure or compost) and cultivation regimes (extensive: 1-2 cuts per year; intensive:
4-6 cuts per year). The last category in the list of predictors consist of a classification of 72
land use types (see Annex 2) provided by the Swiss Areal Statistics (BFS, 2016).

3.4 Data Processing

After the selection of the raw data, multiple steps of data processing were required to ensure
the applicability of the linear regression model. First, the relationships between the single
species and the variables were analysed. A big portion of the species have been rarely observed.
Moreover, some more frequent species did not show enough observations in order to model
the distribution of the individual species. The correlations between single species observations
and predictors were not satisfactory. This excluded the option to apply the cumulative approach
which would have been also very time consuming for such a big data set. Therefore, modelling
the species richness with the macroecological approach, was considered to be the best option.
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To do so, the plants were grouped by similar biotic characteristics which increased the

correlations.

As reference for the grouping we use the ecological indicator values from Landolt et al., (2010)
consisting of a set of ecological and biological properties of plants. It resulted difficult to build
coherent groups by including all the ecological indicators, therefore, a manual merging was
conducted by dividing the species into 9 guilds (group of plants with similar ecological niche)
only based on soil-related properties: humidity and nutrients availability. It was decided to not
include the climatological factors for defining the guilds, because on average, these values were
supposed to not vary significantly over the Broye region. The complete list of species divided
in guilds can be seen in Annex 1. As the guilds 3, 6, 8 and 9 showed the lowest number of
species observations, only the guilds 1, 2, 4, 5 and 7 were used for the analysis. At the same
time, these guilds were the ones with the most contrasting humidity and nutrient values. The

final guilds used for the modelling process are listed in Table 2.

Guild 1 (moist & nutrient poor) Guild 2 (moist & nutrient rich)  Guild 4 (dry & nutrient poor) Guild 7 (fresh & nutrient poor)
Anthoxanthum odoratum L. Bromus secalinus L. Carex flacca Schreb. Acinos arvensis (Lam.) Dandy

Carex buxbaumii Wahlenb. Caltha palustris L. Clinopodium vulgare L. Briza media L.

Carex hostiana DC. Carex appropinquata Schumach. Daucus carota L. Bromus erectus Huds. s.str.
Eriophorum angustifolium Honck. Carex elata All. Gentiana germanica Willd. Centaurea scabiosa L. s.str.
Gentiana pneumonanthe L. Carex otrubae Pedp. Luzula campestris (L.) DC. Euphorbia cyparissias L.
Gymnadenia conopsea (L.) R, Br, Carexvesicaria L. Luzula multiflora (Ehrh.) Lej. Helianthemum nummularium subsp.

Cyperus fuscus L. Ononis repens L. -obscurum (Celak.) Holub

Lathyrus palustris L.
Euphorbia palustris L.

Misopates orontium (L.) Raf. . ) Orchis militaris L. Hieracium pilosella L.
Molinia arundinacea Schrank :yper!cum hurr;n‘usum l[ Orchis morio L. Hippocrepis comosa L.
Molinia caerulea (L.) Moench ypericum perforatum L. s.str. Primula veris L. s.str. Onobrychis viciifolia Scop.

Hypericum tetrapterum Fr.

Ononis spinosa L. s.str.
Kickxia spuria (L.) Dumort.

Ophioglossum vulgatum L.

Parnassia palustris L. Knautia dipsacifolia Kreutzer s.str. Guild 5 (dry & nutrient rich) Ophrys apifera Huds.
Polygala amarella Crantz Lathyrus pratensis L. Bromus commutatus Schrad. Ophrys holosericea (Burm. f.) Greuter s.str.
Potentilla erecta (L.) Raeusch. Leontodon hispidus L. s.str. Centaurea cyanus L. Polygala comosa Schkuhr
Primula farinosa L. Leucanthemum vulgare Lam. Centaurea jacea L. s.str. Polygala vulgaris L. s.str.
Rhinanthus minor L. Listera ovata (L.) R. Br. Consolida regalis Gray Ranunculus bulbosus L.
Trifolium fragiferum L. Lythrum portula (L.) D. A. Webb Helictotrichon pubescens (Huds.) Pilg. Salvia pratensis L.

Medicago lupulina L. Knautia arvensis (L.) Coult. Sanguisorba minor Scop s.str

Ornithogalum nutans L. Legousia speculum-veneris (L.) Chaix Sedum album L.

Primula elatior (L.) L. s.str. Ranunculus arvensis L. Silene nutans L. s.str.

Rhinanthus alectorolophus (Scop.) ~ Tragopogon pratensis subsp. Stachys recta L. s.str.

Stachys palustris L. Orientalis Thymus pulegioides L. s.str.

Thalictrum flavum L. - (L.) Celak.

Valeriana officinalis L. Tulipa sylvestris L. s.str.

Vicia cracca L. s.str.

Table 2: List of species grouped in the five guilds with different moisture and nutrient habitat conditions

The number of species within the guilds varies significantly. The “dry guilds” (4 and 5)
consisted of less species than the moister ones, leading to less observations to be used for the
model. The grouping of species into guilds did not supply enough count of species per
100x100m raster cell, to achieve robust correlation between the number of species and the
predictors. Only a few cells counted more than one species per guild and therefore the
correlation between the number of species and the climatic and land use variables was

insignificant (low Pearson’s correlation). As the macroecological approach, required modelling
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the number of different species per area, higher counts per grid cell were needed. To increase
the counts and to fill gaps within the spatial coverage of the plant distribution, simple methods
of spatial interpolation are commonly used in the ecological model approaches. At the scale of
our catchment, it was reasonable to adopt the interpolation technique of assign in plants records
to larger grid cells (Ferrier, 2002). In a geographic information system ArcGIS (version 10.3.1),
the tool Fishnet, allowed to create a matrix with 1x1km cell size, which was lied over the
original floristic data and every variable was assigned to this new raster. The resulting count
values for the cells were notably higher than at the original 100x100m spatial resolution.
However, the correlation coefficients between guild counts and the predictor variables
remained rather low. As further step, all the cells without any share of meadow or pasture were
eliminated from the raster, what slightly increased the correlations. The resulting grid is
illustrated in Figure 5.

Figure 5: Raster with 1x1km cells, floristic observation data (pink points) and Broye
catchment (black line). (InfoFlora, 2017; Swisstopo, 2001)
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Since this initial set of predictors still consisted of too many variables to include them all in the
model, a selection process had to be conducted. For each of the five guilds, the selection of

predictors was based on the following criteria:

1. Variables with the highest Pearson’s correlation coefficients concerning the species
count and significant p-value (<0.05)

2. Check for multicollinearity: Remove collinear predictors with low correlations
regarding the guild counts

3. Keep only guild-specific meaningful variables — exclude clear noise variables

This results of the selection process described above were five matrices, one for every guild,
with the species presence count and the interpolated predictor variables for every matrix cell.
These data sets were ready to be integrated into a model and the selection process for the most

suitable model could be undertaken.

3.5 Model Specification

The model specification defines how the selected variables are related to another by choosing
the most appropriate functional form (Potts & Elith, 2006). The first step in the model selection
process consisted of checking the characteristics of the response variable (number of species
per cell) and its associated probability distribution (density function). As mentioned above, the
response variable is composed of count data, with no negative data. This type of data follows
a Poisson or a negative binomial distribution (Guisan & Zimmermann, 2000), for which the

best suitable statistical model had to be chosen (see chapter 2.2).

The choice of the best model should be based on the knowledge of the species and
characteristics of the available data (Pott & Elith, 2006). First, we looked at the distribution of
the response variables. Figure 6 shows the histogram of the abundances of species per raster
cell for all guilds. The most striking feature is the very high number of cells with no species
observations. The exact amount of zero cells is 2355, from a total of 3623 cells. 1268 guild
cells count at least one observation of the species of the five different guilds, which is equal to
almost half of the zeros. This is a clear evidence for zero-inflation in the dataset. Due to this
trait of the data, the focus was put on zero-inflated models. The next step was to choose between

a mixture model or a two-part model.

20



Abundance

2000-

1500-

of Cells

o

N

1000-

500-

0 10 15

N°of Species per Cell
Figure 6: Histogram of species abundance: with n° of species per

cell on the x-axis and n° of cells on the y-axis

The given floristic data consisted of presence information only and many regions of the study
area were probably not surveyed. These facts suggest insufficient knowledge about true
negatives (areas where in reality the habitat is not suitable for the species to grow). Since we
do not need to differentiate between true and false negatives but rather focus on the higher
species counts and the correlation with predictors, the use of a two-part model was decided to
be most appropriate. The output of hurdle models facilitates the interpretation of the predictors,
defining the absence or presence of species and affecting the richness (Pott & Elith, 2006).
Moreover, the interpretation is more straightforward when the effects on all zero counts are
directly modelled (Cameron & Trivedi, 1999).

In a next step, we had to choose the type of distribution to be used for the zero part and which
one for the count part of the hurdle model. The zero part modelling presence or absence, was
ordinary fitted with a binomial distribution. However, the distribution for the count part of the
hurdle model had to be defined, by choosing between a Poisson or a negative binomial.
Therefore, the single guilds have been tested for both distribution types. One criteria for the
selection of the correct distribution was based on the overdisperson of the count data. Another
selection criteria was the Akaike Information Criterion (AIC). This relative measure helps to
compare the models and corresponds to an estimation for model quality by evaluating the trade-

off between goodness of fit and the complexity of the model (Zuur et al., 2009). Other
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evaluation criteria for the model performance are the Pearson’s correlation coefficient r, which
provides an indication of similitude between observed and predicted values (perfect correlation
= +1); and the Root Mean Square Error (RMSE), which measures the difference between
observed and predicted values (Pott & Elith, 2006). For each guild, the AIC value was lower
for the hurdle model with a NB distribution than with a Poisson distribution. However, the
other evaluation parameters (Pearson’s correlation and RMSE) showed better results for the
Poisson distributed count model. By comparing the coefficients of the model, the significance
of the predictors did not change substantially between the two models. Since there were no
clear indicators for a overdispersion in the count data and as the Pearson’s coefficients for
guilds 1 and 2 showed considerably better correlations between observed and predicted values,
the hurdle model with Poisson distribution was used for the count part. Once the best model
was specified, a validation process had to be conducted to measure the quality of the fit and

evaluate its performance.

3.6 Model Validation

The high number of grid cells (3623) in the dataset allowed to apply a cross-validation. This
validation method fits the model using only a part of the data set. The dataset on which the
model is run is called training data and the subset of removed data is called testing data.
Afterwards, the model fitted with the training data was used to predict the responses for the
observations in the testing data. The comparison of the results is used as estimation goodness
(Korner-Nievergelt et al., 2015). Here, a repeated random sub-sampling validation, also
referred to as Monte-Carlo cross-validation, was applied. With this method, the separation
between training and testing data is done randomly and repeated several times. The fraction
between training and testing data is defined manually, such as for the number of repetitions
(Xu, 2004).

In our case, the fraction of training data was set at 75% and at 25% for testing data. The random
separation process was repeated 20 times. These decisions were based on the analysis of the
evaluation statistics (Pearson’s correlation and RMSE) of the predictions for the training and
validation data for different number of repetitions. For the case of less than 20 repetitions, the
average of the evaluation parameters varied strongly. From more than 20 repetitions, the mean
of the parameters remained stable (see Table 3). Afterward, the models for each guild were
reiterated 20 times with different randomly chosen training data and the average of the model’s

coefficients was used to fit the predictive models.
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After the first run of cross-validation only the predictors that were still significant (p< 0.05) for
the respective parts of the hurdle model of each guild were retained for a second run. The final
set of predictors for every guild is displayed in Table 4. In order to ensure comparable scales
between the predictors a standardisation of the remaining variables was conducted before the
last model run (scale{base}, R-3.2.5). The resulting coefficients of the models (Annex 3) allow
a relative comparison between the predictors and an evaluation of the weight of each predictor
within the linear regression model (Vittinghoff et al., 2012). The values of the coefficients vary
between -1 (negative correlation) and + 1 (positive correlation). A detailed comparison of the

different predictors is described in chapter 4.2.1.

3.7 Future Scenarios

To assess possible shifts in grassland plants richness under changing climatic and land use
conditions, the values in the input dataset of relevant predictors have been modified. After
running and validating the models (chapter 4.1) the predictors mean winter temperature and
pasture intensive were the only significant variables still present in all guilds’ models (see
Table 4). By altering the values of this predictor future scenarios could be produced (chapter
4.2.2.1).

100 | A2
80 |
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A2

Temperature change (°C)

40 f

Total global anthropogenic greenhouse
gas emissions (GtCOeqgfyear)

20 p 1+

N 0
1900 1920 1940 1960 1980 2000 2020 2040 2060 2080 2100 2070-2099 rel. 1980-2009

Year
Figure 7: Left: Three scenarios for total global anthropogenic greenhouse gas

emissions. Right: related potential temperature increase for the 30-year average
centred at 2085 (aggregated from the four seasons and three representative regions).
(CH2011, 2011)

The two future climate scenarios were represented by a mean winter temperature increase of 2
°C and 4 °C. According to the Swiss Climate Change Report (CH2011, 2011) an increase of
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only 2° C in the next 70 years would only be possible if greenhouse gases emissions were
decreasing by now, while an increase of 4° C until 2085 is probable to occur if the emissions

were to continue with the current trend.

The four land use scenarios were divided into two moderate and two extreme scenarios. For
the first two, intensive pasture was reduced by 20% and 40%. The thresholds were arbitrarily
set, but took into account feasible targets within an agropolicy context that strives for less
intensive agriculture. Two additional extreme forms of land use scenarios have been applied in
the Broye catchment: land sharing and land sparing, which are currently under discussion as
potential trade-off strategies to balance food production and biodiversity (Grau et al. 2013,
Fischer et al. 2014). The first one refers to a broad extensification of agriculture and to an
improvement of agroecosystems by expanding nature conservation into agricultural areas. The
second, land sparing, seeks to stimulate production to achieve nationwide self-sufficiency
regarding food production. Whereas intensive agriculture is concentrated in areas with fertile
soils, mild climate and sufficient water supply. Less suitable areas are supposed to become
fully protected natural hotspots.

Land use management strategies to address trade-offs between food production and
biodiversity conservation must be imbedded in a local socioeconomic context (Grau et al.
2013). In order to not only address the theoretical aspect of these extreme conservation
strategies, stakeholders in the TALE project were actively included in the production of the
scenarios and allowed to take into account the management implications. The stakeholders
presented concrete actions for a hypothetical land sharing or sparing scenario in the Broye
region, which were implemented in the modelling process. The land sharing scenario implies
an extensification of all pastures and meadows, which means that all pasture intensive present
in a cell is changed to pasture extensive use (chapter 4.2.2.2). In order to ensure high
productivity (with unlimited irrigation in the flat and suitable region) the land sparing scenario
was defined as follows: all actual meadow and pastures were intensified, the crop regions with
a slope bigger than 7.5 % and with a good soil suitability were converted to intensive meadow
and the ones with bad soil suitability were converted to forest. This leads to a general
intensification of grassland and increase in natural woods (chapter 4.2.2.2). Reflecting potential
future warming in the next decades (Figure 7) and current course of agropolicies towards less
intense managing, it was decided to combine the +2° C increase in winter and the 20%
extensification to produce a species richness prediction map for a plausible future scenario
(chapter 4.2.2.3).

24



4 Results

After fitting the hurdle model for each guild, the models were run by using the open-source
integrated development environment for R-3.2.5, RStudio (hurdle{pscl}). This chapter shows
and describes the results from the model outputs. In section 4.1, the results from the cross-
validation process are listed in order to give an estimate for the model performances.
Furthermore, the types of correlation (negative vs. positive) between the predictors and
response variables are described. Section 4.2 consists of an illustration and description of all

relevant prediction maps.

4.1 Model Performance

The average of all the regression coefficients from 20x model outputs was used to produce the
final model for each guild. To validate these models, two commonly used statistical
performance coefficients have been applied: The Pearson’s correlation coefficient r and the
Root Mean Square Error (RMSE) (see chapter 3.6). Table 3 shows the averaged validation
coefficients for the 20 randomised Monte-Carlo cross-validations for each guild.

Testing Data

r RMSE

Guild1 | 0.519 1.025
Guild2 | 0.480 2.040
Guild4 | 0.229 1.081
Guild5 | 0.274 0.810
Guild7 | 0.317 1.117

Table 3: Model evaluation coefficients r and
RMSE for the testing data of the five guilds after

a 20x Monte-Carlo cross-validation.

It is noticeable that the goodness of model performance varies between the different guilds.
The models for guild 1 (moist and nutrient poor) and 2 (moist and nutrient rich) show the
highest correlation coefficients, meaning that the predicted counts of species are in better
agreement with the observed counts compared to the other guilds. The dry guilds (4 and 5)
show the lowest coefficients with 0.229 and 0.274 respectively. Concerning the RMSE, guild
2 shows the highest value with 2.04. This suggests a rather large discrepancy between

predictions and observations. On the other hand, guild 5 shows the best results in terms of the
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RMSE (0.81). The causes for the differences in performance between the guilds can be
explained with help of the regression coefficients estimated by the models (see Annex 3), which

are described in the next sections.

Table 4 shows the types of correlations between the response variable (number of species of
the guild) and the selected predictors (environmental variables). The plus (+) stands for positive
correlations and minus (-) for negative correlations. A green symbol indicates that the predictor
is highly significant with a p-value lower than 0.001, whereas the black coloured symbols
stands for significance with a p-value lower than 0.05. The predictors above the line account

for the zero-part, whereas the ones below the line stand for the count-part of the hurdle model.

Guild 1 (moist-N.poor)

Guild 2 (moist-N.rich)

Guild 4 (dry-N.poor)

Guild 7 (fresh-N.por)

Wetlands (AS_67) Wetlands (AS_67) + Temp_Winter_mean + Temp_Winter_mean +
Temp_Winter_mean Narrow Wood (AS_51) + Slope_std + Narrow Wooed (AS_51) +
Pasture_Intensive Temp_Winter_mean + Road Green (AS_18) + Road Green [AS_18) +
N_Load_mean Waterlogging_major + Cropland + Slope_std +
Wetlands (AS_67) Dist_Buildungs_mean - N_Load_mean - Dist_Buildungs_mean -
Dispersed Wood (AS_56) Natural Meadows (AS_42) - Pasture_Intensive - Permeability_major -
Dist_Water_mean N_Load_mean - Temp_Winter_mean + Pasture_Intensive -
N_Load_mean Pasture_Intensive - N_Load_mean - Temp_Winter_mean +
Meadow_Intensive - Prec_Summer_mean +
Wetlands (AS_67) + Guild 5 (dry-N.rich) Permeability_major -
Narrow Wood (AS_51) + Temp_Winter_mean
Watercourses (AS_62) + Winter_Rape +
Waterlogging_major + Slope_std +
Dist_Buildungs_mean - Normal Wood (AS_50) +
N_Load_mean - Pasture_Intensive -
Meadow_Intensive - Prec_Autumn_mean -
Aspect_std +

Table 4: Significant predictors for the zero (above line) and count part (below line) of the hurdle model for all
five guilds. Green plus: p-value < 0.001; black plus: p-value 0.05

It may be noticed that each guild has a different amount of predictors. However, the comparison
with the model validation results in Table 3 reveals that the number of predictors has no effect
on the goodness of the model. Most of the variables are highly significant with p-values smaller
0.001. Mean winter temperature and pasture intensive management are the only predictors
present in all guilds. During the predictors selection process, mean winter temperature showed
higher correlation with the guilds, than the other seasonal temperature means. Same for pasture
intensive, which had always the highest correlation in comparison to the other pasture or
meadow shares. Mean winter temperature is present in the zero part of every model and shows
a throughout positive correlation with the presence of the guilds’ species. In guilds 4 and 7,

mean winter temperature is also significantly present in the count-part, which indicates that
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higher winter temperatures would lead to higher counts (or abundances) in these guilds. Intense
pasture management is only present in the zero-parts, resulting in a negative effect on the

presence of the species.

The variable accounting for the observational bias (distance to buildings) is only significantly
present in two of the five guilds. Whereas it is slightly negatively correlated with the zero-part
(absence of species) in both guilds, only guild 2 reveals a similar correlation with the count-
part (presence of species). Once the model performance could not be enhanced, the
corresponding significant predictors and their coefficients were used to form the linear

regression models for each guild allowing for the calculation of the prediction maps.

4.2 Model Predictions
The resulting maps are divided in two categories according to their time horizon: Maps of
predicted present distributions (chapter 4.2.1) and prediction maps for future climate and land

management scenarios (chapter 4.2.2).

4.2.1 Present Distribution

The maps with the potential present distribution throughout the study area and its surroundings
enable the identification of areas that would be potentially suitable habitats for the
corresponding species. In the following sections, the maps for every guild are described and
the visible patterns of species richness are being related to the different predictors (model

outputs in Annex 3).
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Figure 8: Species richness predictions for the single guilds (1, 2, 4,5, 7)
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4.2.1.1 Guild 1 - Moist and Nutrients Poor

Overall, the prediction map for the species of guild 1 shows only a few scattered patches
reaching higher values than two species per grid cell. Nevertheless, a distinctive pattern of high
biodiversity is present at the southern shore of lake Neuchatel, where the number of predicted
species reaches almost 30. These values are much higher than the in the rest of the prediction
area. Such high values only exist for the same grid cells of guild 2 (max. 34.293). Within the
Broye catchment, only a few cells in the highlands show an elevated number of species,
whereas the rest of the catchment the species richness for this guild is low. Around the city of
Bern, the values are slightly increasing, which is probably due to higher density of observations
(observational bias). The model of guild 1 predicts a total of 174.75 (+ 0.338) species for the
Broye region, 34.247 (or 16.38 %) less than to the total summed species observations. The
presence of the species of guild 1 (zero part) is strongly dependent on the predictor wetlands
due the high correlation coefficient of 0.6412 (see Annex 4 — Guild 1). Furthermore, the
removal of the predictor wetlands from the model led to significantly lower correlations
between predicted and observed values. The negative correlation with pasture intensive is
highly significant, meaning that the higher the share of intense pasture management gets, the
less probable is the presence of the species from guild 1. In the count part, the negative
correlation with distance to water shows the highest correlation coefficients, what is

comprehensible since moist plant habitats are usually close to water bodies.

4.2.1.2 Guild 2 — Moist and Nutrients Rich

The pattern of the moist and nutrient rich guild 2 is very similar to guild 1, although the
maximum number of predicted species is higher with values of up to 34 species per grid cell.
Nevertheless, the highest values are also located at the southern shore of Lake Neuchatel.
Within the Broye catchment, a zone of higher diversity spreads on both sides of the river. Some
grasslands in the highland also seem to provide suitable habitats for the species of this guild.
For the Broye region, the model of guild 2 predicts 16.56 % less total species, than have been
observed on the field (equivalent to — 100.68 +0.51 species). Overall, guild 2 has the largest
number of predictors, nine for the zero part and seven for the count part (Table 4). Again, the
predictor wetland shows the strongest correlation with the presence of species with a value of
0.846, what could explain the similarities between the patterns of guild 1 and 2. Surprisingly,
natural meadows are negatively correlated with the presence of species. This might be due to
the fact that natural meadows are mostly found within a rather steep and hilly topography,

while wet soil conditions are mostly found in flat lowlands. Since meadows and pastures are
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less presents in the lowland than in the highland, this negative correlation is reasonable.
Although the species of this guild are supposed to prefer nutrient rich habitats, the predictor
meadow intensive shows a negative correlation with the zero part, and pasture intensive is
negatively correlated the count part. This could point towards an indirect effect due to divergent
locations of the predictor and response variable. The predictor for observational bias distance
to buildings shows a significant negative correlation with the count part of the model, which
means that closely to densely populated areas the presence of more than one species from this
guild is more likely. For the zero part of the model the observer bias variable does not shows
very significant correlation, nevertheless it was included in the model, because the model

outputs did not vary in performance.

4.2.1.3 Guild 4 — Dry and Nutrients Poor

Diversity predictions for species preferring dry and nutrients poor habitats show different
patterns compared to the moist guilds. This model predicts for the the Broye catchment, the
most alike total number of species in comparison to the observations with an underestimation
of 5.45 %. Overall, the highest values are found closely to water bodies as well as generally on
south-orientated slopes (i.e. along the Jura and just north of the Lake of Geneva). The latter
pattern may be explained by the negative correlation between temperature and soil moisture.
Further evidence evolves from the fact that the predictor winter mean temperature is
significantly correlated with the zero and also the count part of the model. The surprisingly
larger area with greenish colours (compared to guild 1 and 2) indicating high species
abundances needs to be interpreted carefully. This effect is mostly due to a change of the scale,
which only varies between 0.2 and 2.5 species per grid cell. As guild 4 only includes 10 species,
the number of species could be too low for the usually very diverse dry and nutrient poor
grasslands. Therefore, the low predictions may reflect the scarce representation of this guild.
The higher species richness around lakes and rivers is most probably due to different reasons
than for the moist guilds 1 and 2, since wetland and distance to water are not present in the set
of correlated predictors. Slope correlates positively with the zero part, because in steeper
meadows and pastures water may drain and wash out the nutrients. Hence, highly diverse dry
meadows (Trockenwiesen) are often found on steep terrain, where cultivation is not profitable.
Nitrogen load is the second predictor affecting species abundance by a strong negative
correlation. Therefore, the greenish areas in the map are supposed to be the ones with lower

nitrogen inputs.
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4.2.1.4 Guild 5 - Dry and Nutrients Rich

The distribution pattern of guild 5 does not substantially differ from guild 4, although a
different set of predictors is used for the models (Table 4). In comparison to guild 4, the
predicted values are even lower, with a maximum of 1.58 and Figure 8 (Guild 5) shows overall
more greenish and less reddish cells. Since the range of predicted values is smaller, it is also
more probable that a cell plot takes a rather greenish colour. For the Broye region, the model
predicts relatively high values over a big portion of the area with a maximum in the western
central part (around Moudon). The underestimation of predictions in comparison to
observations is 14.52%. Although slope shows the highest correlation coefficients in the zero

part, increased levels of nutrients cannot be explained by drainage processes.

4.2.1.5 Guild 7 — Fresh and Nutrients Poor

Guild 7 is composed by species that have no preference for either dry or moist conditions
(“fresh”), but that grow on nutrient poor soils. Nevertheless, the patterns of species richness
distribution are more similar to the dry guilds. The more diverse regions are generally located
around lakes, rivers, and cities but also on the slopes just north of Lake Geneva. The model
predicted for the Broye catchment 58.08 +£0.3 less species than the total observed amount. Guild
7 includes predictors previously seen in the regression models of the moist (narrow wood,
distance to buildings) and of the dry (slope and road green) guilds or in both (winter
temperature, pasture intensive). Additionally, permeability (the capacity of the soil allowing
for water to pass through) is negatively correlated to the zero and count part of the model.
Therefore, the species from guild 7 seem to prefer less permeable soil textures like loam or

clay.
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4.2.1.6 Absolute Sum

In order to make inferences about the total species richness of the study area, the predictions
of the five guilds were merged into a new map by summing up the absolute number of predicted
species of every grid cell. The resulting map (Figure 9) includes the predictions of all five

guilds species as well as all the observation points of the plants survey (black dots).
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Figure 9: Absolute map: Sum of current species richness predictions of all guilds and observation points
(black). (InfoFlora, 2017)

The number of predicted species per grid cell varies between 0.466 and 65.115. The regions
with highest values are again situated along the southern shore of Lake Neuchatel. Moreover,
the distinct pattern of enhanced species richness around populated areas and waterbodies points
towards a dominating effect of the observational bias despite the removal attempts during the
modelling process. A second explanation originates from the higher weight in the total sum of
the two moist guilds (overrepresentation), since they account for more species and show higher

32



correlations than the other models. Within the Broye region, the intensively managed lowland
in the northern part with less grasslands shows rather low species numbers. Along the river
itself and towards the southern part, the number of species increases. In the highland, the same
patches with high counts as in guild 1 and 2 appear. This map of absolute numbers may help
to give an impression about the species richness, but is not very representative for the ecological
value of the patterns because it does not allow making inferences about the detailed species
composition of each grid cell. Furthermore, the guilds with higher maximum numbers of
projected species are overrepresented.

4.2.1.7 Standardized model predictions
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Figure 10: Standardized map of summed current species richness predictions.

VB

In order to face the above-mentioned bias probably originating from the overrepresentation of
the moist guilds, the predictions were standardized. Therefore, the predicted average value of
each grid cell was divided by the maximum of predicted values of each guild. The resulting
scale of each guild ranged from 0 to 1, which allows for a direct comparison of the different
guilds. For example, the value 0.5 means that half of the potential number of predicted species
of a specific guild is present in that cell. These values are referred to as “Guild Levels”. Figure
10 illustrates the sum of the standardized values from each grid with a potential scale ranging
from O to 5.
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One may still recognize distinct patterns around rivers and lakes, although weaker than in the
absolute map. Therefore, the effect of the observational bias seems to be present in all guilds.
The regions with the highest guilds levels (1.5 - 2.5) are found along the northern shore of
Lake Neuchatel with some cells also on the southern shore. Other hotspot-regions are located
at the northern shore of Lake Morat and around the northern top of Lake Biel. High guild levels
are also present at the very bottom of the modelled area, namely on the northern slopes of Lake
Geneva. By comparing this map with the ones of the single guilds, is possible to attribute the
high values on the southern shore of Lake Neuchatel mostly to the moist guilds, whereas the
high numbers of species on the northern shores of the lakes (south-facing) may mostly linked
to the impact of dry guilds. For the Broye region, regions of higher values are located around
the city of Moudon to the west and a buffer zone along the river bend to the north. However,
the comparison with the observations points (Figure 10 above) indicates a possible effect of

the observational bias.

4.2.1.8 Comparison between model prediction and observation
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Figure 11: Difference between absolute map of current species richness
predictions and observed count of species per cell

Figure 11 illustrates the difference between the predicted species richness (chapter 4.2.1.6) and
the observed number of species for each grid cell. The cells with positive values are
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predominating the negative ones. Most of the blue cells are just slightly positive, this is due to
many cells having no observations at all (compare with Figure 5 or 9). This could erroneously
lead to the conclusion, that the hurdle model overestimates the number of species over most of
the modelled region, but per definition the hurdle model, does not predict zeros, but the
probability of them (formula 5 in chapter 2.2.2.2). The cells with a probability for positive
counts that outreaches the hurdle threshold will produce higher values. The darker blue cells
are regions of overestimation and the areas with darker red cells is where the model
underestimated the number of species present in comparison to the observations. The
underestimated areas, have considerably bigger margin of error, than in the overestimated (see
legend). These are some singles cells, where the model was not able to predict the high amount
of species. If we compare these results with the distribution of the observation points (Figure
5 or 9), we can recognise that areas with more observations tend to be underestimated. The
brightest cells, are regions where predictions and observations agree the most. The highest
number of species predicted ina cell is 65.115, whereas the highest number of surveyed species
per cell is 99. Regarding the Broye region, the models, predict in total about 260 less species
(-13.78 %) than observed in the region.

4.2.2 Future Predictions

In order to evaluate the impact of future climatic changes and potential land management
strategies on the species richness of grasslands within the study area, six different scenarios
were applied to the five guilds ‘models. The sum of the predictions (as for the absolute map in

chapter 4.2.1.6) are displayed in the next sub-chapters.
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4.2.2.1 Climate Scenarios
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Figure 12: Species richness predictions for potential future mean winter temperature increase of 2° C (left) and
4° C (right). [n° of species]

As illustrated in Figure 12, an increase in mean winter temperatures would generally lead to an
increase in the absolute number of predicted species (max number of species respectively
72.556 and 105.561). In contrast to these substantial increases concerning the absolute number
of species, the spatial distribution patterns remain more or less stable. Compared to the model
predictions for the present situation (Figure 9), the total number of species increases by 65.73%
for the +2° C scenario and by 89.86% for the +4° C scenario. However, an increase in mean
winter temperatures by 4° C would have a clearly stronger effect on grassland species than on
the + 2° C scenario, which reflects the linear relationship in the model of this predictor with
the species richness. Given that temperature winter mean is only significantly present in the
count part of the model for guild 4 and 7 (Table 4), species growing on rather dry soils with
low nutrient concentrations would probably profit the most from an increase in winter

temperatures.
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4.2.2.2 Land Use Scenarios
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Figure 13: Species richness predictions for 20% (left) and 40% (right) extensification of pastures [n° of
species]

The first two land use scenarios describe a moderate conversion of intensively managed pasture
to a form of extensive management. For the scenarios of 20% and 40% extensification, the
absolute sums of predicted species do not increase as significantly as for the climate scenarios.
In the Broye catchment, an extensification by 20% would lead to an average increase of
21.35%. For the scenario of a stronger extensification (-40%), the number of species increases
by 36.94%. The small differences regarding the two scenarios may be explained by the absence
of the predictor pasture intensive in the count part of the models of all guilds. Therefore, this

variable accounts only for the presence or absence and not for the amount of species.

The “extreme” version of the previous scenarios, would be to change all pastures from intensive
to extensive management (100% extensification), this is represented here by the land sharing
scenario (Figure 14). The species richness is predicted to increase in some specific patches
along some northern parts of the Broye river. In the highland, the number of species is generally
much higher, which is probably due to the higher share of grasslands compared to the lowland.
Therefore, the highland, some parts of the river surroundings, and the area around the river
estuary seem to profit the most from a rigorous reduction of intensive grassland management.
According to this model, an overall extensification of meadows and pasture in the Broye, would
lead to an increase of 60.88% in total species.
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In accordance with its definition, the predictions for the land sparing scenario show a less
homogeneous picture compared to the land sharing scenario. There are no large areas with high
species richness, but rather single scattered patches or pixels. The maximum values are lower
than for the land sharing scenario and areas of poor diversity are much more pronounced. An
intensification of the grasslands in the Broye region as defined by the land sparing scenario
(chapter 3.7) would lead to a 14.57% decrease in total species. The focus of the conservation
efforts is set on forests, which do not directly promote a higher diversity of grasslands plants.
An interesting feature evolves from the several green patches along the river within the
intensively cultivated region in the north, suggesting that in the context of a land sparing

scenario it might be profitable to create protected areas close to the Broye river.
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Figure 14: Species richness predictions for a land sharing (left) and land sparing (right)
scenario (Broye).

4.2.2.3 Combined Scenario

In order to evaluate a plausible combination of rather moderate climate and land use scenarios
within the next decades (i.e. until 2050), the effects of an increase in mean winter temperature
by 2° C as well as an extensification by 20% on the species richness of grasslands were
combined. The general increase in species richness is 70.96%. This result was expected due to
the combination of linear effects of the positive correlation with winter temperature and the

negative correlation with intensive pasture.
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For the assessment of specific regions that would profit the most from a less intense pasture
management combined with a warmer winter temperatures, the differences between the
combined future scenario and the present predictions (absolute sum in chapter 4.2.1.6) were
calculated and illustrated in Figure 15. The zones that would increase the most in species
richness, are mostly regions with already high diversity (compare with figure 9), like at the
northern shore of lake Morat, near the lake Geneva, some cells around lake Neuchatel and the
upland in the Broye. These are regions mostly occupied by the dry guilds. It could be
interpreted, that a warmer climate and less intensive pastures, would increase significantly the
number of dry-loving species in regions where they are already have suitable habitat. These
regions, provide already a hotspot for biodiversity and will probably remain diverse if no
additional land use activities. Thereby and are therefore worthy to conserve. The greener areas
in the southern part of the Broye region and the pre-alpine zones, are the areas where species
richness in pastures and meadows would profit the most and therefore a less intense land

management could be profitable.
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5 Discussion
The following chapter consists of an interpretation and discussion of the methodological

aspects of the study as well as the resulting findings. Following the research questions posed
in the introduction, outcomes, strengths, and limitations of the study are being critically

discussed and set into context with available literature.

Which climatic and land use factors affect current biodiversity patterns of grasslands
within the Broye catchment, and is it possible to predict them with a statistical modelling
approach?

Using a simple statistical model like the two-part hurdle model (Pott & Elith, 2006; Zeileis et
al. 2008; Zuur et al. 2009;), it was possible to assess different climatic and land use factors
affecting current species richness of grasslands at catchment scale. The current distribution of
different guilds consisting of sets of species with similar preferences in terms of nutrient and
water supply, was modelled to identify spatial patterns of species richness. The hurdle model
allowed distinguishing between predictors accounting for the presence as well as for the count
of species. The number and composition of predictors varied among the different guilds (see
chapter 4.1). The results indicate that the models for the moist guilds performed better and the
predictions showed overall higher counts than the ones for the dry guilds (see chapter 4.1 and
4.2.1). While the models for the dry guilds produced lower abundances of species, the potential
habitats covered a larger area (see chapter 4.2.1.3, 4.2.1.4 & 4.2.1.5). By merging the
predictions for all guilds, it was possible to identify regions within the Broye catchment
offering potential habitats for the selected grassland species (chapter 4.2.1.6 / figure 9).
Although the estimated species richness was generally lower in the lowland compared to the
highland, some areas along the river also showed exceptionally high numbers of species within
the intensively cultivated areas. These results on one hand highlight the potential of the
presented approach regarding the analysis of relationships between selected environmental
factors and species richness. On the other hand, the predictive capacities of the models were
not fully satisfactory, and therefore the modelling approach as well as the data selection and
processing steps need to be revised for further improvement.

Among the three different aspects of biodiversity (see figure 1), the focus of this study was set
on species richness. Considerable problems regarding the assessment of the overall species
richness in agricultural landscapes can be avoided by using particular taxa as indicators for

general biodiversity (Billeter et al., 2008; Herzog et al., 2012). The richness in vascular plants
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was identified to be a good general indicator for biodiversity (Duelli et al., 1999; Peters et al.,
2016), and grasslands offer suitable ecological traits to assess simultaneously the effect of
climate and land use changes on biodiversity (Pearson et al., 2004; Shoyama & Yamagata,
2014; Schirpke et al., 2017).

Using a selection of species as indicator for biodiversity requires the existence of empirically
collected data with sufficient spatial coverage (Ferrier, 2002). Such species surveys are getting
more precise and cover larger areas thanks to digitally based platforms like InfoFlora, where
everyone may contribute to the sampling. However, a considerable part of the information is
still unknown for most regions (Peters et al., 2016). In case of the Broye region, the available
species distribution data revealed some limitations: The accumulation of observations around
densely populated areas was attempted to be taken into account by introducing the variable
distance to building. However, the removal of this observational bias was not fully possible
and was visible in the prediction maps (chapter 4.2). This source of error is a common problem
for ecological modelling approaches using survey data recorded by volunteers (Morrison,
2016). Different solutions to overcome sampling biases have already been proposed: Stolar &
Nielsen (2015) suggest a sample weighting term estimated as the inverse of probability of
sampling, and Bird et al. (2014) introduced alternative modelling approaches (i.e. mixed-effect
and hierarchical models). A second limitation regarding the raw data is the missing information
about true negatives. Presence-only data is a very common characteristic of directly surveyed
biological data sets. In this study, a zero-inflated model was applied, but other approaches, i.e.
pseudo-absences, could have been implemented for the type of data used in this study. This
method, in case a species has not being observed at a certain location, where others are, the not
surveyed species is treated as absent, true negative (Ferrier & Guisan, 2006; Pearce & Boyce,
2006). A third, possible constrain of the raw data is the autocorrelation between the observation
points. If this effect of similarity in characteristics of two elements been located near to each
other, is reproduced in the residuals of the model, it can affect the modelling results, in general
causing overestimation (Dormann et al., 2007). In this study, the presence of this bias was not
tested.

In the presented modelling approach, guilds of similar species were formed to enhance the
correlations between the species and environmental variables. Moreover, this allowed
producing species counts that were not given by the raw presence-only data. The resulting
guilds were created manually based on only two ecological indicator values (moisture and

nutrients). However, the ecological niche of a specific plant includes many other variables than
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just the availability of moisture and nutrients. This might be the reason why the spatial patterns
of the guilds did not fully correspond to the topographical distribution of their traits. In regions
with high concentrations of observations, species of multiple guilds were present. This suggests
that grouping the indicator species with respect to only these two variables was not sufficient
to allow for a distinction between the different habitats. Alternative approaches for the
grouping of species (i.e. in community types) could have provided better results than in
functional groups (guilds) (Guisan & Rahbek, 2011; D’Amen et al., 2017).

The unique characteristic of this study was the attempt of modelling directly the number
(abundance) of species by relating it to available environmental predictors. The floristic data
was processed without reaching satisfactory amount of species counts per grid cell. Given the
characteristics and quality of the raw data, which not allowed to build sufficient abundance
data, a binary model, where the probability of presence of species is modelled instead of the
abundance, may be more suitable (Ferrier & Guisan, 2006; Bird et al., 2014; Stolar & Nielsen;
2015). This could have been implemented in a macroecological approach without losing its
benefits: The potential presence or absence of the guilds is modelled by using a GLM or GAM
in order to generate distribution maps of the guilds consisting of the probability of occurrence
for each grid-cell (Guisan & Zimmermann, 2000; Zuur et al. 2009). By merging the different
distribution maps into one, it would be then possible to identify the cells with highest
probability of occurrence for all the guilds. In case the ecological value of each guild would
have to be investigated, grid cells could be assigned to the guild with the highest predicted
probability of occurrence (Ferrier et al., 2002). A second commonly used type of modelling
within the macroecological approach is to fit a single model to all guilds simultaneously by
using a classification by regression trees (e.g. random forest or BIOCLIM). By the use of a
recursive portioning technique generating discrete environmental rules, the grid cells are then

assigned to the different communities (Ferrier & Guisan, 2006).

The models’ outputs were than used to produce distribution maps of species richness for every
guild. Due to the guilds’ model quality (Table 3), the different spatial distribution and diverging
maximal number of predicted species per cell (chapter 4.2), it could be distinguished between
two groups: moist and dry guilds (including guild 7). Moist guilds showed better model
performance and higher maximal predicted values in comparison to the dryer ones. The high
number of total predicted moist species could be attributed to the fact that these guilds were
originally composed by higher number of species (Table 2). However, guild 7 is composed by

more species than guild 1 and the maximal predicted value is merely 3.567. This could let
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deduce that in the models of the moist guilds a correlation with some predictor is causing high
predictions Indeed, by analysing the models’ coefficients (see Annex 3), it emerged that
wetlands have the strongest correlation of all guilds models’ coefficients. This is in accordance
with Steinmann et al. 2009, where they compared two modelling approaches and for both it
resulted, that perennial plants richness in wetlands of Switzerland where the best predicted and
resulted in high local abundance. The moist species require specific habitat conditions to grow,
which are found in floodplains and moors. In Switzerland, these habitats are relatively well
protected and inventoried (BAFU & BLW 2013). This would explain the observation pattern
on the southern shore of lake Neuchatel (see Figure 5). Wetlands account mainly for the zero
part of the moist guilds’ model; other variables show higher correlations for the prediction of
counts. For guild 1, distance to water is apparently a driver for higher counts, while in guild 2
(nutrient rich), intensive agriculture (intensive pasture and nitrogen load) leads to higher
number of species. The variable narrow wood has a significant positive correlation with
presence and count of guild 2. What is leading to this relationship is unclear. Marchand &
Houle (2006) and Bailey et al. (2014) analysed the variation in species richness as a function
of distance to forest edge in temperate southern Quebec, Canada. They found, that soil moisture
and organic matter were higher at the edge than in the forest interior. These conditions would
promote growth of guild 2. They also detected that plant species richness decreased with
distance to the forest edge. These finding are possible explanations for the detected correlation

of species richness with narrow wood in our model.

The models of the dry guilds have more predictors representing the absence/presence process
than the count. Road green, cropland (guild 4) and winter rape (guild 5) have a positive
correlation in the zero part. These predictors could be an effect of observation bias, explained
above. Observations of plants are more probable to occur near roads and farmers must survey
species, if they seek direct payments. Low number of predicted species in guild 4 and 5 are
probably caused by insufficient predictors for the count part of the hurdle model (Table 4)
ans/or by the low number of species representing them (Table 2). The inclusion of additional
variables, could have improved the performance of these models. For example, the presence
and intensity of herbivories could be worthy to integrate, since it has a strong impact on the
habitat of dry grassland species (Zulka et al. 2014; Moore et al. 2015).

The sum of all guilds’ predictions, was used to display the total species richness in the study
area (Figure 9). Generally, regions with more observations points coincide with the cells with

higher predicted species richness. This indicates that the observation bias could not
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successfully be removed during the model processing and it is affecting all guilds predictions.
Hence, it is difficult to identify present valuable biodiversity hotspots. An attempt to highlight
more valuable regions was done by standardising the predictions and trying to identify potential
areas of occurrence for multiple guilds simultaneously, also described as functional diverse
regions. Functionally diverse communities have more stable ecosystem functioning, and are
resilient against stress or shock and are less likely to change their behaviour (Allan et al. 2011,
Laurila-Pant et al. 2015). In the Broye region, these ecological valuable areas, where identified
on the western part of Moudon and direction north along the river shore (Figure 10).

What is the effect of future changes regarding climatic drivers and land use practices on
patterns of species richness?

The models of every guild, where run with modified datasets to produce species richness
distribution maps for two future climate scenarios and four land use scenarios. The result of
these models showed that warmer winter temperatures strongly increased the number of species
in the region. Extensification of pastures had a clear positive effect on the number of species
but only if implemented wide-ranging on all grasslands (land-sharing). The land-sparing
scenario applied in this study, caused fragmentation of species richness and a significant

decrease in total species amount.

The climate scenarios applied in this study (i.e. increasing the mean winter temperature by 2°C
and 4°C) are a very simplified form. They do not take into account other aspects of climate
change which also affect species richness, such as changes in precipitation patterns or extreme
events (Theurillat & Guisan, 2001; de Chazal, 2009; CH2011, 2011; Bellard et al. 2012, Oijen
et al. 2017). Only winter temperature increase is not a full representation of complex future
climate in Switzerland and possible side-effects caused by an increase in temperature in winter,
cannot be observed in these results. During the last 50 years the average temperatures in
Switzerland increased while winter and spring precipitation decreased. This led to shifts in
species distribution and composition, e.g. short-living and drought resistant species increased
significantly (BAFU, 2017). Near the alpine region, warm-loving species tend to expand into
higher altitudes (CH2011, 2011; Bellard et al. 2012). This may partly explain the higher
increase rate of species richness in the upland of the Broye catchment in comparison to the
lowland (Figure 12). However, through the predicted number of species, it is not possible to
analyse the future composition of the species and the functional diversity, but only analyse the
estimated total number of species. Bihler & Roth (2011) assessed the current trend in grassland
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vascular plants richness and dissimilarity (difference in composition between two sites) in
Switzerland for the time periods 2001-2004 and 2006-2009. They found an increase in species
richness but a decrease in dissimilarity which suggests a local-scale homogenization of
grassland due to the spread of the more common species adapted to high nutrients and moderate

temperature levels.

Cumulative and macroecological approaches assume that species are in a state of equilibrium
(static) with the factors that determine their distribution, but group of specie (guilds or
communities) are not moving as an entity under changing climatic conditions (D’ Amen et al.
2017). With the macroecological approach it is not possible to simulate the individualistic
behaviour of species, e.g. migration, seed dispersal, migration and adaptation (Guisan &
Zimmermann, 2000; Latimier et al. 2006). By including these properties, as well as between-
species interactions in the modelling process should improve the prediction in community
shifts. Under this aspect, the cumulative approach is more suitable, because it is capable of
taking into account responses as well as migration rates of different species (Ferrier & Guisan,
2006).

Of the four land use scenarios applied, three were different shares of extensive vs. intensive
pasture. Under the moderate scenarios, with 20% and 40% extensification the species richness
increased overall in the study area, but not as strong as for the temperature increase scenarios.
The spatial pattern remained almost the same, as for the total current prediction map (Figure
9). In the land sharing scenario, all intensive pastures were converted into extensive ones
(Figure 14 — land sharing). Here, a much clearer spatial pattern could be observed, with high
number of species in the upland, probably due to more grasslands, and less species in the
lowland. In contrary, the land sparing scenarios led to overall fewer species then the sharing
scenario and no spatial subdivision could be observed. The scenarios proposed by the
stakeholders were simplified into few criteria, in order to easily shape the dataset. Some other
more precise aspects of the scenarios, could be integrated in the model (e.g. buffer zone around
river, hedges, etc.) to produce more detailed prediction maps. Especially for the land sparing

scenario, the results would probably show higher number of species.

In the research field of conservation biology, it is still highly debated, which strategy should
provide the best results (Fischer et al. 2014, Barral et al. 2015). Land sharing would probably
imply lower food production and only an extensification of grasslands could be insufficient to
protect species, because conservation should achieve a network of high-quality grassland
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patches (Zulka et al. 2014). Land sparing would maintain constant food supply, but not provide
fundamental interconnections between biodiversity hotspots. In addition, a community with
low species richness, but composed by rare species is as important to protect as hotspots with
a high number of species (Marchese, 2015).

Is it possible to identify potential regions for conservation or agricultural extensification?

The results produced by this study, do not allow to define clear and reliable present and future
hotspot biodiversity regions. The different causes, where discussed in the previous sections. To
predict such an output would require additional information about the species distribution in
the region and maybe adopt another modelling approach. Spatial differences in species richness
could be observed within the Broye region, mainly between the intensively managed lowland,
which in average had lower species richness through all scenarios and the upland in the south.
Based on what emerged from the stakeholders’ scenario and the local management strategies,
the land management strategy in the Broye region would be a combination of the two extreme
scenarios presented in this study. However, the current trend is more toward a land sharing
strategy, dictated by new measures (e.g. direct payments) promoting less intensive agriculture,
while areas of intensive cropland (e.g. in the fertile lowland) and natural reservoirs (e.g. along
river, forests) would be maintained or extended. Extensification of agricultural management
would mainly take place in the upland and this would be supported by the results of this

master’s thesis.
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6 Conclusions and Outlook

6.1 Summary and Conclusion

This study aimed at predicting future biodiversity hotspots, under climatic and land use changes
within the Broye region. Loss of biodiversity is mainly caused by anthropogenically driven
environmental changes. Among the major sources of pressure are climate change and
intensification of agriculture (Secretariat of the Convention on Biological Diversity, 2014). To
stem the persisting decrease in species richness it is important to understand the reaction of
biodiversity to such changes. As shown in this study, statistical modelling represents a helpful
tool to investigate these interactions. Biodiversity has been modelled for an agroecosystem at

regional scale, with integration of both climate and land use predictors.

For the Broye catchment, the application of a statistical hurdle model technique allowed to
recognize significant interactions between the species richness in grasslands and a selection of
environmental factors. Common and rare grassland species of the region were selected and
used as biodiversity indicators. These were merged into five guilds according to their
preferences in moisture and nutrients availability. The combination of predictors and the
strength of interactions varied between the five different guilds. For the two moist guilds the
model performance was better than for the dryer groups. By merging the predicted distribution
maps of all guilds it allowed to recognize spatial patterns of potential grassland species
richness. However, the results could not be efficiently uncoupled from the observation bias,
which influenced the distribution maps of all guilds. Therefore, the spatial patterns did not vary
substantially in the single guilds and in the summed maps. Nevertheless, future changes in
grassland plant species richness could be modelled by changing significantly correlated
predictors. Mean winter temperature was increased to predict species richness under two
scenarios of warmer climate. Furthermore, four land use scenarios (two levels of pastures
extensification, a land sharing and a land sparing scenario) were implemented to assess the
impacts of different agriculture management on grassland plants richness. An increase in winter
temperature considerably increased the number of species. On the other hand moderate
extensification of pastures did not show a high increase in species abundance. For the extreme
land use scenarios, land sharing and land sparing, the first one demonstrated higher count
values over an extended area; while for the second one the number of predicted species
decreased, with exception for a few patches. To identify potential biodiversity hotspot regions
that could be particularly worthy to be protected or extensified in the next 30 years, a combined

scenario, with a 2° C increase in winter temperature and a 20% extensification of pastures was
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applied. The results suggested that the actual spatial pattern of regions with high species
richness would remain more or less stable. For this future scenario, the upland of the Broye

catchment would profit the most in terms of total amount of grassland species.

Although biodiversity is too complex to be modelled as a single entity, this study showed that
some aspects of it, with regard to specific species in particular habitats can be analysed by
simple statistical approaches like a general linear regression model. However, this depends on
the existence of reliable observation data which is not always available. The combination of
bioclimatic, edaphic and land use variables can improve the model performance compared to
a pure bioclimatic model (Pompe et al. 2008). The correlations between environmental factors
and species richness can be analysed with a linear regression model, while understanding the
complex interactions which cause actual and future shifts in grassland biodiversity of
agroecosystems requires more precise data and may a different methodical approach.
Biodiversity conservation strategies are imbedded in local socioeconomic contexts. Modelling
at a regional scale can help to better understand the relevant environmental processes. To
predict and identify potential future biodiversity conservation areas, involving local
stakeholders in the definition of future land use scenarios, can improve the applicability of the

results.

6.2 Outlook

Biodiversity is the basis of many ecosystem services. Biodiversity-ecosystem functioning
relationships are affected by the number and identities of species, with species rich
communities tending to perform better than species poor systems (Allan et al., 2011; Laurila-
Pant et al., 2015; Oijen et al. 2017). Predicting spatial patterns of species richness remains
challenging (D’Amen et al., 2017). Coarse and unsystematically surveyed biological data do
not provide a reliable assessment of species distribution and of conservation areas across a
landscape (Mossman et al., 2015). More collection data from all types of habitats will be
required in the future to enhance the predictive capacity of biodiversity models. Improvements
have been achieved with regard to integrating collection data from the field with remote-sensed
data (Ferrier et al. 2017). To achieve more efficient regional conservation strategies in
agroecosystems, more efforts should be put on improving biodiversity modelling at a landscape
scale (Billeter et al., 2008). New methods that consider multiple aspects of biodiversity could
help to provide new insights into the mechanisms that determine the current patterns of

biological diversity (Marchese 2015). Modelling interactions between climate change,
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biodiversity and agricultural productivity could benefit from integrating different modelling
approaches across different spatial scales (Oijen et al.; 2017). There is still a huge margin of

improvement and very high potential available for biodiversity modelling in the years to come.
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Annex 3

Guild 1 - zero

p <0.05

estimate_mean | std_mean p_mean

(Intercept) -2.1998 0.0675

scale(AS_67) 0.6412 0.0942
scale(Temp_Winter_mean) 0.2749 0.0677
scale(Pasture_Intensive) -0.2721 0.0578
scale(N_Load_mean) -0.2375 0.0724 | 0.002587678
Guild 1 - count

(Intercept) 0.1455 0.0718 | 0.108421382
scale(AS_67) 0.0988 0.0081

scale(AS_56) 0.0744 0.0149
scale(Dist_Water_mean) -0.3422 0.0706
scale(N_Load_mean) -0.1875 0.0661 | 0.018545666

Guild 2 - zero

estimate_mean | std_mean
(Intercept) -1.0864 0.0480
scale(AS_67) 0.8459 0.1260
scale(AS_51) 0.1662 0.0453
scale(Temp_Winter_mean) 0.1650 0.0553 | 0.009731697
scale(Waterlogging_major) 0.1272 0.0466 | 0.012623898
scale(Dist_Buildungs_mean) -0.0867 0.0475 | 0.109465315
scale(AS_42) -0.2441 0.0677 | 0.001005215
scale(N_Load_mean) -0.3227 0.0558
scale(Pasture_Intensive) -0.2522 0.0467
scale(Meadow_Intensive) -0.2056 0.0649 | 0.004448759
Guild 2 - count
(Intercept) 0.6931 0.0325
scale(AS_67) 0.1157 0.0070
scale(AS_51) 0.1090 0.0213
scale(AS_62) 0.1157 0.0189
scale(Waterlogging_major) 0.2250 0.0213
scale(Dist_Buildungs_mean) -0.1257 0.0261
scale(N_Load_mean) -0.1713 0.0335
scale(Meadow_Intensive) -0.1648 0.0305
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Guild 4 - zero

estimate_mean | std_mean p_mean
(Intercept) -1.6258 0.0541
scale(Temp_Winter_mean) 0.3788 0.0568
scale(Slope_std) 0.2796 0.0558
scale(AS_18) 0.1478 0.0467 | 0.004033822
scale(CroplLand) 0.3093 0.1372 | 0.038869479
scale(N_Load_mean) -0.3695 0.1459 | 0.01784855
scale(Pasture_Intensive) -0.2632 0.0495
Guild 4 - count
(Intercept) 0.3179 0.0506
scale(Temp_Winter_mean) 0.1954 0.0384
scale(N_Load_mean) -0.3903 0.0522
Guild 5 - zero

estimate_mean | std_mean p_mean
(Intercept) -2.0122 0.0640
scale(Temp_Winter_mean) 0.2415 0.0642
scale(Winter_Rape) 0.3084 0.0546
scale(Slope_std) 0.3898 0.0640
scale(AS_50) -0.3833 0.0768
scale(Pasture_Intensive) -0.3335 0.0527
Guild 5 - count
(Intercept) 0.2162 0.0584 | 0.001318245
scale(Prec_Autumn_mean) 0.1424 0.0407 | 0.011333543
scale(Aspect_std) -0.2369 0.0550
Guild 7 - zero

estimate_mean | std_mean p_mean
(Intercept) -1.7883 0.0586
scale(Temp_Winter_mean) 0.3925 0.0576
scale(AS_51) 0.1309 0.0499
scale(AS_18) 0.1836 0.0481 | 0.002628109
scale(Slope_std) 0.3719 0.0549
scale(Dist_Buildungs_mean) -0.2311 0.0629
scale(Permeability_major) -0.1296 0.0495
scale(Pasture_Intensive) -0.3021 0.0507
Guild 7 - count
(Intercept) 0.4297 0.0488
scale(Temp_Winter_mean) 0.3224 0.0420
scale(Prec_Summer_mean) 0.1962 0.0503
scale(Permeability_major) -0.1556 0.0294
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