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Abstract

This master thesis addresses two cases studies with rather different initial condition. First, it
aims to establish stage discharge relations in data-sparse regions in the lower Ewaso Ng'rio
Basin in Kenya, and secondly, it proceeds to a weak point analysis along the main rivers of
the Bernese Oberland in Switzerland. Regardless of their geographical distance, for both re-
gions with their respective issues a hydrodynamic 1D simulations were conducted with the
software Basement, providing simulations of river flow based on measured cross sections.

In arid regions water scarcity is becoming a threat to more and more people. The Ewaso
Ng'rio Basin (64 000 km?), located around the Mount Kenya is subjected to increasing pres-
sure on water resources because of rising demands for irrigation, domestic purposes, and
livestock in the upper basin. In the lower basin, users suffer from even more pronounced
water scarcity, because they have secondary access to the rivers. Research on hydrological
processes is limited since gauging stations (RGS) were missing up to this study. In order to
overcome that limitation, this study aims to establish stage-discharge relations for four sites
in the lower Ewaso Ng'iro Basin by relying on newly installed RGS providing water level
data. The here developped methodological approach is adapted to the scarcely distributed
measurement equipment. To establish stage-discharge relations, the river sites were sur-
veyed with a dumpy level to collect the necessary input variable geometry, and Manning-
Strickler values for the 1D simulations in Basement (Vetsch et al., 2015b). The hydrodynamic
model is based on the Saint-Venant and Manning-Strickler equations. The stage-discharge
relation was simulated with Basement without a calibration of the model. The curve fitting
and analysis of the relation between stage and discharge was evaluated with the statistical
program R, using a non-linear model based on a power function. For all four river sites,
the survey method enabled simulations of river flows in Basement. The curve mirrored the
relations rather well with some deviations at low flow. Despite of probably high and un-
quantifiable uncertainties of data collected in field surveys, this study nevertheless provides
a first step to a more comprehensive understanding of the magnitude and timing of the river
flow in the lower Ewaso Ng'rio Basin. Further research should focus on calibrating the stage
discharge relation of the four sites.

In Switzerland, climate change is likely to increase the frequency of extreme flow events.
Hydrology has extensively been studied in terms of frequency of flood events and of weak
points along the rivers. The focus of these analyses lies on single river sections. Alterna-
tively, this study proposes to evaluate weak points based on the bank-full discharge with
associated return period at measured cross sections along the main rivers of the Bernese
Oberland. This simple approach can be applied identically to all the rivers and allows for
the first time a comparison on large scale. For each cross section along the rivers Hasliaare,
Aare Thun-Bern, Simme, Kander and Liitschine, discharges of flood events with return pe-
riods of 10, 30, 50, 100, and 300 years (HQ,) were identified. With the help of known HQ;,
HQ30, HQ50, HQ100 and HQ3p, discharge rates were calculated at the RGS stations. The dis-
charge rates were then extrapolated or interpolated over the catchment size of all the cross
sections along the entire river. HQ values for different return periods were compared at
some reference points with estimations provided by the HQx_meso_CH tool (Barben, 2001)
and the PREVAH_regHQ tool (Viviroli and Weingartner, 2012). The bank-full discharge, or
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what discharge fills the channel to the top, was evaluated for each cross section by 1D sim-
ulations in Basement for each river. The models were calibrated on the basis of measured
stage-discharge relations. The results of the estimations of HQ1¢, HQs3p, HQs9, HQ100 and
HQ30p seemed to depend on the number and the position of the RGS: the more stations and
the higher upstream, the better the estimation. Identifiable changes of the HQ, along the
river are caused by tributary inflow. Low bank-full discharge values could be identified at
single or conglomerated cross sections, and they could be backtracked to the topographic
situation. Identified weak points were mostly located along non-populated areas. Inter-
estingly, some areas with extensive construction measures against floods still exhibited low
return periods. The rather simple and time saving methodological approach of extrapolat-
ing HQ, values at the site of the RGS and of running a 1D simulation in Basement produced
results comparable with literature, though some deviations occurred. This is remarkable, as,
compared to other studies, the covered area was large and the riverbed was reconstructed
from measured cross sections. Because the model is simple and relies on available data, it
could be extended countrywide. This would further favour a better comparison between
different rivers, because results would be based on one identical methodological approach
— something that is currently lacking in today’s procedures in flood assessment. As the ad-
vantages of the model are promising, it is recommended to conduct further studies in order
to reach more comprehensive calibrations and to conduct validations.
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Chapter 1

Introduction

1.1 Background

This master thesis looks at river conveyances in data sparse and data rich regions. One case
study is located in Kenya (lower Ewaso Ng’iro Basin), and the other in Switzerland (Bernese
Oberland). They strongly differ in terms of climatic and hydrological conditions, but also
in terms of data availability. Nevertheless, one hydrodynamic model was applied to both
case study sites in order to gain a better understanding of the respective conveyances of
the rivers (Fig[L.I). The key tool is a 1D hydrodynamic model implemented in the software
Basement. ‘Basement’ is an acronym for ‘Basic Simulation Environment for Computation of
Environmental Flow’ (Vetsch et al., 2015b)). It enables the simulation of river flow based on
cross section information. Basement was adapted to the peculiarities of the two case studies.

Figure 1.1: Kenya vs. Switzerland: Merille (left), Weisse Liitschine (right)

The first case study deals with the evaluation of the procedure necessary to establish stage-
discharge relations and enables a first estimation of the channel capacities in a data and
research sparse region in the lower Ewaso Ng’iro Basin in Kenya. The project was part
of the Water and Land Resource Centre (WLRC) program of the Centre for Development
and Environment (CDE) of the University of Bern in collaboration with Centre for Train-
ing and Integrated Research in ASAL Development (CETRAD) in Nanyuki, Kenya. The
1D model provided by Basement was applied to short river sections to evaluate the water



level-discharge relation next to newly installed river gauging stations, thereby enabling the
conversion of measured water levels to the associated discharge value. The cross section
input data had first to be collected in a field campaign. The results can be considered as a
tirst approach of how to simulate river flow by establishing rating curves with a minimum
of data. In other words, this approach not only provides better knowledge about the river
conveyance in the lower Ewaso Ng'iro Basin, but it also proposes a method that enables fur-
ther investigations. However, only predictive values without calibration could be provided
so far.

The second case study is concerned with developing a weak point analysis along the main
rivers in the Bernese Oberland and the Aare upstream of Bern. The better availability of data
allowed modelling of a more data-demanding question. The aim here was to evaluate the
channel capacity of all measured cross section along the rivers of interest and to attribute
channel capacities to the associated return periods of a flood. This second case study is
associated to the ‘Model chain atmosphere-hydrology-flood-losses in the Aare catchment’
(M-AARE) project, which aims at improving estimations of extreme floods in a high spatial
resolution (MobiliarLab, 2015). Here, the hydrodynamic 1D simulation was applied along
entire rivers to evaluate the discharge capacity of the channel based on single measured
cross sections. Put in other terms, getting a grasp at the conveyance of these rivers enables
an analysis of weak points of a river. The high resolution of the cross section data and the
availability of measured water levels permitted for a calibration of the models.

Even if the two case studies differ in levels of complexity, the here joint studies could provide
answers that both in a first step satisfy their respective needs. For the drought-threatened
Kenya, the question of how much water flows through the lower Ewaso Ng’iro Basin is cru-
cial. Even if a calibration of the model could not be conducted, this case study provides a
tirst answer that may be further refined. For Switzerland, in contrast, floods are the more
pressing threat at least for the moment. If in Kenya droughts are of essentially interest,
here the risk of flood events needs handling. The here presented second case study aims at
providing knowledge of the weak points of the rivers in the Bernese Oberland. In order to
enhance the predictive quality of the model, a validation may be conducted in the future.

1.2 OQOutline

First, an introduction to the functioning of Basement will be given. In chapter2|and chapter
the two case studies and their peculiarities starting from the problem description to the
conclusion will be depicted. Finally, the gained knowledge from the two case studies will
be integrated in a final conclusion.

1.3 Software Basement: Basechain 1D

The Basement software serves as a basic-simulation-environment. It was developed by the
Laboratory of Hydraulics, Hydrology and Glaciology of the Swiss Federal Institute of Tech-
nology in Zurich (ETH). In the words of the developer: "Unlike currently used programs for
the simulation of a specific flow behaviour, BASEMENT intends the arrangement of many
different problem types with one single tool to gain an integrated understanding for the



initial position, the solution process and its results’” (Vetsch et al., 2015b). It is intended to
provide numerical simulations of alpine rivers including sediment transport. The software
provides two models: Basechain for 1D hydrodynamic simulations, and Baseplain for 2D
hydrodynamic simulations with adaptable boundaries. Bed load and suspending load can
be included in the model. For this study, the relevant model is Basechain, more specifically:
1D simulations excluding sediment transport (Vetsch et al., 2015b). For more information, a
large Manual is provided by Vetsch et al. (2015b).

The Basechain models are useful for the simulation of long time periods. The topography
of the river is reproduced based on cross section profiles. The output for each time step
and cross section of the simulation is the water level, the riverbed position as well as the
average discharge flow velocity (Rousselot, Vetsch, and Faeh, 2012). It is calculated with the
Saint-Venant equation (SVE), where the streamed cross section area (A) and the associated
discharge (Q) are the conservative variables (Unsinn, 2008)).

1.3.1 Hydraulic Background

As mentioned, Basechain provides simulations of river reaches based on cross section in-
formation. The computational grid is illustrated in Figure [1.2|left. The orange lines are the
cross sections and the violet points with crosses are nodes. An element for the centred dis-
cretization consists of two nodes with a known cross section, and the midpoint of the line
between two nodes defines the edge of two elements (see the violet points lines, Fig[1.2]left).
At the location of the nodes, the variables flow velocity, flow depth and the cross section
geometry are defined. The more nodes are known, the better the river is represented (Vetsch
et al., 2015b).

1.3.1.1 Flow Equation

The hydraulic calculation in Basechain is based on the SVE for unsteady one dimensional
flow:
dQ du-Q) dzs

a2 — —g-A.
“@ T @ g dz

_g.A.IE

with Q = Discharge [m?/s]
t = Time [s]
u = Flow velocity x-direction [m/s] (L.1)
A = Cross section area [m?]
g = Acceleration of gravity [m/s?]

Ir, = Energy gradient, slope [-]

Equation[I.Tjcomprises the conservation of momentum (right side) and conservation of mass
(left side). The SVE one dimensional equation is the simplified Navier-Stock flow equation
which considers flow in 3 dimensions. In the SVE, the flow is depth- and width averaged
to describe a simplified channel flow, and thereby, only the flow velocity in x-direction is



considered (Unsinn, 2008). The use of the SVE implies the following assumptions to be
valid:

¢ hydrostatic pressure; fulfilled if the vertical acceleration is negligible
¢ uniform velocity over the whole cross-section
¢ small slope of the channel bottom (Vetsch et al., 2015b; Unsinn, 2008)

Formula shows that the flow velocity has to be determined to apply the SVE. The equa-
tion for the flow velocity implemented in Basement is the MSE:

w=ky R3-\/Ig

with v = Flow velocity [m/s]

kst = roughness coefficient by Strickler [m% /3] (1.2)

R = Hydraulic radius |[m)]
Ir, = Energy gradient [-]

(Unsinn, 2008)

The friction is defined with the Manning-Strickler coefficient (kst-coefficient). It represents
not only the roughness of the channel but also the inner roughness due to turbulence. That
is, all sources of roughness (inner roughness, bottom roughness and bank roughness) are
combined in one parameter (Unsinn, 2008).

1.3.1.2 Numerical Solution of the SVE

The SVE is a nonlinear, coupled partial differential (PDG) equation system. A unique analyt-
ical solution is only available for idealised and simplified conditions (reference). In practice,
numerical solutions are required. Such a numerical solution is obtained by discretization.
The idea behind the discretization is to divide the area in many small sub-areas, where the
PDG can be solved approximately. The smaller the discretizing elements are, the smaller is
the numerical dispersion (Unsinn, 2008).

The equation has to be discretized temporally and spatially. The spatial disrectization may
be obtained in different grids such as Cartesian, non-orthogonal, structured or unstructured
ones. The temporal discretization is normally obtained by a Finite difference scheme. It can
be explicitly or implicitly. For the SVE, the value of the next time step only considers the
value from the last time step: the explicit Euler schema is applied to solve for prospective
time steps. The spatial discretization is based on the finite volume method and the integra-
tion of the equation takes place over one single element (for the definition of an element, see
section[1.3.T) (Vetsch et al., 2015a).



1.3.2 Modelling Procedure

The main variable of interest depends upon the aim of the simulation and will thereby differ
from case to case. Figure right shows an overview of the work procedure from pre-
processing to model output.

Figure 1.2: Basechain: topographic representation of a river (left), composition
of Basechain adapted from Unsinn (2008)(right)

The pre-processing process is required to determine parameters for the geometry file and for
the Basement command file. The Basement command file has the task to operate and run
the simulation. The geometry (bmg) file contains every cross section of the river sections,
and each cross section requires the following information, which has to be determined:

Distance from the first cross section upstream
Orientation angle

Left point coordinate

Bottom range

Active range

Friction coefficients (kst-coefficients)

Friction range

Coordinate of the points along the cross section

Default friction coefficient

The geometry file has to be added to the geometry section of the command file and serves
as the basis for the calculation, as the hydrograph determines the inflow condition at the
upper boundary. The second part of the command file, the hydraulic part which includes
the initial condition and the upper and lower boundary condition, has to be determined.



For the initial condition, the input can be predefined, either with a restart file, where the
riverbed is always filled with a certain amount of water at the start of the simulation, or
the option of a dry riverbed is chosen. Then the simulation can be run and calibrated if
possible. The generated outputs files of the simulation are shown in Figure Additional
output files provide a visualization the river section with Basevize or enable to generate a
tile with one variable for a chosen cross sections.

1.3.2.1 Boundary Condition

The hydraulic conditions at the upper and lower boundary of the river section one intends
to simulate have to be accurately defined. It is important to know how the adjacent area
influences the chosen river section. The influence from system boundaries is taken into ac-
count by the propagation velocity of a perturbation. A perturbation can propagate in two
directions, upstream and downstream. This velocity term has then to be added to the flow
velocity in the studied channel. In case of supercritical flow, the information of the pertur-
bation cannot spread upstream to a given point because the velocity of the perturbation is
too low as compared to the flow velocity in the channel. There, no propagation from down-
stream is possible, i.e. the conditions are not influenced from downstream at the boundary.
The sub-critical flow shows the opposite phenomena: the flow (information) can be spread
in both directions. These two possibilities determine the number of boundary conditions
which have to be considered in the simulations. For the case of sub-critical flow, one bound-
ary condition is given by the influence from downstream, while the other has to be fixed.
For supercritical flow, two boundary conditions need to be defined.

The input value at the upstream boundary normally is Q (Vetsch et al., 2015b). It can be
defined at the upstream boundary with a hydrograph that describes a course of a flood or
a steady state flow. Then the flow velocity at the first cross section is calculated using the
continuity equation based on the water level at the antecedent time step. In the case of su-
percritical flow, no information on the water level at the antecedent time step is available.
It will be calculated iteratively with a given slope and a normal discharge value. There are
multiple possibilities to describe the discharge condition at the downstream boundary of a
section. For this study, the upper boundary condition was set by a steady state hydrograph,
and for the lower boundary, a hq-relation (water level-discharge relation) was considered.
This means the water surface elevation is specified as a function of the discharge with the
help of the local slope (Brechtold, 2015).

1.3.2.2 Calibration

As explained in section the calculations of the river flow are based on the MSE. The
kst-coefficients are unknown and have to be determined by the user. It is the tuning variable,
i.e. this variable should be calibrated. This is done at cross sections where a stage-discharge
relation based on river flow measurements exists. One discharge of the stage-discharge
relation is used as input to the simulation, and the associated water level to this discharge
is the target output of the simulation. In that procedure, the kst-coefficients are changed
until the simulation reaches the target water level. The kst-coefficient is then used for the
different runs.



Chapter 2

Determination of the Stage-Discharge
Relations in a Data Sparse Region in
Lower Ewaso Ng’iro Basin Kenya

2.1 Introduction

2.1.1 Problem Description

Water is the most important and valuable resource on earth. Today, a lot of countries suffer
not only from insufficient quality of water but also from water scarcity due to human activ-
ities. The Ewaso Ng'iro Basin, located around Mount Kenya, covers an area of about 64.000
km? and is confronted with the problem of water scarcity. Mountains like Mount Kenya,
Aberdares, Mathew ranges and Mount Marsabit are water towers feeding many perennial
and seasonal rivers in the Ewaso Ng’iro Basin. In the dry season, the water in the lowlands
is mainly coming from the upper and middle part of Mount Kenya, from the Aberdares,
from spring water in the area between Buffalo Springs (Archers Post) and Ngotu as well as
from stored flood water in the Merti and Lorrian Swamps (Kiteme et al., 2008} Liniger, 2015).
The problem of water availability concerns the whole Ewaso Ng’iro Basin and become more
acute in the past few years. For the upper Ewaso Ng'rio Basin, hydrology and water prob-
lems have been well researched. The Water and Land Resource Centre (WRLC) project,
based on a cooperation between the University of Bern and the Centre for Training and In-
tegrated Research in ASAL Development (CERTRAD) conducted a number of studies on
a broad range of topics including water abstraction (Aeschbacher, 2003), run-off modelling
of certain rivers (Notter, 2003; Sutter, 2012), socio-economic impacts (Wiesmann et al., 2000)
and long term precipitation in the area (Schmocker, 2013). They stated that the upper Ewaso
Ng'iro Basin has experienced expansive and rapid changes since the 1980ties. Population in-
creased tenfold between 1960 and 2000, at the same time, agricultural practice shifted from
subsistence farming to intensified irrigated agriculture (Kiteme et al., 2008; Notter et al.,
2012). Thereby, the abstraction of water for irrigation, domestic purposes, and livestock in
mountain regions increased dramatically. These changes exert increasing pressure on nat-
ural resources, primarily water, and lead to conflicts between up- and downstream users
(Aeschbacher, Linger, and Weingartner, 2005; Kiteme et al., 2007; MacMillan and Liniger,
2005; Liniger et al.,[2005).



Especially people located in the lowland are in an disadvantageous position. As down-
stream users, they only have secondary access to river water and are therefore more strongly
affected by water scarcity.

Changes in the upper basin lead to a faster drying up of rivers in the lower basin, which
forces pastoral groups to shift westwards, what in turn leads to conflict with other pastoral
groups (IUCN, 2015). Therefore, the water problem in the lowland is at least as serious as
in the upper basin in addition to that, there is only limited knowledge regarding watershed
hydrology. Research on detailed hydrological processes is limited because river gauging sta-
tions (RGS) are still largely missing. The same is reported by the Intergovernmental Panel
on Climate Change (IPCC), stating that the hydrological response remains one of the major
uncertainties of climate predictions, mainly for dry regions and their ephemeral streams.
One reason for these uncertainties, is the lack of monitoring systems (Benito et al., 2011). We
nevertheless are able to find out how much and how many days per year the water reaches
the Lorrian Swamp, which is an important water reservoir for the farmers, by consulting
the analysis of satellite images by De Leeuw et al. (2012). During most of the year, rivers are
dry in the lowlands, but during the wet season the rivers are flooded and thereby the region
is recharged with water (Liniger et al., 2014). For water recharge in the lowland, local rain
events do not play a key role. The major contribution comes from the rain in the mountains
(Liniger et al., 2014).

Particular hydrological setting plus the rising potential for social conflicts both indicate how
urgent it is to arrive at a better and reliable understanding of the hydrology of the lower
Basin.

To meet the aforementioned challenges at least to some extent, this study aims to establish
a measurement system at the chosen sites, and, in a second step, to evaluate the available
methods on-site and develop stage-discharge relations. With the stage-discharge relation
the maximum discharge of the rivers at the different sites can be estimated. Discharge is
the most basic variable for understanding watershed hydrology. In order to conduct hydro-
logical analysis and calculate discharges, stage-discharge relations alongside with riverbed
measurements are necessary. In order to achieve the aforementioned aims, riverbeds are
surveyed with the dumpy level for each region of interest, and stage discharge relations are
calculated with Basement for the four sites in the lower Ewas Ng’iro Basin, where the RGS
are installed.

2.1.2 Objectives and Research Questions

The overall aim of this part of the study is to establish reliable stage-discharge relations for
the four study sites. They may serve as a cornerstones for future analysis of measured water
level data. In order to achieve that objective the following specific objectives and related
research questions are formulated:

a) Establish the optimal stage-discharge relations for the four sites by conducting field-
work and considering scarce measurement equipment

— Which variables are essential to obtain a valid stage-discharge relation?

— Is the dumpy level method sufficiently precise?



b) To develop stage-discharge relations and make first estimations of the channel ca-
pacity for the sites with the measured parameters and with an appropriate pro-
gram/method

- Is data quality sufficient to derive the stage-discharge relation with Basement?
- How to reasonable cope with large uncertainties due to the chosen method?
- How to best fit a curve in the simulated data?

This study was conducted within the framework of the WLRC project and intends to con-
tribute to the purpose of its overarching project. It states: 'In these river basins, the trans-
boundary negotiations and decision-making on water management are extremely challeng-
ing, and talks frequently falter because of poor information as well as political and economic
power imbalances between the parties involved. The project aims that the ultimate benefi-
ciaries of the WLRCs will be those living in the Eastern Nile and the Ewaso Ng'iro Basins
- especially land users, smallholders, and the rural poor. They should directly profit from
better water and land governance/management and more secure environmental services’
(CDE, 2014). The study contribution to the project shall be a manual of the work process of
establish stage-discharge relation to support the local water team in Nanyuki, and to assess
further river sites in the region.

2.1.3 Study Area

The four sites, Sereolevi, Merille, Melgis and Habaswein and their watersheds are situated,
in the lower Ewaso Ng'rio Basin, of central Kenya. The catchments are located between
2°51.275280" N and 0°19.3279” S, with the western extreme at 36°22.7586" E and the most
eastern point at 39°29.603220" E (Fig. 2.1).

The Ewaso Ng'iro Basin draining at Habaswein is 64’000 km? large, one and a half time the
size of Switzerland. The basin covers a diversity of ecological zones, ranging from the semi-
humid mountain zones (see Figure right side) at the boundary of the basin to semi-arid
and vast arid areas (Fig. left side) in the lowland (Gichuki et al.,|1998). Figure 2.3|shows
the course of the Ewaso Ngiro river. It originates in the Central Kenyan Highland, drains
at the slope of Mount Kenya and the Aberdares Mountains and runs through the Laikipia
plateau (De Leeuw et al.,[2012). This part of the basin, called the upper Ewaso Ng'iro Basin,
is characterized by tertiary volcano rocks of Mount Kenya (Gichuki, Linger, and Schwilch,
1998). Further downstream the river passes by Arches Post and flows over a large plateau,
where it is transformed into an ephemeral stream and discharged into Lorrian Swamp near
Merti. On its way through the lowland, the Ewaso Ngiro is fed by the three ephemeral
rivers, Sereolevi, Merille and Melgis, where the three study sites are located (Fig. [2.1.3).
Sereolevi and Merille originate in the Mathew ranges and Melgis is fed by the Mathews
and the mountain ridge of Maralal. Probably, it terminates in Habaswein, where the fourth
study site is located, after passing the Lorrian Swamp, a huge wetland located in the arid
zone of north eastern Kenya (De Leeuw et al., 2012).
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Figure 2.1: Watershed Ewaso Ng'iro river
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Figure 2.2: Ecological zones: arid zone (left), semi humid mountain zone
(right)

Figure 2.3: The perennial river parts of the Ewaso Ng’iro Basin

The climate is mostly driven by the movement of the intertropical convergence zone (ITCZ).
The ITCZ is a band of strong convection, where huge cumulus clouds are formed caused
by the strong solar radiation. The position of the ITCZ depends on the zenith of the sun,
meaning that it moves from 20° N to 20° S and back in one year (Schmocker, |2013) This
leads to a bimodal rain pattern, with two dry and two wet seasons alternating in the course
of the year. In the Ewaso Ng'iro Basin the long rains occur from March to May and the short
rains from October to December. However, rain pattern can also be overturned by large
scale phenomena, mainly the El Nino. Additionally, the distribution of the rain depends on
the topography and exposition. Le. the amount of rain increases with height, ranging to
3200 m.a.s.l. Further, there is more rain on the south east side of Mount Kenya, because the
air comes from the ocean there (Liniger, Weingartner, and Grosjean, 1998).

The Ewaso Ng'iro Basin is a typical high-lowland system and is further illustrative of the
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interaction between highland-lowland systems. The water-rich upper part with its lush
vegetation serves as a donator, while the scarcely vegetated lower part, acts as a consumer
(Kiteme et al.,[1998).

2.1.3.1 Characteristics of the Survey Sites

The characteristics of the four watersheds, Habaswein, Melgsi, Merille and Sereolevi are
summarized in the Table 2.1l below. The table describes basic watershed characteristics and
land cover characteristics. As mentioned before, the sites are all located in the lower basin
downriver of Archers Post. The Watershed of Habaswein includes the whole Ewaso Ng’iro
Basin, meaning also the three other sites. This dimensional difference is illustrated in Figure

21

River Sereolevi | Merille | Melgis Habaswein
Basic Watershed Characteristics

Area [km?] 974.5 1727.2 | 9628.7 64087.4
Average Altitude [m/] 980.4 8375 | 1354.3 954.3
Lowest Point [m] 708 582 459 191
Highest Point [m/] 2655 2272 2620 5030
Average Slope [%)] 11.7 8.1 114 5
Landcover Characteristics

Evergreen Boradleaf Forest [%] 0.7 15 2.6 1
Deciduous Broadleaf Forest [%)] 0.3 0 0.2 0.1
Mixed Forest [%)] 15 17 19 0.5
Closed Shrublands [%] 0 0 0.2 0.1
Opend Shrublands [%)] 453 57.3 389 523
Woody savannas [%) 6.1 22 6.4 4
Savanna [%)] 0 0 0 22
Grassland [%] 294 224 30 28.7
Croplands [%)] 27 4.1 33 21
Cropland/ Natural Vegetation Mosaic [%] 12.6 9.7 13.3 8
Barren Sparsely Vegetated [%)] 0 0 0.1 0.8

Table 2.1: Watershed characteristics generated with the Kenya watershed tool

The RGS at the four sites are each fixed on a bridge pillar which facilitates installation and
the determination of a well defined profile. The measuring device for the three ephemeral
river (Sereolevi, Merille and Melgis) is a solinist. It only measures the water pressure. Addi-
tionally, at the Merille site also a measuring device for the air pressure was installed. At the
site of Habaswein an ecolog was installed, thus a measurement device for the air pressure
was superfluous. All the measuring tools are equipped with an antenna and transfer the
data automatically.



13

2.2 Methods

As outlined already, to gain an understanding of the hydrology of a certain site and it’s
catchment, it is necessary to obtain information about the discharge. The discharge is the
amount of water, which flows trough a cross section, expressed as volume per unit of time.
Stream discharge cannot be measured directly, but must be computed from other measured
variables such as gauge height, stream depth, stream width, and stream velocity, as the
discharge formula 2.1|shows (Adrien, 2004):

Q=v-A

with Q = Discharge [m?®/s]
v = Flow velocityl [m/s]

2.1)

A = Cross section area [m]

For this study, application of the method was restricted both because the available mea-
surement equipment was limited and because the streams considered are ephemeral. As
mentioned in the section this means that it is hard to predict whether there will be
high or low flow. Therefore it was not possible to measure the stream velocity and calcu-
late the discharge with the measured variables. The result should thereby be seen as a first
assessment but cannot replace discharge measurement. Nevertheless, this study provides
a first assessment of stream geometry and velocity by applying the empirical MSE (section
[1.3.1). These results can serve as a basis for further river hydrological investigations in a
region where such data is largely missing.

These basic variables had to be collected on site during the field survey. Afterwards, the
software Basement was used to simulate the discharge belonging to a certain water level.
The software Basement has the MSE implemented, showing up in the SVE . Based on the
survey and with the software Basement stage-discharge relations were calculated and have
to be explained with a convenient function. The stage-discharge relation is necessary to
translate a measured stage by the RGS directly into the related discharge value. Establish-
ing a stage-discharge relation (rating curve) is the most simple and common method for
monitoring stream flow at a hydro-metric station (Le Coz, 2012).

2.21 Field Survey

In order to assess the relevant variables during fieldwork, a number of instructions by the
World Meteorological Organisation (WMO) were conducted. They will be described in more
detail in the following subsections and include:

¢ Define channel geometry of the area which controls the cross section by the RGS

* Measure width and depth of channel cross section

Note down the factors influencing channel roughness

Identify channel roughness

* Document the site with photographs (WMO, 2009)
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These listed points correspond to the components of MSE and SVE: Channel characteristics,
profile of cross sections, and slope and roughness coefficient.
The fieldwork was conducted during the months of February, March and April 2015.

2.21.1 Channel Geometry

At the time of fieldwork the only measurement equipment that was available for the survey
(measuring channel geometry and cross section) was the dumpy level, which is a common
instrument employed in tachometry. Tachometry is a survey method of optical distance
measurement, which have been used for a long time in different disciplines. A staff is used
to determine surface elevation. In order to read the values from staff a sighting instrument
is used. The surface elevation and the location of points in relation to the others can be de-
rived from the horizontal distance to the staff and the staff readings (Gorden et al.,2004). For
every site a reference point has to be determined because the dumpy level can just indicate
the height of the staff. To connect two cross sections in one river the height of cross section
in relation to the other is needed. Then, the reference point is measured after each position
change of the dumpy level. Since at least one person has to hold the staff vertically at the
surveying point and another has to read the values with a sighting instrument, at least two
people are necessary in order to conduct a measurement of this type (Gorden et al., 2004).
A training was completed with the local staff of CETRAD that then participated in the mea-
surements for this study. A field sheet was prepared to note all relevant variables required
for the calculation (collimeter method) (Appendix |A) and to enable a handier data collec-
tion. For the sites Habaswein and Melgis we measured four cross sections and for the sites
Sereolevi and Merille we measured only three cross sections with the dumpy level (Fig. 2.4).

Figure 2.4: Fieldwork impressions: person holding staff (left), measuring ele-
vation (middle) and sighting instrument (right)

That is, the height of a point in the cross sections in relation to the reference point and the
distance between the cross sections by taking the measure between the lowest points of each
cross section. For each RGS, in order to include the flow controlling part, three cross section
were measured: one above, one at and one below the RGS. All the RGS were installed at
bridge piers to ensure a more stable cross section over time, as the bridge has a pre-define
cross section at least at the bank. In addition to that, the installation of RGS is easier at bridge
piers. The distance between the surveying points along one cross section (perpendicular to
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the river flow) was controlled with a tap. The measurements are only usable if the relation
of one cross section to the other is known. With the help of a GPS device it was possible
to measure the orientation of each cross section and the orientation of the line between the
lowest points of each cross section. During further data processing, the distance and height
of the points in the cross section and its slope were calculated. The measured orientation
and the pythagorean theorem were used to represent the riverbed and calculate the slope.
Put it in a coordinate system, all the necessary information is available in order to start the
simulation in Basement.

2.2.1.2 Roughness Coefficient

The roughness coefficient can be either determined by look-up a table or by dividing a pro-
portionality constant by the determined grain size of the channel material (Brechtold, 2015).
In this study, the value was determined by consulting a look-up table ('Strickler Beiwert
nach Naudscher, 1992” (Uni Karlsruhe, 2016)) (Appendix . Since all the study sites are lo-
cated in an arid region (savanna) the riverbeds are similar, mainly filled with sand and some
shrubs at the bank.

The collected data are summarized in an excel sheet and documented with photos. This
compilation served as input data set for the software Basement.

2.2.2 Water level-Discharge Simulation

Depending on the available amount of time, there are different possibilities to calculate the
discharge without measuring the velocity. Often, cross section geometries of one site are
merged together by taking the average geometry out of the three or four cross sections. Af-
terwards, the calculation of the discharge is only done for this cross section. In this study the
discharge is calculated with the 1D simulation in Basement. The advantage is, first, that it is
possible to simulate the discharge over these three or four cross sections and thereby have
the changes of the geometry and the slopes in it. Secondly, more than one kst-coefficient can
be considered, one for the riverbed and one for the bank sides.

As mentioned in section the required input data are the following for each cross sec-
tions of the river: the x,z coordinate for each point in the cross section, the x,y,z coordinates
of the left point of the cross section, the kst-coefficients, the angle of the cross section and the
distance to the first cross section upstream. This information is contained in the Basechain
geometry file (Fig. and serves as basis for the simulation. Figure 2.5/shows one cross
section on the left side and the evaluated information: the range of the bottom, the range
of the main channel and the kst-coefficients. In the Basement Edit Commando, decisions
about simulated output, the way of simulation and the hydraulic conditions like the start
and boundary conditions were taken. The initial condition was set to dry condition, the
upper boundary condition to steady state inflow and the downstream boundary condition
as a hqg-relation. For each simulation run of one site, an output file was generated with
an associated discharge value. In the end a stage-discharge relation was established. The
kst-coefficients were assumed to be constant.
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Figure 2.5: Merille: cross section with width and height (left), cross sections
in relation to one another (right)

2.2.3 Establishing Rating Curves

‘Stage-discharge relations are hydraulic relations that can be defined according to the type
of control that exists and it is the best fit between the stage and the discharge at a certain
site” (Suter, 2014). The control is responsible for the shape of the curve, mainly defined by
the geometry of elements downstream of the RGS. The equation can be expressed in a basic
and general form as following (WMO, 2010):

Q=C-(h—e)’

with Q = Discharge [m?/s]
h = Waterlevel [m]

e = Waterlevel of zero flow [m]

2.2)

$ = Exponent [—]
C = Coefficient [—]
Rating equations describe the relationship between stage and discharge. The stage-discharge

relation for most RGS is defined by plotting the two variables against each other (Bosshart,
1997).

2.2.4 Curve Fitting

In order to model the stage-discharge relation, it is recommended to use a non linear model
and to fit the model to the data with the least squares method in order to obtain a statistical
and objective relation. In hydrology, a power function as equation [2.2|is commonly used to
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establish a relationship between stage and discharge (Bosshart,|1997). The curve fitting and
analysis of the relation between stage and discharge was obtained with help of the statistical
program R. This software provides basic tools needed here like non linear models (nls) and
the calculation of confidence bands. The non linear model was applied and a power function
was chosen to fit the model. The non linear model function calculates a best fit for the curve.
The accuracy of the fit can by analysed by looking at the residuals standard error. Parameter
estimation is based on an iterative procedure that involves a linearization approximation
leading to a least squares problem at each step. Further, the stage-discharge relation enables
to get a first impression of the the channel capacity at the four sites. It should be noted, that
the river beds are sandy, the geometry of the cross section would continuously change with
flow, thereby invalidating more sophisticated models (WMO, 2010). Considering the fact
that this analysis aims at completing a first assessment of the discharge in these channels,
the applied method is satisfactory to reach the aim.

2.2.5 Uncertainties and Sensitivity Analysis

Potential sources of uncertainties are natural uncertainties, knowledge uncertainties and
data uncertainties during the establishment of the rating curve. The evaluation of the am-
plitude of the different sources of uncertainty is beyond the scope of this study, but it is im-
portant to keep the differentiation in mind. In addition to that, there are uncertainties due
to the fitting of a curve to the stage-discharge relation, namely imperfect matching (Braca,
2008). Again, for this study, it was not possible to do the respective control to quantify the
uncertainties.

The main task would consist of calibrating the kst-coefficients with velocity measurements,
but this was not possible as no water was flowing during the period of data collection. The
range of uncertainties was reported for the processes of establishing a rating curve the fitting
of curves. To elaborate the sensitivity of the kst-coefficient pair, it was changed by +/-10%
and the stage-discharge relation was simulated again for both cases. Additionally, the evalu-
ated error range of +/-20%, by applying the MSE to calculate the discharge, was considered
(Bosshart, [1997). To arrive at a final assessment of errors, the sources of error were summed
up. The summation was not quadratic because it is was uncertain if the two error sources
are correlated (Drosg, 2006).

It is still an open issue which methodology assesses the uncertainties associated with a given
stage-discharge relation (Le Coz,2012). In order to nevertheless get a grasp at the uncertain-
ties of the stage-discharge relationship, a 95% confidence band based on the 2.5% and the
97.5% quantiles was automatically calculated for the fitted curve. This confidence band tells
that with a probability of 95%, the best fit lies in between the two lines.
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2.3 Results

The results are presented individually for each study site following the structure of the aims
of this study: the output of the fieldwork (Tab. and [2.5), the simulation of the
stage-discharge relation in Basement (Fig. and and the established rating
curve to convert the measured water level (Fig. 2.9} [2.13| 2.17]and 2.21)).

Some general information which is valid for every site will be shortly introduced here. The
geometry of the river section was visualised with the software Basement. For the simu-
lation, the input discharge was always increased by 2 m?/s for every run to obtain the
stage-discharge relations. Concerning the output Figures (Fig. 213 .17 and 2.2, it
is noteworthy that the points are mostly in a line already because they were simulated, that
is not necessarily representative of a ‘natural” setup.

The uncertainties of the elaborated error sources, the variation of the kst-coefficients and the
use of the MSE to elaborate the flow velocity, are high (Fig. 2.8 [2.12 2.16/ and [2.20). Errors,
due to the field measurement could not be quantified but should be kept in mind. In all
cases, the band of uncertainty is large.

The simulated relation for all the four sites are best modelled by a power function. This can
be confirmed by plotting the two logged variables against each other. Therefore, it was not
necessary to compare different models. The parameter were fitted in R, applying the nls
model (non-linear model). The residual sum of squares for the model and every site was
judged to be acceptable.




2.3.1 Sereolevi

As shown in Table[2.2]this site it is a very flat and straight river and with no backwater effect.
In the field, four cross sections have been measured, but for the analysis, only three were
valid. The roughness coefficients (kst-coefficients) were determined for every cross section
separately. The channel was found to be homogeneous, sandy, and hardly no vegetation
or stones in the channel except for some shrubs at the bank (Fig. 2.6). Since there is an old
and a new bridge which both have a importantly influence on river flow, we measured cross
sections for both bridges separately with each having a different orientation (Fig. 2.7).

2.3.1.1 Overview Sereolevi

Geometry

Width [m]

Orientation angle [°]

1
kst-coefficients [m 3 /s]

Lowest point [m.a.s.l.]

Distance

Slope [%o]

Cross section UPS

89

300

50

737.65

Cross section RGS

90.2

255

40

737.61

45.78

Cross section DWS

90

280

25,50, 35

737.315

99.48

33

Table 2.2: Fieldwork output Sereolevi

Figure 2.6: Estimation of kst-coefficients

Figure 2.7: Geometry of the cross sections
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2.3.1.2 Stage-Discharge Relation and Error Sources

Figure2.§top left shows the stage-discharge relation established for the Sereolevi study site.
It illustrates that for low flow conditions, the discharge increases slowly with an increasing
water level. On a water level above 0.5 m it increases continuously. Figure [2.8]bottom left
indicates that changing the kst-coefficients does not greatly influence the discharge. For
example, for a discharge of 100 m?/s the water level varies between 1.096 m to 1.174 m as
Figure 2.8|top left depicts. The error range of the MSE of +/- 20% on the other hand greatly
influences the result. For a discharge of 100 m?/s the water level ranges between 0.9044441
to 1.3566661 m. These two calculations are related to the simulated point and not to the
rating curve.
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Figure 2.8: Simulated stage-discharge relation for Sereolevi: simulated stage-

discharge relation (top left), with uncertainty range of kst-coefficient (top

right), with uncertainty range applying MSE (bottom left) and combination
of the uncertainties (bottom right)
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2.3.1.3 Rating Curve and Power Function

The calculated rating curve (equation reflects the simulated stage-discharge relation
rather well. For low flow conditions the rating curve slightly overestimates the discharge
as shown in Figure The residual standard error for the rating curve in relation to the
simulated point is 2.982 m3/s and 29 points have been calculated. The channel capacity can
be calculated with equation 2.3|and the measured bank site height. It is approximately 670
m3/s and overflows first at the right side. It is an estimation depending on the accuracy of
the rating curve and the measured bank site height.

Rating Curve Sereolevi

300 - ° Simulated Data

Predicted Line
— 97.5%Cb
— 25%Cb

250 —

200 —

150 —

Discharge[m®/s]

100 —

I T T T I
0.0 0.5 1.0 15 2.0

Waterlevel [m]

Figure 2.9: Fitted rating curve to the simulated stage-discharge relation

Q = 74.17506 - (h)230022

with Q = Discharge [m?/s] (23)
h = Waterlevel [m)]
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2.3.2 Merille

The conditions at Merille site are similar to Sereolevi, which only lies 50 km away. The river
at Merille is also very flat, wide (max. 154 m), sandy and has only little vegetation (Fig.
2.10). All four measured CS were valid and could be used (Tab. 2.3). One cross section was
taken 165 m away from the RGS, because in that location, the riverbed is narrower due to
a cliff on the right side facing upstream, potentially exerting a strong influence on the river.
The simulated section consists of the four cross sections. The surveyed section is 200 m long.
Figure again shows, how flat and wide the river is.

2.3.2.1 Overview Merille

Geometry Width [m] | Orientation angle [°] | kst-coefficients [m% /s] | Lowest point [m.a.s.l] | Distance | Slope [%o]
Cross section UPS2 116.5 300 50 594.93 0

Cross section UPS1 133.5 270 50 594.81 70.7

Cross section RGS 1295 280 50 594.47 165.4

Cross section DWS 154 285 25,50 594.4 197.18 247

Table 2.3: Fieldwork output Merille

Figure 2.10: Estimation of kst-coefficients

Figure 2.11: Geometry of the cross sections
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2.3.2.2 Stage-Discharge Relation and Error Sources

In the case of the Merille river the simulated relation was similar to the Sereolevi site, but
the discharge increased already at a lower stage of the water level. The simulation shows
three segments, separated by two kinks (Fig. [2.12). The Figure[2.12]bottom left indicates that
the sensitivity of the kst-coefficients is rather low. For example, at a discharge of 100 m3/s,
the water level varies from 0.9352238 m to 0.9739810 m (Fig. top left). The error range
of the MSE of +/-20% however again exerts grater influence on the results. For a discharge
of 100 m3/s the water level ranges from 0.7141414 m to 1.0712120 m, i.e. the level rises by
40 cm (Fig. 2.12] bottom left).
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Figure 2.12: Simulated stage-discharge relation for Merille: simulated stage-

discharge relation (top left), with uncertainty range of kst-coefficient (top

right), with uncertainty range applying MSE (bottom left) and combination
of the uncertainties (bottom right)
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2.3.2.3 Rating Curve and Power Function

The simulated data points and the fitted curve exhibit the strongest difference at a water
level between 0.4 and 0.6 m , where the discharge is underestimated. The residual standard
error for the rating curve in relation to the simulated points is 2.11 m?/s with 29 calculated
points. The channel capacity for the Merille site is very high with approximately 2800 m?3/s
and is overflowing first at the right side.

Rating Curve Merille
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Figure 2.13: Fitted rating curve to the simulated stage-discharge relation

Q = 144.65579 - (h)>93393

with Q = Discharge [m?/s] (24)
h = Waterlevel [m]
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2.3.3 Melgis

Melgis is the third river going northwards in direction of Marsabit, with a distance of 50
km to Merille. The Melgis river was different from the two other sites, as the fieldwork
result (Tab. and Figure show. The riverbed is less flat, the bottom varied in height,
some stones at the bottom of the river, the riverbed was deeper and narrower, and the bank
was completely covered with shrumbs (Fig. [2.14). Furthermore, Melgis river had a constant
water flow in the rainy season during one measurement campaign. It is noteworthy that
there was a road construction right next to the river and that a dam was build upstream of
the RGS to collect water. However, the dam was demolished during the rainy season, which
led to the accumulation of large stones in the riverbed. Three cross sections were valid and
used for the calculations. Downstream of the RGS the Melgis river exhibits a backwater
effect as the slope increases again.

2.3.3.1 Overview Melgis

Geometry Width[m] | Orientation angle [°] | kst-coefficients [m% /s] | Lowest point [m.a.s.l.] | Distance | Slope [%o]
Cross section UPS 48.5 295 25, 45,25 467.89 0

Cross section RGS 63.4 280 35 467.32 59.2

Cross section DWS 489 280 30 467.64 151.94 1.73

Table 2.4: Fieldwork output Melgis

Figure 2.14: Estimation of kst-coefficients

Figure 2.15: Geometry of the cross sections
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2.3.3.2 Stage-Discharge Relation and Error Sources

The simulated relation is flatter compared to the other study sites, probably due to the fact
that the river bed is narrower (Fig. [2.16). Figure upper right indicates that the influence
of changing kst-coefficients is small. For a discharge of 100 m?/s the water level ranges from
2.3456130 m to 2.5338169 m as Figure top right shows. The error range of the MSE of
+/- 20% has a large influence on the result. For a discharge of 100 m3/s, the water level
ranges from 1.9459770 m to 2.9189656 m, i.e. it varies by almost 1 m (Fig. 2.16|bottom left).
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Figure 2.16: Simulated stage-discharge relation for Melgis: simulated stage-

discharge relation (top left), with uncertainty range of kst-coefficient (top

right), with uncertainty range applying MSE (bottom left) and combination
of the uncertainties (bottom right)
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2.3.3.3 Rating Curve and Power Function

Figure shows that the fitted function [2.5|does not perfectly cover the points along the
whole range of the water level. For low flow conditions it overestimates the discharge, while
for high flow it underestimates it. This gets further confirmed by a high residual standard
error of 3.772 m? /s with 26 degree of freedom. The channel capacity for Melgis site is smaller
compared to the two previous rivers with approximately 302 m?/s and the right side is the

weak side.
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Figure 2.17: Fitted rating curve to the simulated stage-discharge relation

Q = 10.17219 - (h)?52978

with Q = Discharge [m?/s]
h = Waterlevel [m]

(2.5)
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2.3.4 Habaswein

As mentioned in the study area section, Habaswein lies on the other side of the catchment,
after the swamps at the end of the Ewaso Ng'rio river. It is not a tributary of the Ewaso
Ng'iro but the Ewaso N’giro main river itself. The riverbed is varying a lot in the short
section where we conducted the measurements of the cross sections. This made it difficult
to even define a riverbed. The bridge served as an indicator of periodical river flow. The
riverbed was sandy with some stones, upstream of the bridge, a distinct riverbed could not
be ascertained. Downstream of the bridge there was a pond-like structure generating a back
water effect (Fig. and Tab. 2.5). Because of the unsteady riverbed and the ponding, it
was difficult to simulate the riverbed in the software Basement. The solution was to generate
in Basement two additional cross sections between the bridge and the measured cross sec-
tion downstream to simulate the lower flow (Fig. . A point was inserted into the cross
section downstream to clarify the shape. Therefore, these results have to be interpreted with
some care.

2.3.4.1 Overview Habaswein

Geometry

Width [m]

Orientation angle [°]

1
kst-coefficients [m 3 /]

Lowest point [m.a.s.1]

Distance

Slope [%.]

Cross section UPS

17.9

270

45

208.55,

0

Cross section RGS

245

225

30,20,45, 30

208.061

21.18

Cross section DWS

37.5

260

35

208.45

4434

2.66

Table 2.5: Fieldwork output Habaswein

Figure 2.18: Estimation of kst-coefficients

Figure 2.19: Geometry of the cross sections
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2.3.4.2 Stage-Discharge Relation and Error Sources

As shown in Figure top right, minimal flow could not be simulated. The river bed is
narrow in comparison to the three other study sites and therefore, the simulation ends at 30
m3/s. Figure bottom left depicts that the influence of a change in the kst-coefficients is
much smaller compared to other uncertainty sources. For a discharge of 20 m3/s the water
level ranges between 1.3591829 m and 1.4511102 m (Fig. 2.20| top left). In contrast the error
range of the MSE of +/-20% has a larger influence on the result. For a discharge of 20 m3/s
the water level varies between 1.1198091 m and 1.6797137 m (Fig. [2.20|bottom left).
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Figure 2.20: Simulated stage-discharge relation for Habaswein: simulated

stage-discharge relation (top left), with uncertainty range of kst-coefficient

(top right), with uncertainty range applying MSE (bottom left) and combi-
nation of the uncertainties (bottom right)
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2.3.4.3 Rating Curve and Power Function

The function 2.6|overestimates the discharge value for low flow condition. In comparison to
the fits of the other rivers it is much worse, but still acceptable. This is also reflected in the
rather high residual standard error for the rating curve of 0.4169 m?/s. In total, 24 points
were simulated and integrated in the calculations. As the river next to Habaswein is much
smaller than the others the channel capacity is also much smaller with approximately 23
m?/s and the right side is the weak side.
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Figure 2.21: Fitted rating curve to the simulated stage-discharge relation

Q = 7.17677 - (h)300131

with Q = Discharge [m?®/s] (2.6)
h = Waterlevel [m]
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2.4 Discussion

The here above obtained results indicate that it is possible to establish a function and the
corresponding rating curve for each site with the here applied method, regardless of the
scarcely available resource and input data. For the field survey, measurement with the
dumpy level seems to be a good solution in such areas. The most important information
could be collected, and the whole water team of CETRAD could be instructed for participat-
ing in this and potential future measurement campaigns.

However, two issues should be kept in mind: First, it was not possible to evaluate the errors
occurring during the work steps. Secondly, the results do heavily depend up on the choice
of the location of the cross section to be measured. All sites have sandy channels, i.e. the
bottom channel geometry is not constant and will change with the water flowing through.
Thus, results in this study related to geometry are restricted in their validity until next rainy
season. However, for a rough estimate of the flow timing and intensity of the flow, the here
established channel geometry may be used for several years.

Considering the 1D simulation in Basement, most of the basic physical variables are defined
by the software and the user is not required to set or modify many parameters, which makes
the procedure easier to handle. The output of the simulation depends on the kst-coefficients
and the number of measured cross sections. In the Habaswein case, the influence of the
number of cross sections was observed. At first, a simulation was not possible because
the slope difference between two cross sections was too big. The implementation of two
additional cross sections with the same geometry as the first one, enables the simulation to
be run. Concerning influence of the kst-coefficient, the model proved to be sensitive, as the
results for each river show (Fig. 2.8 [2.12} 2.16|and 2.20). However, as all of the rivers have
sandy ground it is easier to define the kst-coefficient compared to other regions. Another
advantage of the software Basement is that numerous possibilities of visualisation are being
provided.

Regarding the establishment of the rating curve, the chosen method is simple and thereby
is limited by the mentioned uncertainties occurring during the whole process. However,
it seems that the rating curve mirrors the simulated relation rather well. The example of
Merille (Fig. suggests that a segmentation of the relation may, under certain circum-
stances, be a good option. Here, individual rating curves for the different segments, would
permit a finer-grained resolution. But, before going into further details, first a calibration
should be conducted in another measurement campaign. The uncertainty of the established
rating curves also applies for the estimation of the channel capacity at the sites. In addition,
the measurement of the bank site height is difficult because in can vary from rainy season
to rainy season. The location of the RGS and its cross section is next to a bridge for all
four sites. There, the bank sides are constructed and do not represent the situation up-and
downstream. Therefore, it serves as a first idea of the channel capacity and it shows that in
Sereolevi, Merille and Melgis the capacity is high.

The major limitation of this study is caused by the numerous and unquantified uncertainties
indebted to approach here chosen, as illustrated in Figure 2.8} 2.12] 2.16|and 2.20] However,
this study did not aim at any calibration, so that the latter limitation was included into the
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very procedure. The errors occurring during the field work could not be quantified. The cal-
culated ranges of uncertainties rather serves as first estimates. As mentioned in section2.1.T}
there was no other RGS in the region and no possibility to do any kind of more advanced hy-
drological analysis. With the available data, it was not possible to draw a conclusion about
the accuracy of the elaborated functions, nor was it possible to discuss them in light of the
broader geographical context.
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2.5 Conclusion

This study aimed at establishing a rating curve and enables a first estimation of the channel
capacity for the four chosen sites in the lower Ewaso Ng’iro Basin in Kenya with resource at
hand, as the available measurement tools and workforce at the period of study. The work
process included the collection of the required data on site, simulation of the stage-discharge
relations in Basement and fitting curves to the simulated points. These investigations were
intended to improve understanding of the hydrology of the lower Ewaso Ng'iro Basin and
shall serve as a first estimation and assessment of the amount and timing of water, which
flows trough these ephemeral rivers. This study proposes a first step of a hydrological anal-
ysis to gain a better understanding of the flow intensity and timing, channel capacity and
basic hydrological process of those rivers. Further, the chosen methods are rather simple
and can therefore be used by the water team of CETRAD in Nanyuki for other rivers, where
the installation of RGS is projected.

To sum up, the chosen methods and the gained results allow for a first assessment about the
discharge and the channel capacity at the RGS of these rivers and can thereby contribute a
piece of puzzle mentioned in the IPCC report Benito et al. (2011), that is, to enhance knowl-
edge of water flow in dry region with ephemeral rivers. This study can further be regarded
as complementing the satellite study of De Leeuw et al. (2012), providing information about
the water flow in the Ewaso Ng'rio river next to the swamps. Still, a number of issues
should be addressed in future research. Above all, more research is required to develop a
method that can calibrate and validate the here proposed results. For example, one promis-
ing method would be that of video recording the river flow to evaluate the flow velocity
(Boursicaud et al., 2015).

All in all, it is remarkable to see what one can do even with a low budget and a rather
straightforward approach. In terms of financial resources, the here proposed work flow
may offer an attractive alternative to more extensive and thereby expensive methods. It
does not require a lot of equipment, and the employed programs are all open source. If one
keeps in mind its limitation, this is a viable approach for studies with similar interests in
comparable areas.
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Chapter 3

Weak Point Analysis along the Main
Rivers of Bernese Oberland
Switzerland

3.1 Introduction

3.1.1 Problem Description

Consequences and dangers of flood events have been of concern for major parts of Switzer-
land for a long time. In order to gain better insight into flood events and eventually enhance
protection measures, the run-off of rivers their interaction with their surrounding has to be
studied.

In Switzerland, the research related to flood event can be backtracked to the 19th century
(Spreafico et al., 2003). Estimating the occurrence of flood events without direct measure-
ments has been done since the 80ies and with climate change research related to flood events
has become more and more relevant. In the 80ies, assessing flood risk was challenging be-
cause of low availability of hydrological data, poor spatially resolved information and the
low computational capacity (Viviroli and Weingartner, 2012).

To this day, many investigations were conducted to improve understanding in this field.
Main efforts were done in the areas of extending measurement systems, using extreme value
statistics and establishing regionalization methods (Viviroli and Weingartner, 2012). Two
helpful innovations to do estimations of floods with certain return periods in Switzerland
were launched. First, the tool HQx_ meso_ CH created by Barben (2001) (HQ, stays for
flood with a certain return period, meso for meso scale catchment and CH for catchments in
Switerland). It includes 10 different regionalization methods to estimate the flood events of
a catchment. The second innovation includes the PREcipitation-Runoff-EVApotranspiration
HRU model (PREVAH) build by Viviroli et al. (2009). It is a continuous precipitation-run off
approach aiming to derive discharge hydrographs for meso scale catchment in Switzerland.
This brief overview on the field indicates that flood events and their occurrence have been
well researched. The efforts of the hydrological group of the University of Bern triggered
a broad range of studies around this topic including information search on flood events. A
documentation of the largest over regional flood catastrophes of the last 200 years was es-
tablished (Brunner, 2014) and the estimation of floods of small catchments in Switzerland to
improve interpretation and practical application was studied (Dobmann, 2009). Further the
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HQx_meso_CH-visual was developed to have a flood relevant representation of meso scale
catchments in Switzerland (Klauser, 2004) and the flood situations of small sub catchments
of the river Kander was analysed (Zgraggen, 2009). The influence of spatial and temporal
precipitation variability on the peak discharge of the Simme basin in the Bernese Oberland
was modelled (Brunner, 2014) and hydrology of the Kander-yesterday-today-tomorrow and
analysis and modelling of floods and its space-time dynamic was studied (Wehren, 2010).
They mainly concluded that it is important to apply more than one method and results
should be critically examined. These studies were based on the analysis on the catch-
ment scale, examining the magnitude, source and development of river discharges, where
it comes from and how it does develop.

Regarding flood protection in a holistic view, two main issues have to be considered, one
being the discharge value of a flood and its return period and the second being the chan-
nel capacity (bank-full discharge) along the rivers. The later statement is mostly analysed
on past flood events with the support of hydrodynamic models to calculate the bank-full
discharge and the flooded areas. The bank-full discharge is of interest for the researchers,
engineers and planners because it represent the water flow which fills the channel to the
top of the bank (Wiliams, 1978). That is relevant in terms of floods. In Switzerland, many
different engineering offices apply this type of analysis by order of the cantons or commu-
nities, and different models are used. The results are combined with the information on the
probability of flood events and are implemented in natural hazard maps for floods showing
the expected magnitudes of events in different areas and with technical reports provided.
These evaluated points are considered the weak points along a river, the channel capacity
is low and the associated return period high. There is a report for each community based
on the approaches of the commissioned engineers offices. Example of such reports are EB
AG (2008) and Aarewasser AG (2009) for the Simme next to Boltigen and the Aare Thun-
Bern. Because of the different responsibilities for all the analysis of each river section, the
methodological approach varies from case to case. These assessments are mostly done with
hydraulic models, and the scope of the practice is rather broad. Mostly a 2D simulation is
applied because the spatial resolution is better than in the 1D simulation, and the sections
are shorter, however, at the price of higher computational power because of more detailed
topographic resolution constraining the analysis to a small river section. For the spatially
more comprehensive analysis, the 1D simulation is to be preferred (Rousselot, Vetsch, and
Faeh, 2012} Vetsch et al.,2015b).

Due to all this research, a good survey on the flood situation in Switzerland already exists.
However, the increasing frequency of flood events in the last few years in Switzerland (2007,
2014, 2015), the prospected climate change and the growth of the population results in in-
creasing potential for damages. All points to the importance of doing further research to
gain an even better understanding of the rivers and their interaction with environmental
conditions. In Switzerland, all regions are affected by floods; mountain regions are con-
cerned as densely populated areas are. The Bernese Oberland is of high importance because
mountains serve as water towers for the lowlands. The water is transported via the rivers to
the whole country. Mountains have an intense and very rapid run-off reaction, and they are
highly vulnerable to climate change. Despite the high flood risk in the Bernese Oberland,
only few studies have tried to analyse and model channel capacity on a large perimeter. As
described above, most studies have focussed on single rivers, applying different methods
and making thereby a comparison between studies difficult.
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This study aims at contributing to fill this gap by conducting a weak point analysis along
the major river of Bernese Oberland. In order to gain a holistic view, the purpose of this
work is to combine hydrological and hydrodynamic approaches. The channel capacity and
its associated return period shall be determined for each measured cross section along the
main rivers Hasliaare, the Aare (Thun-Bern), the Simme, the Kander and the Liitschine. The
idea of this procedure is to evaluate the possibility of gaining plausible values with rather
simple approaches, which could ideally be applied identically on every river, and that at
each cross section.

In summary, the diversity of research concerning floods is immense. Many institutional
players are engaged in it but primarily, they pay focused on a small scales, on single river
sections. Complementing this widespread practice, this study focuses to establish plausible
estimations of flood return periods and the channel capacity for each cross section over large
perimeter.

3.1.2 Objectives and Research Questions

Given the situation, the main aim of this part of the thesis is to develop a map of the Bernese
Oberland up to Bern, with identification of weak points attributed with the associated return
period along the main rivers. To achieve this, the following specific objectives and related
research question are formulated:

a) Identification of the discharge for floods with return periods in the range of 10 to
300 years (HQ1o to HQ300) for all available cross sections

— What is a reasonable method to extrapolate the flood with a certain return period
(HQ;) from the sites with discharge measurements?

— Are the produced results comparable with other results of the region?

- How to quantify the uncertainties of the method?

b) Determination of the bank-full discharge, i.e. the maximum capacity of the channel
for all the measured cross sections

— What is a straightforward method to identify the bank-full discharge for every
cross section in the simulations?

— How can iteration steps be automatized?

— Can similar results of the ongoing research be achieved with the calibration of the
model?

c) Attribution of the bank-full discharge with the calculated and associated return pe-
riod to identify the weak points along the rivers

— Where are the weak point in this river system?
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— Are the results comparable with existing studies, and if there are, what are the
differences?

3.1.3 Study Area

The rivers Aare, Simme, Kander and the Liitschine are situated on the northern flank of the
Alps, belong to the Aare Watershed (Fig. [.1). The upper part of the watershed upstream of
Thun belongs to a biogeographical region called "Alpennordflanke’, while downstream of
Thun, the "Mittelland’ region starts. The Aare watershed to Bern has a size of 2945 km? (RGS
Schonau). The average height of the catchment is 1610 m, and 8% of the area is glaciated
(FOEN, 2015Db).

Figure 3.1: The Aare watershed up to Bern (blue), the major rivers (light blue)
and the RGS along these rivers

The river Aare originates in the Alps, at the Aaregletscher. It drains at a steep slope from the
mountains and runs trough the Aareschlucht as a b-glacial discharge regime. Further down-
stream, it passes Meiringen in highly straighten riverbed, discharges in the lake of Brienz
and afterwards in the lake of Thun. From there on, it follows take its way in a corrected
riverbed to Bern (Hunzinger, Zarn, and Bezzola, 2008; Aarewasser AG, 2009).
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3.1.3.1 Survey Site

The survey sections are allocated along the main river belonging to the Aare Watershed:
Simme, Kander, Liitschine Hasliaare and Aare Thun-Bern. The length of the sections de-
pends on data availability. The riverbed of the Hasliaare (Meiringen-Brienz) has a shape of
a double trapeze consisting of a main channel with a floodplain, bordered by flood control-
ling dams. The riverflow is affected by hydropower (Hunzinger, Zarn, and Bezzola, [2008)

(Fig. B-2).

Figure 3.2: Hasliaare: channel with floodplain

The channel of the Aare Thun-Bern is mainly characterized by straightening which took
place between 1824 and 1892 (Aarewasser AG, 2009). To this day, a lot of work is done to
renaturate some parts, and consequently, the sections vary strongly in terms of width, type
of border and border vegetation. Figure|3.3|illustrates these differences.

Figure 3.3: Aare Thun-Bern: straightened (left) and renaturated (right)

The Simme (Lenk-Latterbach) is highly straightened until Weissenburg. Further down-
stream, it is widening up. Downriver, the Simme is meandering in an floodplain like region,
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and partly, the riverbed is, deep in the valley, like a gorge. It ends in a barrier lake in Erlen-
bach. From Erlenbach to Latterbach, it is corrected again ( Fig. [3.4).

Figure 3.4: Simme: upstream to downstream

The river course of the Kander (Frutigen-Lake of Thun) is characterized by straightening
and corrections, which were started 100 years ago (Kander correction) (Mueller, 2009). The
section Frutigen to Lattigen bei Spiez is corrected and exhibits a lot of swells. Just shortly
above the confluence with the Simme, the course of the river has been left in its natural state
(protected landscape). It has a gorge character. Figure 3.5 illustrates the explained situation.

Figure 3.5: Kander: straightening (left) versus protected landscape (right)

The Liitschine is divided into 3 subsections, the Schwarze, the Weisse and the Vereinte Liits-
chine. The Schwarze Liitschine (Grindelwald-junction) flows in a steep-like region nearly
naturally but in the valley plains, the riverbed is restricted by the channelling and the flood
controlling dams. In Burglauen, it passes a barrier lake, and afterwards, it flows to Hiisli-
matte, where the riverbed is deep in the valley. The same schema is observed for the river
Weisse Liitschine (Stechelberg-Junction). An exception to that is in the region of Lauterbrun-
nen: a gorge section with huge stones. Also the Vereinte Liitschine (junction-lake of Brienz)
is hardly corrected, apart from the first kilometres belonging to protected area. (Fischerei
BE, 2016). The three parts of the river Liitschine are shown in Figure
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Figure 3.6: Liitschine: Weisse (left), Schwarze (middle) and Vereinte (right)

The rivers Simme, Kander, Liitschine are the major tributaries of the Aare and serve as water
supplier. They are classified as montane, huge and middle-steep rivers. The characteristics
of the river sections and their watershed are summarized in Table Further, length, num-
ber of cross section and the average resolution is listed. The number of cross section number
and the length depend on the available data. The resolution is ration between the length
and the number of cross sections. The idea is to have an overview and to compare the rivers
at a glance. The information in the table was collected from the Federal Office for the Envi-
ronment (FOEN)-hompage (FOEN, 2015b) and the Geomap (Geomap, 2016) homepage.

Characteristics/River section | Hasliaare | Aare weisse Liitschine | schwarze Liitschine
Basic Watershed Characteristics

Area [km?] 557.9 2962 583.6 1098.6 388.8 165 179.1
average height 2150 1610 1598 1900 2050 2170 2050
run off regime - - | n-glacial - n. de transition | b-glacial- n. | a-glacial n. | b- to a- glacial n. b- to a- glacial n.
Slope [%] 0.32 0.19 0.98 1.15 0.93 246 2.6
Basic river section Characteristics

Length [km] 13 2748 43.74 16.93 8.66 11.05 12.12
Number of Cross sections 59 180 403 234 89 121 114
Average Resolution [m] 220 115 108 72 97 91 106
Number of large tributary 3 6 4 2 1 4 3
Water exploitation Yes No Yes Yes Yes No
Obstruction/ straightening high high middle high high high middle
Number of Gauging Station 1 2 3 1 1 1 0

Table 3.1: Hydrological characteristics of the river and basic characteristics of
the river sections
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3.2 Methodology

The concept of a weak point analysis is to attribute the associate return period of a flood
event to each evaluated bank-full discharge and to thereby discover the weak points of a
river. A weak point in this study is defined as following:

The evaluated channel capacity (bank-full discharge) of a cross section is associated with
return period below 100 years, i.e. with a high frequency of occurrence. For this purpose,
the results of the two specific objectives have to be combined to reach the third one. The
methodology section is subdivided into two parts according to the first two objective, for-
mulated in section[3.1.2] The flood estimation is based on the extrapolation or interpolation
of data of RGS along the rivers. The bank-full discharge will be evaluated by 1D simulations
in Basement (section[1.3). The analysis is done for every measured cross section, and for each
river section, the same methodological procedure is applied. The software for the analysis
include Basement, Arc Gis and R. The epistemic quality of the procedure is limited by many
compromises. The representation of the rivers depend on the number of cross section which
were measured during the campaigns. The output is valid for the year at the places where
the measurement campaign was conducted. Table |3.1)shows the different numbers of cross
sections and the related resolution for each river. For high quality modelling, it is recom-
mended to keep the distance of the measured cross section below 100 m (WMO, 2013). In
this study, the distance varies from cross section to cross section, but the average distance is
mostly around 100 m with one exception (Hasliaare with 220 m). Table 3.2|depicts the year
of measurement.

3.2.1 Data

The data can be grouped according to its purpose. First, basic data is used to establish
the different overview maps. Secondly, the simulation in Basement requires certain input
data, and at last, data is needed to extrapolate the flood values. Table (3.2l summarizes the
grouping of the data. The first group is called geodata, the second hydraulic data (mainly
geometry data), and the third group refers to the hydrology data.
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Data Set Source ‘ Resolution Date ‘ Comment

Geodata

Orthofotos (SWISSIMAGE 25) | Swisstopo (2016) 25m - map and visual estimation of channel boundary
Digital elevation model(DEM25) | Swisstopo (2016) 25m - basis for catchment size calculation
country map (LK25) Swisstopo (2016) [ 1:25000 m - for maps
Stream network (Vector25) Swisstopo (2016) [ 1:25000 m 2008 for map and comparison
Geometric basics

QPlines FOEN - 1953-2011 compiled by A. Zischg, shape file of the cross section
QPpoints FOEN - 1953-2011 | compiled by A. Zischg, shape file of all points along cross sections
QPFlowline FOEN - 1953-2011 compiled by A. Zischg, shape file of the flow line of the rivers
Hydrological data

Discharge data FOEN 01m3/s 2014 RGS along the river sections
Stage-discharge relation FOEN 0.1m3/s 2014 RGS along the river sections
HQ, Data FOEN 0.1m3/s 2014 based on the discharge data and conducted extreme value statistics

Table 3.2: Data source, Resolution and date for the maps, the simulation in
Basement and the flood assessment

The geometric data of the cross section specific to a river are integrated in the three men-
tioned datasets (QPlines, QPpoints and QPFlowline). The profiles geometric data were
measured by the FOEN, section risk prevention. Andreas Zischg proceeded the division
into these three files and completed the data. The QP_lines involves the information about
the length of the cross section, the coordinates of the right and left end, the orientation angle
and the distance between the cross sections. The QP_point contains information about each
point in the cross section, namely the x-,y- and z coordinate and the kst-coefficients. The
mentioned variables of the two datasets were used for the analysis.

3.2.2 Flood Assessment

As mentioned in section there is no established single method of how to estimate
a flood with a certain return period. The appropriate approach always depends on the
data situation, the survey sites and the purposed aim. In order to reach the objectives of
this study, a method, which is applicable on every river section and allows for comparison
between them is developed. The encountered conditions, such as the size of study area and
the number of RGS, suggest that the method should be applied on a large scale, should
rather be simple to apply and should no heavily depending on expert knowledge.

Accordingly, the idea of the flood assessment in this study is to use the information of floods
of a certain return period of the nine RGS situated along the studied river sections and
to extrapolate or interpolate the information over the catchment size of each cross section
along one river to determine a HQ, HQ3o, HQ50, HQ100 and HQs3¢¢ for each cross section.
The approach is a statistical approach and integrates only information about the catchment
size. Other possible approaches are to use the program HQx_meso_CH, which is based
on regionalization methods or the PREVAHregHQ tool, which is predicted on hydrological
model data. Following the first approach, the problem is that the catchment size boundary
is limited to 200-500 km? for a reliable result, which is too low for the study sites of interest
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here. The later is based on modelled data. Here, there are inaccuracies due to the modelling
process, and the lapse of time of the input data is only 20 years (Viviroli and Weingartner,
2012). Thereby an extrapolation of a HQ;( is not reasonably feasible. However, those two
methods will serve as a reference for the result, meaning as a comparison.

The attribution of cross sections with a flood of a certain return period can be subdivided
into different steps. This will be outlined in the next three sections.

3.2.2.1 Catchment Size

The determination of the size of the catchments is the basis for the extrapolation. The cal-
culations were implemented in the ArcHydro tool in ArcGis. The necessary input data is
provided by the digital elevation model (DEM) and the coordinates of one point at each
cross section. First, the tools of ArcHydro are used to correct the DEM, and and in a sec-
ond step, the watershed can be drained according to the height information in space with
the remaining six tools of the Terrain processing. Finally, one obtains a watershed which
comprises every stream and their catchments.

1) Terrain Processing

— Fill in the DEM: The program was not able to correctly represent the boundary
of the Aare Watershed. Therefore, the produced DEM was clipped with the wa-
tershed of the Aare, which is an open source data set of the ‘Gewaesserinforma-
tionssystem der Schweiz (GEWISS)” (FOEN, 2015a) to end up with the correct
drained watershed.

- Flow Direction

- Flow Accumulation

— Stream Segmentation

— Catchment grid Delination

- Catchment Polygon Processing
— Drainage line Processing

- Adjoint Catchment Processing

Based on the the Terrain Processing and the determined drainage point the watershed
specific for the cross section was calculated.

2) Drainage Point

- Batch point: A shape file was created with point features that can be used as
input. The batch point were generated based on the cross section. The left point
coordinates were taken for all of the cross sections.

3) Watershed Processing

— Batch Watershed delineation: The watershed calculation is based on the batch
point. At some point, the batch points were too far away from the flow line
(drainage line processing), and corrections by hand had to be introduced in order
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to calculated the correct watershed. If a calculation of the catchment size based
on this point was still not possible, an interpolation between the catchment size
of the one above and the one below was conducted.

Figure3.7|shows the calculated watersheds and the batch point for the Liitschine.

1:135'000

Figure 3.7: Processed Watersheds for the batch points of the each cross sec-
tions along the Liitschine

3.2.2.2 Calculation of the HQ, along the Rivers

The attribution of the flood event with return periods of 10, 30, 50, 100 and 300 years is based
on the data of the nine RGS along the studied river sections and on the calculated catchment
size for each cross section. No analysis of the quality of the RGS data was made, i.e. all
data was used and was processed the same way. The HQ1, HQ30, HQ50, HQ100 and HQ39
at the cross section of the RGS were calculated based on extreme value statistics and are
provided by the FOEN, as mentioned. During the evaluation of the HQ,, two different cases
were possible depending on the number of available RGS along a river section. If only one
RGS was available, an extrapolation was conducted, the discharge rate (proportion between
the discharge and the catchment size) at this location was calculated and the result was
multiplied with the catchment sizes of all other cross sections along this river section. This



45

procedure was applied to the river sections Kander, Weisse Liitschine, Vereinte Liitschine
and Hasliaare (compare section in table 3.2). In the case of multiple RGS for a river
section an interpolation based on the following equation was conducted:

HQup _ (@)y(t)
HQd Ad
with HQup = flood discharge RGS upstream [m?/s]
HQd = flood discharge RGS downstream [m?/s] (3.1)
Aup = catchmentsize RGS upstream [km?]
Ad = catchmentsize RGS downstream [km?]
y(t) = exponent depending on the return period
(Walther et al.,2012)

Formula has to be reformulated for the exponent y(t). It establish a relationship be-
tween the fraction of the discharge up- and downstream and the fraction of the catchment
size up- and downstream. In a second step equation 3.1/ has to be reformulated to assess
the discharge value, while all the other parameters are known. This is calculated for a dis-
charge of 10, 30, 50, 100 and 300 annual return period. This procedure was applied for the
Simme, where three RGS are available and to the Aare Bern-Thun with two RGS (section
Tab. For the river Simme, it was not possible to do an interpolation over the three
stations since in Erlenbach, there is a barrier lake. There, an interpolation was calculated
between the upper two RGS, and these values were extrapolated further downstream to the
barrier lake. Downriver of the barrier lake, the values were extrapolated in upstream di-
rection from the third RGS in Latterbach. The river section of the Schwarze Liitschine is an
exception here, as no RGS data exists. This lack of data was compensated extrapolating the
data of the RGS along the Vereinte Liitschine further upstream.

In order to simplify terminology, the used approach will be referred to as ‘extrapolation
method” and the HQ,, for all cross section as "extrapolated values’. But one should keep in
mind the here mentioned specifications.

3.2.2.3 Plausibility

HQx_meso_CH tool

For catchments without measurement stations, methods of regional transfer were used for
the determination of floods. The purpose of the HQx_meso_CH software is to provide a
tool, which does estimations of floods with a certain return period of one catchment, rely-
ing on different methods by doing so. The different procedures are based on the rational
equation, envelope or simple conceptual models (Wehren, 2010). The basic idea of regional
transformation is to mathematically formulate the variability of hydrological variables in
space. It aims to estimate the discharge without discharge measurement. The derivation of
the formula is based on catchments with discharge measurements (Spreafico et al., 2003).
The methods that here used were Momente, Giub’96, Kolla, BaD7. Those methods will not
be explained in detail here (more information can be found in the Manual of Barben (2001)).
The output variables of the tool are the HQ1 ¢ for the methods Momenta, Giub’96, Kélla and
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BaD7. Additionally, for BaD7 and Momenta, the HQj3( can be estimated. For estimations of
HQ30p the approach is based on a study of Dobmann (2009). She proposed to multiply the
HQ1 0o with a factor of 1.3, which was here applied.

The necessary input data for the program are the respective sizes of the catchments. For
this, the generated catchment shape file was used. The necessary files were compiled with
the R-code of Schwanbeck (2016). It is important to emphasize that only a few points that
are reference points (catchments) along the rivers were used to do the comparison with this
tool. The selection is based on significant changes in the discharge value due to inflowing
water of a tributary.

The developer of the HQx_meso_CH tool Barben (2001) recommends to analyse all the out-
puts, to delete very implausible values, and then to take the mean value, while the highest
and lowest value can be seen as the lower and upper confidence boundary (Spreafico et al.,
2003). The results can be considered plausible if the five estimations are close to each other
and all are lower than the estimated value of the estimated maximal discharge. As men-
tioned, this tool is restricted to meso scale catchment, that is, to a size of 200/500 km?. For
this reason, it is only used as a reference, because most catchments in this study are larger.

PREVAH_regHQ

The concept of PREVAH_regHQ is based on the PREVAH model. It is a deterministic, con-
ceptual and process oriented hydrological model and it simulates continuous discharge hy-
drographs for the time period of 1984-2003 (20 years). Those discharges are evaluated sta-
tistically in terms of the flood events. The estimation is based on meso scale catchments
in the Rhein region. The estimation of the parameter is mostly based on regionalization
because most of the catchments have no RGS. PREVAH stands for the name of the model,
while "reg" stands for regionalization and "HQ" for floods (Viviroli and Weingartner, 2012).
The simulation output and the flood statistics for the whole country are based on the "Basi-
seinzugsgebiete” of the HADES. Only a few comparison sites could be chosen because they
had to fit to the perimeter of the study site.

3.2.3 Determination of the Bank-full Discharge

The bank-full discharge is equal to the discharge when the water flow is at bank-full and
overflows the active flood plain (Fig.

The assignment of the bank-full discharges is describable by four common approaches, ei-
ther by means of a rating curve, by hydraulic geometry, by flow recurrence frequencies or
by flow equation such as the MSE. The method of the flow equation is the only approach,
which can be used for cross sections without a RGS (Wiliams, [1978). Therefore, the chosen
approach for this study was the MSE. The purpose is not to solve the equation for every
cross section individually, but rather to run a simulation in Basement and to simulate the
whole river section at the time. The advantage of using Basement instead of calculating the
capacity of the channel for each cross section individually is that potential backwater effects
can be considered. Additionally, it is possible to consider more than one M-coefficient and
to calibrate the model. For the 1D simulation as opposed to the 2D simulation, the water is
kept in the system and do not overflow. Therefore the channel capacity of each cross section
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can be evaluated individually. This better fits with the aims of that study. Further, it could
be applied to a larger region because of a lower computational time, which is also in a better
accordance with the aim of this study. According to Rousselot, Vetsch, and Faeh (2012) the
1D simulation are adequate to large scale streams and limited level of detail. Therefore, the
1D model was chosen.

Figure 3.8: Definition of bank-full discharge (Hauer and Lamberti, [2006)

3.2.3.1 Pre-Processing

According to section[1.3.2} the geometry file, the boundary conditions and the initial condi-
tion have to be set in order to run the operational command file. The missing input for the
geometry file, the active range of the channel, namely the boundary of the channel or bank-
full height had to be determined. In this study the active range is defined as the highest
point along the bank left side and right side (Fig. [3.8). The determination of the bank-full
height was done manually for every cross section. The R code of Mosimann (2015b) was
used to manually determine the bank-full height. The disadvantage of a that manual pro-
cedure is that for every cross section, the same question is open to judgement: where does
the riverbed with bank end? It is an important decision because it determines the bank-full
height and consequently the bank-full discharge.

For the definition of the boundary conditions, the type and slope at the boundaries had to
be fixed. The boundary condition type was the same for every river section. Upstream,
the input is a steady state inflow (hydrograph), and downstream it is a hg-relation (section
[1.3.2.1). The slope at the upstream boundary is calculated based on the first and second
profile, and the downstream boundary is defined based on the lowest and second lowest
profile.
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Regarding initial condition, the conclusion was to use a continuous inflow and not dry con-
dition as in the case of the case study in Kenya. An R-code was written to constantly increase
the inflow according to the increasing input discharge. The constant base flow is in that case
constantly 2 m?/s lower than the steady state input discharge.

The output file of interest, is the one which directly for every run indicates the water level
for every cross section. Because it can be used directly in the R-code to evaluate the bank-full
discharge.

3.2.3.2 Calibration

The discharge in the model is calculate with the help of the SME, while the kst-coefficients
have to be set and optimized, as mentioned in section As a first estimate kst-coefficients
are evaluated during a field survey. However, this first estimate may not lead to the targeted
results. Therefore, the kst-coefficients have to be calibrated based on known stage-discharge
relation. The kst-coefficient is changed until the water level output reaches the water level
associated with input discharge (Rousselot, Vetsch, and Faeh, 2012). The kst-coefficient can
be calibrated at every cross section of a RGS. The simulation runs over the whole river sec-
tion and the kst-coefficient is changed in every cross section for every run. The kst-coefficient
depends, amongst other factors, on the magnitude of the discharge. The interest of this
study is the channel capacity. Therefore, the input discharge should be as high as the cal-
ibrating cross section bank-full height allows for. Two kst-coefficients were fitted, one for
the channel bed and one for the bank. The two kst-coefficients were changed iteratively and
all reasonable combinations were plotted against each other in order to compare them with
the FOEN stage-discharge relation. A reasonable kst-coefficient combination was defined
as: the simulated water level does not deviate more than +/-5 cm of the anticipated FOEN
water level. Figure shows the calibration of the Zweiliitschine site along the Weisse
Liitschine. The grey and the blue lines indicate the simulated stage-discharge relation for a
reasonable kst-coefficient combination. The black line is the FOEN target curve. All three
lines reach the anticipated water level of 572.8 m.a.s.] associated with the discharge of 250
m?/s, but the course of the curves below and above is not the same. The determination of
the kst-coefficients is based on the kst-coefficient pair curve in those plots, which fits best
for a longer part the FOEN curve in region of high discharge.

As mentioned, the calibration includes all cross sections of one studied river section and not
only on a few cross sections, nearby the RGS. The reason for this is that the resulting kst-
coefficients heavily depend on the number of cross sections. If more than one RGS stage-
discharge relation of a river is available, the river section is divided into parts according to
the hydraulic conditions.
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Figure 3.9: Comparison of the FOEN stage-discharge relation with the simu-
lated stage-discharge relation based on the calibrated kst-coefficients

3.2.3.3 Simulations and Determination of the Bank-full Discharge

The bank-full discharge was identified with written R-code. It automates the simulations
for a number of defined runs and increases the input discharge about 2 m3/s for every run.
The simulated water level and the input discharge are collected in a table for every run. In a
second step, the left dam height and the right dam height (active range) were compared with
all the simulated water levels. If there was a match, the corresponding discharge was taken
as the channel capacity. The output was written in a table including the cross sections and
the evaluated parameters: the bank-full discharge, the related water level and the related
bank side of overflow.

3.2.3.4 Plausibility

A validation of running a scenario with the chosen parameters and comparing it with the
high flood marks is beyond the scope of this study. However, the plausibility of the calcu-
lated values was evaluated. All rivers sections were visited by bike to judge the plausibility
of the evaluate weak points and the calibrated kst-coefficients and, if necessary, slightly ad-
justed in the model.
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3.3 Results

In this section, the results of the weak point analysis are presented. The results follow the
structure of the three topics reviewed Estimation of HQ3g to HQs3qg, calculation of
bank-full discharge, and identification of the weak points. The identified weak points results
from a combination of the two first results. The exact values corresponding to the graphical
values can be viewed in the tables of Appendix[B|for each river section.

3.3.1 Floods with Return Periods of 10, 30, 50, 100 and 300 Years

For each river section the estimated floods with return periods of 10, 30, 50, 100 and 300
are specified in a figure (Fig. until 3.16), each including four different plots. The plot
(a) gives an overview of the HQ19, HQs3p, HQ509, HQ100 and HQ3¢ along the river section
based on each cross section. The plots (b), (c) and (d) separately depict the HQ3y, HQ199 and
HQ300 and their confidence band at the respective RGS with additional information. These
include the HQx_meso_CH estimation for the evaluated reference points, and, if available
the output of the PREVAH_regHQ model. Besides these figures, the Tables 3.3|to|3.8|enable
the comparison of the evaluated HQs3p, HQ100, HQ300 of the reference methods with the
applied method at the reference points. The values of the reference method are relative to
the extrapolated values. The study sites can be compared because reference points were
calculated relative to the extrapolated values. The reference points are set at the site of the
RGS and next to the tributary inflow. The number of reference points is different from river
section to river section. It depend on the number of larger tributaries. For the attribution of
the calculated bank-full discharge with a flood recurrence period, only the results of plot (a)

in Figure until are considered.

3.3.1.1 Hasliaare

The extrapolated values in Figure (a) are based on the evaluated HQ1o ,HQ30, HQso,
HQ199 and HQ3qg at the RGS Brienzwiler. Based on the location of the Brienzwiler RGS, the
value had to be extrapolated mainly in upstream direction. The HQ1¢ ,HQ30, HQs50, HQ100
and HQj3gp along the Hasliaare section increased slightly and constantly over the 13 km as
Figure (a) shows. The increase in comparison with the other river sections was rather
small due to the small increase in the catchment size (Tab. The sudden leaps in the
extrapolated lines can be backtracked to tributary inflow. From upstream to downstream,
these are the Geissholzlowenen combined with the Alpbach and the Milibach, and further
downstream, the Reichenbachfall with the largest increase, and the Hiislibach. These loca-
tions and the RGS correspond to the reference points. It is noteworthy that for the HQs,
HQ100 and HQ3qp at the RGS, the magnitude of the confidence band was large (200 m?/s).
The estimation of the HQsg with the Momenta and BaD7 method were both well above the
extrapolated values, and the difference decreased with increasing distance (Fig. (a)).
For the reference point 1, the BaD7 value is 1.98 times higher compared to the extrapolated
value and for the reference point 4, it is only 1.37 units higher (Tab. .

The results of the HQ10g showed an even larger spread. Again, the BaD7 method produced
large values in the same range as for HQ3o (Tab. , and low values were obtained with
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the Kolla Method. The lowest values exhibit with Kélla was only 0.37 for reference point 1
and 0.41 for reference point 4. The extrapolated values amounted to 442 m?3/s and 542 m3/s.
The mean values (Fig. (b)-(d)) are in the range of 0.78 to 0.92 and thereby slightly below
the extrapolated values (Tab. [3.3).

The pattern for the HQ3op was similar, but the range of the estimated values was smaller
(Tab. B.3). The Kolla method differed more importantly from the others and the Momenta
method values changed from a positive relative deviation to an negative relative deviation
when comparing the extrapolated values of the HQiqo to the HQs3¢ values.

In the case of PREVAHreg HQ, an estimation fitted to the study site (reference point 3), the
values were lower compared to the mean of the other reference estimates for each HQ,.. The
difference increased with an increasing return period.

In summary, the range of the HQ3, HQ199p and HQ3py estimations for the Hasliaare covers
a broad range, but the extrapolated points were more or less in the middle of the different
estimates and the mean values of the HQx_meso_CH method only differed slightly from the
extrapolated values. They are in the range of 0.76 to 0.99 relative to the extrapolated values
(Tab. [3.3). The HQ discharge along the river increased only slightly.
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Figure 3.10: HQ, extrapolation for the Hasliaare based on every single cross
section with the estimations of the HQx_meso_CH and PREVAH_regHQ: (a)

HQ10, HQ30, HQs0, HQ100 and HQs00, (b) HQ30, (¢) HQ100 and (d) HQs00.
River distance measured from Meiringen to Lake Brienz.
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Reference 1 Reference 2 Reference 3 Reference 4
Catchment size (km2) 453 530 549.6 555.2
HQ30 Extrapolation (m3 /s) 322.3 377.04 391.04 395
Momenta 1.18 1.14 11 1.09
BaD7 1.98 157 14 137
PREVAH - - 0.78 -
HQ100 Extrapolation (E) 442.24 517.36 536.57 542
Momenta 1.04 1.01 0.98 0.97
BaD7 1.75 1.37 1.22 1.19
Kolla 0.37 0.4 0.41 0.41
Giub (Fn) 0.63 0.6 0.59 0.59
Giub (MQ) 0.82 0.77 0.75 0.75
Mean - 0.92 0.83 0.79 0.78
PREVAH - - 0.65 -
HQ300 Extrapolation (m3 /s) 589 689.7 714.8 722
Momenta 0.87 0.95 0.94 0.99
BaD7 1.46 1.29 1.18 1.21
Kolla 0.31 0.38 0.4 0.42
Giub (Fn) 0.53 0.56 0.57 0.6
Giub (MQ) 0.69 0.72 0.73 0.8
Mean 0.77 0.78 0.76 0.99
PREVAH - - 0.53 -

Table 3.3: Comparison of the HQx_meso_CH methods and the PRE-

VAH_regHQ the extrapolated values for the HQso, HQ109 and HQs3¢¢ for the

4 reference points along the Hasliaare. The values of the comparisons are rel-

ative to the extrapolation. The catchment size and the extrapolated values are
in absolute values

3.3.1.2 Aare Thun-Bern

For the river Aare, data of two RGS were available, and an interpolation between the RGS
was possible. The confidence band seemed to be narrower for the different HQ, and at the
two RGS compared to the Hasliaare. The HQ1o ,HQ30, HQs50, HQ100 and HQ3pg along the
river is again only slightly increasing, and the influence of the tributaries from upstream
to downstream (Zulg, Amletebach, Rotach, Kiesen, Giesen and Giirbe) were nicely visible.
From the tributaries, the Giirbe has the largest catchment and consequently the highest im-
pact (Fig. (@)).

The river section Aare Thun-Bern is a special case, because it was not possible to proceed
the reference approaches. First, the catchment size is high above the threshold for the other
methods and secondly, the water flows through two lakes before flowing trough the Aare.
There, the water flow is interrupted.

The evaluated HQ3p, HQ10o and HQs3qo for Thun are 425 m?/s, 471 m?/s and 511 m?/s and
for Bern 492 m3/s, 545 m?® /s and 590 m3/s.
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Figure 3.11: HQ, extrapolation for the Aare Thun-Bern based on every single

cross section: (a) HQ19, HQ39, HQs50, HQ100 and HQ3¢, (b) HQso, (c) HQ100
and (d) HQz00

3.3.1.3 Simme

Again, the extrapolated lines showed a constant increase with sudden leaps that could be
explained by the influence of the various tributaries (Fig. [3.12p). The main tributary from
upstream to downstream are: Wallbach and Sitebach, Zelgbach and Cheeselbach, kleine
Simme, Ruersgraben, Schwandgraben and Chrachigraben, Wuestbach, Buuschebach and
Eygrabe, Steinibach and Chirel. The Chirel, the last tributary inflow, has the largest influ-
ence, pointing to its large catchment size. The reference point 1 is the RGS Oberried (Fig.
3.12)), since the data of the RGS was used. The estimation with HQx_meso_CH were also
calculated for this location even though no cross section data was available.

Figure (a) illustrate the differences between the extrapolated values and the values of
BaD7 and Momenta at the reference points (1-12) for HQsg. For the reference points 1 to
3, the difference between BaD7 and Momenta as compared to the extrapolated values was
small, and the extrapolated values are larger (Tab. 3.4). But for the next reference point, the
magnitude of values scatters more strongly, especially in case of the BaD7, the values are 1.5
to 2.06 times higher than the extrapolated values.

The HQ1 9 shows a similar pattern for BaD7 (Fig. (c) and Tab. 3.4). It is noteworthy that
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for the course of the Kélla estimations for reference points 1 to 10, the estimations were above
the extrapolated value, and afterwards, they were below (first, 1.11 to 1.54 times higher, and
then 0.74 to 0.99 of the extrapolated values). The values of the three other methods, Giub
(Fn), Giub (MQ) and Momenta were in the range of 0.74 to 1.34 relative to the extrapolated
values for all the reference points. The mean values (including all methods) were larger than
the extrapolated values (in the range of 0.92 to 1.43 relative to the extrapolated values for all
the reference points).

For the HQj3qp, the range of HQx_meso_CH method values was the largest, and the values
were mostly higher than the extrapolated values ( Tab. 3.4). The pattern of the estimations
was similar to the HQ¢o. The mean values were a factor of 1.21 to 1.59 higher than the ex-
trapolated values (Fig. (d)). Interestingly, the HQx_meso_CH estimates for HQ;oo and
HQ30p were lower at reference point 9 than at reference point 8, but exception doesn’t count
for the mean values of the methods.

The PREVAH_regHQ values at the reference points 2, 3 and 4 showed the same pattern for
HQ30, HQ100 and HQ3¢9, where the values were lower compared to the extrapolated val-
ues. For the points 7 and 11 the values are above: higher increase of the discharge between
Zweisimmen and Latterbach compared than in extrapolated values. In general, the estima-
tion at the RGS sites were not always lying in the range of the confidence band.

Overall, the values of the methods of HQx_meso_CH were higher than the extrapolated val-
ues. The extrapolated values were in the range of the reference methods. The mean values
for the reference points 1 to 3 were very close to the extrapolated values.

R1 R2 R3 R4 R5 R6 R7 RS R9 R 10 R11 R12
Catchment size (km2) 3481 901 1568 2407 _ 3102 3245 3432 3807 3905 4013 5629 5792
HQ30  Extrapolation (m3/s) 31 8226 10521 12728 14246 14533 149 15601 15779 15972 250 257.26
Momenta 077 065 087 11 127 128 131 136 138 168 114 113
BaD7 093 062 088 153 2,04 211 218 214 217 26 183 181
PREVAH - 055 067 0.64 - - 114 - - 144 - -
HQI00  Extrapolation (m3/s) 393 9064 12153 15249 17442 17861 184 19436 197 19989 298 306.65
Momenta 074 072 092 112 126 127 129 132 T34 11 115 114
BaD7 088 069 092 152 1.98 2.05 211 204 2.07 1.75 183 181
Kolla 111 151 151 1.54 143 14 135 129 131 1.31 076 076
Giub (Fn) 108 08 091 0.96 0.98 0.99 099 131 1.01 1.31 084 083
Giub (MQ) 108 08 087 0.92 0.96 0.96 097 121 0.99 1.21 084 083
Mean 098 092  1.03 1.21 1.32 133 134 143 134 1.34 108 107
PREVAH - 061 072 0.69 - - 1.2 - - 1.35 - -
HQ300  Extrapolation (m®/s) 393 9694 13586 17642 20592 21163 219 23326 23691 2409 343 352.96
Momenta 096 0885 107 126 139 139 T41 143 T44 12 13 129
BaD7 114 084 107 171 218 225 23 221 223 1.89 207 204
Kolla 145 184 176 173 1.57 153 148 14 141 142 086  0.86
Giub (Fn) 14 104 106 1.07 1.08 1.08 109 141 1.09 141 095 094
Giub (MQ) 14 099  1.02 1.03 1.06 1.06 106 131 1.07 1.31 095 094
Mean 127 112 12 136 1.46 146 147 139 145 144 122 121
PREVAH - 062 07 0.67 - - 114 - - 133 - -

Table 3.4: Comparison of the HQx_meso_CH methods and the PRE-

VAH_regHQ with extrapolated values for the HQ3sy, HQ199 and HQ3gp for

the 13 reference points along the Simme. The values of the comparison are

relative to the extrapolation. The catchment size and the extrapolated values
are in absolute values
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Figure 3.12: HQ, extrapolation for the Simme based on every single cross
section with the estimations of the HQx_meso_CH and PREVAH_regHQ: (a)

HQ:10, HQ30, HQ50, HQ1 00 and HQ3qg, (b) HQ3p, (c) HQ19p and (d) HQ3q0

3.3.1.4 Kander

For the extrapolation of the HQ10, HQ30, HQ50, HQ100 and HQ3pp values, only the Hondrich
data was available. The extrapolation is based on this data in up- and downstream direc-
tion. Figure (a) illustrates the course of the HQ10, HQ30, HQ50, HQ100 along the Kander
from Frutigen to Spiez. The rise of the extrapolated line is rather slow. The tributaries which
cause the sudden leaps include the Chiene, the Suld and the Simme. The increase due to the
Simme is strong. No HQx_meso_CH estimation was reasonably at the junction and below
because of the large size at the confluence point of the rivers. Overall, no PREVAH_regHQ
calculations could fit this study site.

The estimated HQ3( values of the HQx_meso_CH were similar to the extrapolated points
and were in the range of the confidence band of the RGS values (Fig. (b)). The differ-
ences to the extrapolated values were constant along the river. The BaD7 values are around
1.09 times higher than the extrapolated values, and the Momenta values reached around
0.94 of extrapolated value.

The mean values for the estimated HQ1oo values for each reference point were close to the
extrapolated values and always smaller (Fig. (b)-(d) and Tab. . The confidence band
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of the RGS included all the estimated values. Especially the Giub (Fn) method exhibited low

values.

For the HQ3qo the pattern of distribution and deviation was similar to the HQgo. Only
for the reference point 1 the difference between the extrapolated value and the mean was
higher. The confidence band at the RGS has a very large interval.

To sum up, the values for the HQj3 are similar for all estimation and for the HQ;oy and
HQs300, the values of the Giub methods are the lowest for the first three reference point
compared to the extrapolated values and thereby responsible for the deviation of the mean
compared to the extrapolated values.
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Figure 3.13: HQ, extrapolation for the Kander based on every single cross
section with the estimations of the HQx_meso_CH and PREVAH_regHQ: (a)
HQ10, HQ30, HQs50, HQ100 and HQ300, (b) HQ30, (c) HQ100 and (d) HQs300
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Reference 1 Reference 2 Reference 3 Reference 4 Reference 5
Catchment size (km2) 334.2 4442 456.7 484.7 493.63
HQ30 Extrapolation (m3 /s) 162.51 215.99 222.05 235.65 240
Momenta 0.98 0.94 0.93 0.93 0.93
BaD7 1.11 1.03 1.06 1.09 112
PREVAH - - - - -
HQ100 Extrapolation (m3 /s) 207.2 275.38 283.12 300.45 306
Momenta 0.93 0.89 0.88 0.88 0.88
BaD7 1.06 0.99 1.01 1.04 1.07
Kolla 1.14 1.03 1.03 1 0.96
Giub (Fn) 0.46 0.43 0.43 0.76 0.75
Giub (MQ) 0.61 0.58 0.58 0.83 0.82
Mean 0.84 0.78 0.79 0.9 0.9
PREVAH - - - - -
HQ300 Extrapolation (m3 /s) 257.3 341.98 351.59 373.11 380
Momenta 0.97 0.93 0.92 0.92 0.92
BaD7 1.11 1.03 1.06 1.09 1.12
Kolla 1.19 1.08 1.08 1.05 1.01
Giub (Fn) 0.48 0.45 0.45 0.8 0.79
Giub (MQ) 0.64 0.61 0.6 0.87 0.86
Mean 1.07 0.82 0.82 0.95 0.94
PREVAH - - - - -

Table 3.5: Comparison of the HQx_meso_CH methods and the PRE-

VAH_regHQ with extrapolated values for the HQ3o, HQ199 and HQ3go for

the 5 reference points along the Kander. The values of the comparison are rel-

ative to the extrapolation. The catchment size and the extrapolated value are
in absolute values

3.3.1.5 Schwarze Liitschine

Along the schwarze Liitschine, no RGS is installed. Therefore, the values were extrapolated
based on the RGS situated in Gsteig along the Vereinte Liitschine. The increase of the dis-
charge along the river was larger than for the other rivers (Fig. (a)). The main tributaries
of the Schwarze Liitschine are the Schwendibach, Fallbach and Chienbach. It is noteworthy
that HQ30, HQ100 and HQ3q¢ largely spread with the method of HQx_meso_CH. All these
estimated values were large than the extrapolated ones.

In the case of the HQj3( calculated with BaD7 and Momenta, the values reached 2 to 2.23,
and 1.95 to 2.39 respectively relative to the extrapolated values for the 4 reference points.
As mentioned, also to the HQ;qp all the HQx_meso_CH estimations were above the extrap-
olated values (the mean values were 1.67 to 2.26 times higher, the mean was double of the
extrapolated value).

The HQ3p estimations indicate the same picture and the difference were even more distinct.
Interestingly, the PREVAH_regHQ estimations at reference point 4 for the HQs3p, HQ100 and
HQ30p were higher compared to the extrapolated values.

Overall, the difference between the extrapolated values and the estimation of the reference
method is the largest for the Schwarze Liitschine compared with the other rivers. The ex-
trapolated values are even smaller than the PREVAH_regHQ estimations.
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Figure 3.14: HQ, extrapolation for the Schwarze Liitschine based on every
single cross section with the estimations of the HQx_meso_CH and PRE-

VAH_regHQ: (a) HQ;o, HQ39, HQs50, HQ100 and HQ3q0, (b) HQ30, (c) HQ100
and (d) HQ300

Table 3.6:

Reference 1

Reference 2

Reference 3

Reference 4

Catchment size (km?) 52.29 97.1 122.2 145.02
HQ30 Extrapolation (m3 /s) 26.98 50.11 63.06 74.84
Momenta 235 239 21 1.95
BaD7 213 2.08 223 2
PREVAH - - - 1.18
HQ100  Extrapolation (m>/s)  31.94 59.31 74.64 88.58
Momenta 248 248 2.19 2.04
BaD7 2.15 2.07 224 2
Kolla 293 1.46 1.56 1.6
Giub (Fn) 1.72 1.37 1.26 1.19
Giub (MQ) 2.03 1.82 1.64 1.52
Mean 226 1.84 1.78 1.67
PREVAH - - - 1.22
HQ300 Extrapolation (m3 /s) 37.03 68.77 86.55 102.71
Momenta 278 278 245 229
BaD7 241 232 2,51 224
Kolla 329 1.64 1.75 1.8
Giub (Fn) 1.93 1.54 1.42 1.33
Giub (MQ) 227 2.04 1.84 17
Mean 2.54 2.06 1.99 1.87
PREVAH - - - 1.15

Comparison of the HQx_meso_CH methods and the PRE-

VAH_regHQ with the extrapolated values for the HQ3o, HQ100 and HQs3q
for the 4 reference points along the Schwarze Liitschine. The values of the
comparison are relative to the extrapolation. The catchment size and the ex-
trapolated value are denoted as absolute values
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3.3.1.6 Weisse Liitschine

The extrapolation of the HQ1o, HQ30, HQ50, HQ100 and HQ3pp had to be done in upstream
direction because the RGS of Zweiliitschinen is at the end of the Weisse Liitschine. The
main tributaries of the Weisse Liitschine are the Selfine Liitschine, Triimmelbach, (Suls-
and Sousbach), all of which caused sudden leaps in the downstream increasing discharge
(Fig. (@)).

The deviations of the HQ3y, HQ199 and HQ3g estimations from the HQx_meso_CH meth-
ods were much smaller compared to the one in the Schwarze Liitschine case, but overall
these still painted in a positive direction (Tab. [3.7).

The HQ3p Momenta estimations were always higher than the extrapolated values. The BaD7
was twice below and twice above the extrapolated values, but still rather close (Figure (b)).
In the case of HQ1qo, the order of the values of HQx_meso_CH method is interesting, since
it changed from reference point 1 to reference point 2. First, the BaD7 showed the lowest
value and the Momenta the highest. Afterwards, this changed to Giub (Fn) being the lowest
and Kolla the highest. The majority of the values were above the extrapolated values. The
mean values were 1.19 to 1.26 times higher than the extrapolated values. The Kolla estima-
tion produced the highest values.

The differences between the methods of HQx_meso_CH and the extrapolated values for the
HQ30p were even higher. The estimated value with the Kolla method was outside the confi-
dence band for the reference point 4 (RGS).

In opposition to that, the difference between the PREVAH_regHQ estimation and the extrap-
olated values increased with increasing distance from reference point 1 to 2. The estimations
reached 0.65 to 0.8 of the extrapolated values.

Overall, the extrapolated values are smaller than the estimations with the HQx_meso_CH
methods in the case of the Weisse Liitschine.

Reference 1 Reference 2 Reference 3 Reference 4

Catchment size (km?)  59.6 82.8 1102 144
HQ30 Extrapolation (m3 /s) 40.55 57.21 77.14 102
Momenta 1.28 1.18 1.27 1.19
BaD7 0.96 1.12 1.29 0.97
PREVAH - 0.67 - 0.71 0.8
HQ100 Extrapolation (m3/s) 50.2 70.14 93.76 123
Momenta - 1.26 1.18 1.28 1.21
BaD7 - 0.9 1.08 1.27 0.93
Kolla - 1.31 1.58 1.53 1.69
Giub (Fn) 1.07 1.02 0.97 0.93
Giub (MQ) 1.38 1.29 125 1.16
Mean 1.19 1.23 1.26 1.19
PREVAH 0.68 - 0.68 0.73
HQ300 Extrapolation (m3 /s) 59.57 82.82 110.22 144
Momenta 1.38 1.3 1.41 1.35
BaD7 0.99 1.19 14 1.03
Kolla 143 1.74 17 1.88
Giub (Fn) 117 1.12 1.07 1.03
Giub (MQ) 1.51 1.42 1.39 1.29
Mean 1.3 1.35 1.39 1.32
PREVAH 0.64 - 0.65 0.73

Table 3.7: Comparison of the HQx_meso_CH methods and the PRE-

VAH_regHQ with the extrapolated values for the HQ3p, HQ109 and HQj3q, for

the 4 reference points along the Weisse Liitschine. The values of the compari-

son are relative to the extrapolation. The catchment size and the extrapolated
value are denoted as absolute values
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Figure 3.15: HQ, extrapolation for the Weisse Liitschine based on every

single cross section with the estimations of the HQx_meso_CH and PRE-

VAH_regHQ: (a) HQ10, HQs30, HQs50, HQ100 and HQs300, (b) HQs30, (c) HQ100
and (d) HQz00

3.3.1.7 Vereinte Liitschine

The extrapolated values for each cross section are based on the evaluated HQ1o, HQ30, HQs50,
HQ100 and HQ3gp at the RGS in Gsteig. The extrapolation was conducted in down- and
upstream direction. The Vereinte Liitschine had a smaller increase than the Weisse and
Schwarze Liitschine due to the smaller catchment of the tributary (Fig. (@)). The only
notable tributary is the Saxetbach.

In the case of the HQ3( the BaD7 and Momenta estimations were higher than the extrapo-
lated values (far outside the confidence band even though the values were only 1.3 to 1.37
higher than the extrapolated values).

The HQx_meso_CH estimations of the HQ1¢ for all reference points were scattered around
the extrapolated values from 0.84 to 1.34 relative to the extrapolated values. Only the Giub
(Fn) method produced a result below the extrapolated values. The Momenta estimations
had the highest difference for the reference point 1, and further downstream, the values of
the Kolla method were highest (Tab. [3.8).

The differences in the case of the HQs3oo were higher compared to the HQ; estimations but
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the Giub (Fn) estimation was closer to the extrapolated values.

The PREVAH_regHQ estimations at the site of the RGS were similar for the HQ3s, HQj0o
and HQs30p and reached 0.93 to 0.97 of the extrapolated values, which is close.

To sum up, the extrapolated values are lower compared to the values of the HQx_meso_CH
method which are outside of the confidence band for the reference point next to the RGS.
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Figure 3.16: HQ, extrapolation for the Vereinte Liitschine based on every

single cross section with the estimations of the HQx_meso_CH and PRE-

VAH_regHQ: (a) HQ10, HQ30, HQs50, HQ100 and HQs300, (b) HQs30, (c) HQ100
and (d) HQs300
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Reference 1 Reference 2 Reference 3
Catchment size (km2) 344 379.4 379.6
HQ30 Extrapolation (m3 /s) 186.25 195.89 195.96
Momenta 1.32 1.3 1.3
BaD7 13 1.36 137
PREVAH - - 0.97
HQ100 Extrapolation (E) 218.41 231.84 231.94
Momenta 1.38 1.34 1.3
BaD7 1.28 1.34 1.34
Kolla 1.36 1.37 1.37
Giub (Fn) 0.84 0.84 0.84
Giub (MQ) 1.09 1.08 1.08
Mean 1.19 1.19 1.19
PREVAH - - 0.95
HQ300 Extrapolation (m3 /s) 250.81 268.78 268.92
Momenta 1.56 1.51 1.46
BaD7 1.45 1.5 1.5
Kolla 1.53 1.54 1.54
Giub (Fn) 0.95 0.94 0.94
Giub (MQ) 1.23 121 121
Mean 1.35 1.34 1.33
PREVAH - - 0.93

Table 3.8: Comparison of the HQx_meso_CH methods and the PRE-

VAH_regHQ with the extrapolated values for the HQ3o, HQ109 and HQj3q for

the 3 reference points along the Weisse Liitschine. The values of the compari-

son are relative to the extrapolation. The catchment size and the extrapolated
value are denoted as absolute values

3.3.2 Bank-full Discharge of the Cross Sections

The results of the channel capacity based on every single cross section for every river section
are integrated in a plot. The simulated bank-full discharge importantly depended on the
choice of the kst-coefficients. This was determined in the calibration. First, the result of the
calibration will be shown, followed by the results of the bank-full discharge for each river
section.

3.3.2.1 Calibration

The results of the calibration are summarized in Table The main output are the M -
coefficients for the different river sections and the subsections of the river section. The cre-
ation of the subsections is based on hydraulic and hydrological considerations. For example
the Simme, is much wider and less straightened in the second section than in the first and

the third is influence by the barrier lake (Fig. 3.17).

Figure 3.17: The three kst-coefficient sections of the Simme River from up-
stream to downstream
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River Numbers of RGS Sections kst-coefficients Data P/Q relation
Hasliaare 1 1-59 45,30,45 Calibration campaign FOEN 572.8 m-250 m> /s
Aare Thun-Bern 2 1-64 42,2242 Calibration campaign FOEN 550 m-291 m> /s
65-180 56,59,56 Calibration campaign FOEN 504 m-445 m> /s
Simme 3 1-236 25,35,25 Risk prevention campaign FOEN 930.7 m-88.5m* /s
236-340 19,25,19 Calibration campaign FOEN 779 m-167.5m 3 /s
341-403 21,24,21 Calibration campaign FOEN 665 m-211.5 m3 /s
Kander 1 1-203 35,46,35 Risk prevention campaign 2015 FOEN 648.66 m-172.5m" /s
Weisse Liitschine 1 1-121 47,22 47 Risk prevention campaign FOEN 651.8 m-100 m® /s
Schwarze Liitschine 0 1-114 23,27,23 Values Vereinte Liitschine -
Vereinte Liitschine 1 1-89 23,27,23 Risk prevention campaign FOEN 587 m-153.3 m® /s

Table 3.9: The kst-coefficients for the different river sections, their subsections
and the parameters on which the calibration is based upon

The Data column depicts which cross section could be used for the calibration. It was not
always possible to use the cross section next to the RGS (calibration campaign of the FOEN)
because the water level at the time of measurement was so low that the measured profile
was not enough wide to calibrate the bank-full discharge. In these cases, the data of the risk
prevention campaign of the FOEN (section 3.2.1) were used, but those are most of the time
not precisely located next to the RGS but rather close. An exception is the Kander, where
the data of the actual risk prevention campaign 2015 of the FOEN could be obtained. In this
campaign measurements at the RGS were conducted. The column Q/P relation indicates
for which stage discharge relation the kst-coefficient was calibrated. This was not always
an easy decision because it depends on the surrounding conditions and on the cross section
data availability. But the result varied just slightly for a water level 10 cm higher or lower.

To provide a framework about the influence of the magnitude of the calibrated kst-coefficients
on the simulation output, two plots are shown, the Aare in Thun (Fig. top) as an ex-
ample of a constructed and wider river, and the Weisse Liitschine (Fig. bottom) as an
example for a smaller alpine river. The plots show the deviation of the discharge and the
deviation of the water level as a function of changing kst-coefficients of the channel. The
change in the water level or the discharge by scaling down the kst-coefficient by one is very
different for the two cases. The Aare has an increase of the water level of 8 cm, and, in the
opposite case, the discharge would decrease 15 m?/s, which corresponds to a relative de-
crease of 5.2 %. Under the same variation of the kst-coefficient, the weisse Liitschine shows
increase in the water level of 2 cm, and, in the opposite case, the discharge would decrease
4 m3/s, which corresponds to a relative decrease of 4 %. It further shows also that the influ-
ence on the discharge or water level is not constant for an increase of the kst-coefficient by 1
(it differ from value to value).
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Figure 3.18: Influence of the kst-coefficient on the discharge and the water
level: RGS Aare Thun (top), RGS Weisse Liitschine (bottom)
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3.3.2.2 Hasliaare

Figure illustrates that the river bed of the Hasliaare was homogeneous. The left bank
and right bank site did not show large changes in the course and both sides were on a similar
height. The only difference was observed at the beginning, where the right side was higher
than the left side, and at kilometre 10 near the RGS, where the right side was again higher. I.e
if it overflows on one side, the other side follows quickly. However, there are some section
with a tendency of overflow for a side. Along the first kilometre, the weak side it changed
from right to left quickly, but further downstream, at kilometre 7 to 9, the lower height of
the right side will cause overflow. The opposite again is the case from kilometre 9 to 12.
There was a general increase of discharge from upstream to downstream. It was in a range
of 300 m? /s to 650 m? /s, excluding the outliers in Meiringen and Brienz. There, the bank of
the cross section was higher than before and after. Even though the fluctuations in the bank
height were small, the difference of the channel capacity from cross section to cross section
can amount up to 100 m?/s. This occurred in the first kilometres and from kilometre 11 to
12 possibly because the Hasliaare has an average width of 20 m but still some narrow spots.
The section around the RGS had also larger variations, but differences in the height of the
bank site were visible. The lowest capacity of the channel was found between kilometre 9 to
10, where the discharge was only 304 m?/s and 276 m?/s. The other patch of low capacity
was located between kilometre 4 and 7.

Overall, the Hasliaare seems to be homogeneous and the range of the bank-full discharge is
rather small.
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Figure 3.19: Bank-full discharge of each cross section with the associated wa-
ter level and the left and right bank side height along the Hasliaare
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3.3.2.3 Aare Thun-Bern

The section of Thun-Bern of the Aare was subdivided into two parts to gain a better overview
(Fig. (@) and (b)). The kst-coefficient pair changes next to the Chiesen inflow as men-
tioned in section Figure (a) shows four parts of the bank-full discharge. During
the first kilometre of the first section, the channel capacity was around 550 m?3/s and varied
in the range of approximately 100 m? /s with one exception, where it reached 1112 m?/s. The
low bank-full discharge values with a channel capacity of 444 m?/s to 534 m?/s occurred
in a location where the right bank side was higher. The bank side along this part ranges
between high and low. The second section started with a heavy increase of all variables,
and the channel capacity reached a level of 1420 m?/s. Also the bank side height on the left
and on right side are on a comparable level. It stayed at the level and increased even more
before a low value, showed a capacity of 518 m3/s only and which reflects a depression of
the waterside.

Subsequently, the bank-full discharge decreased constantly to the distance of kilometre 8 to
470 m3/s. This third section was first homogeneous even though the bank-full discharge
varied from cross section to cross section up to 200 m3/s. Afterwards, the left bank was
much higher and the fluctuation was similar. At kilometre 8, next to Kiesen, the bank-full
discharge increased to an extreme value of 1400 m3/s. Downwards from these, both the
variation in the bank-full discharge and in the bank-full height of one side was remarkable.
Overall the values of this fourth section were high.

Figure (b) shows the course from Miinsigen to Bern (kilometre 13 to 28). It look as if
the left dam side was higher most of the distance. At kilometre 16, a depression of the right
dam side lead to a very low bank-full discharge of 322 m?/s. There were two river segments
in terms of the variability of the channel capacity. First, it decreased slowly with increasing
distance until kilometre 8 and then it shortly increased until Muri, where the variation was
abundant. At kilometre 19, the lowest value with a discharge of 522 m3 /s was calculated.
In the second section after Muri, the bank-full discharge decreased overall and the fluctua-
tion between the cross sections was smaller. It was quite homogeneous and it looked as if all
cross sections have a comparable capacity. The channel capacity decreased constantly with
the exception of Schonau, where the bank sides were much higher.
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3.3.2.4 Simme

The Simme was subdivided into three sections due to its length. Figure (a) depicts the
tirst 14 kilometres. Along this section, the river bed was more or less homogeneous with
some exceptions where the left bank side was higher. Overall, no trend was visible for one
side. The bank-full discharge increased with increasing distance and showed some strong
fluctuations in the direction of high capacity (however, they are not in the focus of this anal-
ysis). The lower level of the bank-full discharge was in the range of 50 m3/s to 150 m3/s
where most of the cross section of this section belong to. The bank-full discharge had the
tendency to slightly increase in direction of Zweisimmen. The lowest value in St. Stephan
was of 78 m3/s, and between Lenk and St. Stephan, the capacity was even lower (50 m?/s).
At kilometre 24, the kst-coefficients in the model change as indicated in Table For the
section from Zweisimmen to Oberwil, the bank-full discharge was on a higher level of 150
m3/s to 250 m?/s with a lowest value of 120 m?/s at kilometre 13.5 (Fig. (b)). But the
changes of the bank-full discharge from one cross section to the next were very high in some
cases, as around kilometre 16. Along this part, the slope of the riverbed seemed to be very
steep. Constant high values were found in the region of Boltigen, where the left bank side is
the critical side. The level of the low points were of a similar value over the whole section.
At kilometre 24, the bank-full discharge started to fluctuate again.

The third section showed unequal bank sides and heavy fluctuations in the bank-full dis-
charge, changing from cross section to cross section (Fig. (c)). Between kilometre 30
and 36, values were low in the range 50 m3/s to 150 m?/s along multiple cross sections.
They were lower than the values of the enclosed cross sections apart from some exceptions.
The third section with associated kst-coefficients starts in Erlenbach after the barrier lake
at approximately kilometre 38. Upstream of Latterbach, the values were again rather low:
in the scale of 76 m?/s to 170 m?/s. The last section showed an increase again with high
fluctuations towards kilometre 42, before it started to decrease again.
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3.3.2.5 Kander

The Kander river in general showed high values for the bank-full discharge, mainly for
the second part. The variation of the bank-full discharge between the cross sections in the
second part were large. They in some cases reached more than 1000 m?3/s (Fig. (b)).
The first section had a more homogeneous river bed even tough the height of the bank side
is varying. A weak side could not be determined, but a tendency for the left side being
deeper in the upper part was detected. The variation in the bank-full height is probably
the cause for the changes in bank-full discharges. Along the river, three very low values
appeared, with discharge values of 60 m3/s, 84 m?/s and 60 m3/s going downstream. A
pattern of low values was detected in the region between Miilenen and Hondrich (Fig.
(a)), ranging between 200 m3/s and 400 m?®/s, however with section with much higher
values. Downstream of Hondrich, the capacity increased, with an exception to two outlier
with lower discharges of 250 m3/s and 236 m?/s respectively. The fluctuation of the channel
capacity was extreme and the height of the banks varies strongly.
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3.3.2.6 Schwarze Liitschine

In the case of the Schwarze Liitschine, the river was subdivided into two parts: Grindelwald-
Burglauen and Burglauenen-Giindelischwand. In the first part, the channel capacity of the
river tended to decrease with increasing distance. The lowest values of the fluctuating bank-
full discharge were in the range of 60 m?/s to maximally 130 m3/s (Fig. . In terms of
inundation risk, no tendency towards a bank side was detected. Few exceptions with very
high values were mostly along a cross section where the bank side is higher. This result
showed also that the capacity is different for every cross section. The curve rises and sink in
the range of 200 m3/s. This is a rather large difference for a river of such a small size.

The second part showed a similar picture. The bank-full discharge tended to decrease with
increasing distance, and the bank-full discharge varied highly from cross section to cross
section. The lowest values were located downstream of Giindlischwand, lying between 58
m3/s and 88 m3/s. For both parts, the bank sides seemed to be rather homogeneous. Only
downstream of the river, the left side was higher.
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3.3.2.7 Weisse Liitschine

The weisse Liitschine exhibited segments of low channel capacity in the range of 40 m?/s to
120 m3/s (Fig. [3.24). These segments were between kilometre 2 and 3, between kilometre
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4 and 5, between kilometre 7.5 and 8.5, and between kilometre 10 and 11. There, most
of the cross sections yielded low values, and there was less internal variation than in the
case of the other rivers. In average, the bank-full discharge tended to increase from up- to
downstream. However, two regions with a very high bank-full discharge were identified
after Lauterbrunnen and next to Zweiliitschinen, where the bank-full discharge was even

higher than 2000 m?/s. Up to and including kilometre 13, a tendency for weak left bank

side was observed. All in all, the bank sides were rather homogeneous along the whole

course.
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3.3.2.8

The Vereinte Liitschine was subdivided in two sections with similar characteristics (Fig.
3.25). In the upper part up to kilometre 6, the bank sides height strongly varied and thereby

Vereinte Liitschine
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caused a large variation in the bank-full discharge. The channel capacity was rather low

in Zweiliitschine, with a lowest bank-full discharge of approximately 150 m?/s. Also, up-

stream of Gsteig, values between 140 m? /s and 220 m?3 /s were observed. The second section

downstream exhibited less variability in the height of bank side and bank-full discharge,

some exceptions set aside.
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3.3.3 Identification of the Weak Points

Weak points along a river are here defined as the cross sections whose bank-full discharge is
attributed with a HQ between 10 and 100, meaning that the channel capacity exceedance has
a high occurrence frequency. This part unites the results of section and section.
First, the results are shown as a bar plot, where each bar indicates the return periods as-
sociated with one cross section. One bar includes the HQ;o to HQs3g¢ and is subdivided
according to this classification. The bank-full discharge is depicted as black dashed lines
connected over a black line. Secondly, the results are represented on a map in order to
have the geographical context. The background maps are provided by the Federal Office
of Topography. The maps show a cutting of the river section and the corresponding cross
sections. The cross section lines are coloured according to the associated return period of
the bank-full discharge of the cross section. Above the cross section lines, the magnitude of
bank-full discharge and the side of overflow is written. Additionally, the channel bound-
aries are circumscribed referred to as black points. Thirdly, the results are merge into a map
where all river sections are showed.

3.3.3.1 Hasliaare

The results of the weak point analysis of Hasliaare showed a uniform appearance (Fig. .
All cross sections, except for two, were attributed with an HQ,, in the range of 10 to 300. The
major part thus was in the range of HQ3o to HQ1go. The cross sections with the lowest ca-
pacity (described in section were mostly belonged to HQs3p. Those with the lowest
capacity next to the RGS were even attributed with an HQ;¢. This result shows that the de-
scribed variation of the low channel capacity between the cross sections can already change
the attributed HQ,.. The village Meiringen is not protected on the level of an HQiqy at some
points (Fig. [3.27). Downstream of Meiringen, next to Balm, channel capacity was still low
but a HQgp can flow off. In Brienzwiler, the capacity was a HQsy maximally with one
exception. As explained the HQ, was higher along the village than in their surroundings.
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3.3.4 Aare Thun-Bern

The HQ, attribution of the channel capacity along the Aare showed an inverted picture
to the Hasliaare, as only few cross sections were associated with a low return period (Fig.

.28). The overall capacity was rather high and consequently, most areas can be regarded
as low risk. The areas with low capacities (potential weak points) include a zone next to
Thun (RGS Thun). The cross sections were classified with HQ;¢9, and a single weak point
was even attributed with a HQs. For the section in Jaberg, one cross section was attributed
with a HQj0o and one with a HQj5p; the cross section in front of the Hunzigerbriicke showed
the same. In the last section from Dahlholzli to Marzili, the associated HQ, ranged from
HQ1p to HQ5p. Figure shows that the weak points are located in the city itself of Berne.
The last 9 cross sections were deleted in Figure because the values are very low and
therefore implausible.
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3.3.5 Simme

The Simme river was very heterogeneous in terms of the attributed return periods. Overall,
it revealed a lot of weak points, mainly in the region between Lenk and Zweisimmen and
close to Erlenbach (Fig. (a) and (c) and Fig. [3.31)). Between Lenk (outside the village )
and St. Stephan, most of the cross sections were associated with return periods below 100
years. A majority even belongs to a HQj3( or lower. The region is not densely populated, but
is still used for agricultural production. In the villages the Simme had higher return periods;
some cross section did not show potential for danger. The S-curve in front of Zweisimmen
constantly showed a HQ3 or lower, and next to Zweisimmen the HQ, values were still low.
As the results of the bank-full discharge already indicated, the section from Zweisimmen to
Oberwil had less weak points and only a few were below a HQ1o (Fig. (b)). The weak
points were not aggregated nor close to populated areas. After Weissenburg, the channel
capacity decreased again heavily and a zone of weak points showed up until Ringoldingen.
With some exceptions, the return period varied from cross section to cross section. In this
zone the Simme flows through a valley and is far from human settlements. In front of the
barrier Lake in Erlenbach, the bank-full discharge again exhibited a HQ3y for four cross
sections and for the cross section at the train bridge. Due to the inflow of the Chirel tributary,
the discharge of the HQ,, increases. The channel showed a slightly higher capacity here but
the bank-full discharge remained in the range of an HQ3o to HQ1o close to Burgholz.
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Figure 3.31: Weak points along the Simme downstream of the Lenk

3.3.6 Kander
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In comparison to the Simme, the Kander river showed a inverted pattern. Along the river,
most of the cross sections exhibited a low recurrence frequency (Fig. (a) and (b)). As
mentioned, two of the very low values are caused by the definition of the channel boundary
and have to be ignored. The low capacity of the cross sections after Miilenen were attributed
with the return periods of HQs9 and HQ3y. They are not located along the populated are
and therefore have a low risk potential (Fig. 8.33). The side of overflow is the left side, i.e.
the side opposite to the railway tracks. The section next to Bad Heustrich is attributed with a
range of HQ3p to HQ1go. Further downstream, there were only two more weak points, and a
few more after the joining with the Simme. Those weak points are not located in populated

areas.
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Figure 3.33: Weak points along the Kander next to Miilenen

3.3.7 Schwarze Liitschine

According to the showed Figure the low capacity of the Schwarze Liitschine in Grund

was not attributed with high recurrence frequency. In other words there are no weak points

in Grund. Only six weak points with a return period below 100 years appeared downstream
of Grund. Figure shows the results based on the cross section number. The gap by

the gorge part on Figure is not included in the bar plot. Next to Riidli, the Schwarze

Liitschine gets narrower. In this section, a pattern of weak points appeared. Close to the
junction, the weak points were attributed with a high frequency period, a HQj3y.
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3.3.8 Weisse Liitschine

The four zones of low channel capacity along the Weisse Liitschine were attributed with
high recurrence periods. As in the case of the other rivers, the magnitude of the return pe-
riod varied from cross section to cross section (Fig. 3.36). The area which will be mostly
overflowed is the surrounding of Briiggmatte and the area along the river course from Spiss
to the cemetery in Lauterbrunnen (Fig. [3.37). For the first zone, the weak side was the left
side, and for the second zone close to Lauterbrunnen, it was the right side. Both are popu-
lated areas. Most of the natural zones were not in danger. In the village of Lauterbrunnen,
no risk potential was detected. Two further zones downstream of Lauterbrunnen were de-
lineated. In the zones the frequency of flood events calculated for bank-full discharge is
high. Most of the bank-full discharge values of these cross sections were below a HQ3y with
no tendency for a weak side. Only a short part of that section is populated (Sandweidli).
The last zone next to the RGS in Zweiliitschinen showed a range of HQ3p to HQ50. Next to
the four zones the capacities were high and were not connected to a high frequency period.
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Figure 3.36: The HQ;( to HQs309 and the bank-full discharge for each cross
section along the Weisse Liitschine
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3.3.9 Vereinte Liitschine
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The Vereinte Liitschine exhibited weak points in the region downstream of Zweiliitschinen,
where the return period varied from HQj3o to HQ1go. The left bank side would be inundated
(Fig. . The area where most of the inundation happens was located along the agriculture
zone in front of Wilderswil and in Wilderswil itself (Fig. [3.39). Next to Boningen, the last

zone of weak points was observed.
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3.3.10 Synthesis Map of the Main Rivers of the Bernese Oberland

Figure shows the weak points of all rivers. The focus lies on small sections between all
the cross sections. The sections are coloured according to the return period of the bank-full
discharge of the cross sections. The main rivers are visible at a glance as also their weak
points. It shows that the number of weak points along the rivers is very different. In the
Simme, the Weisse Liitschine and the Hasliaare, the highest number of weak points relative
to the number of cross sections was calculated. The very low value along the Aare in Bern
are not considered in this map.
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3.4 Discussion

3.4.1 Floods with Return Periods of 10, 30, 100 and 300 Years

The results of the river sections showed that the estimated discharge values were different
from river to river. The results drew a sketch of the individual characters of the rivers. It
became evident that in all the river sections, the discharge increased from up- to down-
stream along the river. Differences in the magnitude of the increase can be explained with
differences in the increase of the catchment sizes along the river a factor that is mainly de-
termined by the catchment size of the tributaries. In comparison of the HQx_meso_CH
method and the extrapolation method show that the mean values of HQx_meso_CH esti-
mations were smaller than the extrapolated values at the reference points for the river Kan-
der and Hasliaare, and larger for the Simme, the Vereinte Liitschine, Schwarze Liitschine
and the Weisse Liitschine. The largest deviation was observed for the Schwarze Liitschine.
There the extrapolated values were lower than all the values of all other methods. As men-
tioned, the values with a large deviation should not be considered to calculate the mean of
the HQx_meso_CH results. However, in this study all values were considered in order to
provide an overview over the differences. For this study area the Giub methods showed the
smallest deviation from the reference values (RGS data) according to (Spreafico et al., 2003).
For all river sections, it revealed a similar and constant pattern. The values were always
rather low in comparison with the other methods.

The lower values of the extrapolation method compared to HQx_meso_CH estimations
close to the origin of the Hasliaare, the Schwarze Liitschine, Weisse Liitschine could may
be explained this way: First, the extrapolation method considers only the catchment size.
Secondly, the extrapolation was conducted from RGS located downstream. Further, the wa-
ter that inundated surrounding areas on the way down left the system border (river) and
could not be considered even if in reality, it is likely to reappear further downstream. There
is no data evidence for the amount of water flowing in the upper part of these rivers. Addi-
tionally, these three rivers are characterized by a very high percentage of glacial area leading
to a greater amount of water flowing from the origin of the rivers. This was neither consid-
ered here, because in this analysis, the discharge value increase/ decrease according to the
catchment size. The study site of the Simme also indicates that if more RGS were available,
the interpolation would produce a more satisfying result closer to the HQx_meso_CH result
in the origin.

The high deviation of some estimations of the HQx_meso_CH methods were caused by
both limitations of the HQx_meso_CH tool and the employed method. The Hasliaare with
a catchment size of 530 km? at reference point 2 is already out of the valid part for all meth-
ods. Therefore, the results of HQx_meso_CH tool for the Hasliaare should be interpreted
carefully. Probably, decreasing values with increasing catchment sizes in the BaD7 method
and the low values of the Kolla method may be due to too large catchment size.

This may also explain the extreme increase from reference point 4 to 5 along the river Simme
of the BaD7 estimations because at this point, the catchment size exceeds 200 km?2. For fur-
ther analyses it would be better to eliminate these values and recalculate the mean of the
HQx_meso_CH methods.

Also, for the Vereinte Liitschine, the deviating values in the BaD7 and the Momenta method
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is probably caused by the large catchment size, which is already 344 km? at the first reference
point.

The intrinsic limitations within the estimation methods of the HQx_meso_CH tool may be
responsible for some artefacts by the Kolla method at Hasliaare and at Weisse Liitschine.
According to Spreafico et al. (2003), the method should not be applied to catchments with
controversial parameter combinations like high percentage of glaciation or high percent-
age of urbanisation. The catchment of the Hasliaare shows 21% of glaciation (catchment
Brienzwiler), and the Weisse Liitschine 17.4% (catchment Zweiliitschine). The same weak-
ness holds for the Momenta and the BaD7 method, thereby explaining the very high values
along the Schwarze Liitschine. No satisfactory explanation could be found for the very low
values of the Giub (Fn) method for the first three reference points in the case of the Kander
and the lower values of the reference point 10 in comparison with reference point 9 along
the Simme for the HQ1o9 and HQ3qp.

To sum up, differences in the outcomes were related mainly to the limitations of each sin-
gle method or to the implementation restrictions of HQx_meso_CH tool. Therefore, recal-
culating the mean with excluded outliers would most probably reproduce more similar
HQx_meso_CH estimations and extrapolated values. However, if we consider the confi-
dence band of the values at the RGS most of the estimated values lie inside of the range.

The estimations of the PREVAH_regHQ were always smaller than the extrapolated values.
An exception to that are the higher values for the Schwarze Liitschine, which supports the
hypothesis that the extrapolation based on the RGS in Gsteig alone is not sufficient to esti-
mated the values along the Schwarze Liitschine. Comparing to the HQx_meso_CH methods
and the PREVAH_regHQ method, the extrapolation method produced satisfactory results.
The only river where the results should be questioned is the Schwarze Liitschine.

In the following, the results of this study are related to findings from other studies and
technical reports.

For the Hasliaare, the determined discharge values of Hunzinger, Zarn, and Bezzola (2008)
are slightly higher. They assessed HQ1g of 530 m3/s next to Meiringen. The difference may
be explained by their consideration of the barrier lake further upstream.

In the case of the Aare, the Aarewasser AG (2009) accounted for a HQ1gy of 550 m? /s before
the Giirbe tributary, and 600 m?/s afterwards. They raised the value due to the higher
frequency of floods in the last years. In this thesis, values were interpolated between two
FOEN RGS. This data basis is the same even though our discharge values were lower.

Along the Simme, the comparison of the attributed return period is difficult and complex
since the technical reports based their calculation on heterogeneous approaches. The extrap-
olated HQ3 of this thesis for all possible points of comparison (Lenk, St. Stephan, Boltigen,
Latterbach) are in a comparable range with the results of the technical reports by GEOTEST
AG (2012), KH AG and KZ AG (2008) and EB AG (2008). However, the steps between the
HQ3p and HQ1p as well as between HQ19 and HQs3¢p showed a larger spread in the tech-
nical reports. Next to Lenk, the values of GEOTEST AG (2012) are 70 m?/s, 90 m3/s and
115 m3/s, and next to St. Stephan the HQ3p, HQ199 and HQ3¢p of KH AG and KZ AG (2008)
amount to 103 m3/s, 124 m3/s and 145 m?/s. The difference even increases further down-
stream. In Boltigen, EB AG (2008) determined HQs3y, HQ1p0 and HQ3¢p as 145 m3/s, 219
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m?/s and 238 m3/s. The steps between the HQ, are larger than the values here proposed
even though Boltigen is next to the Oberwil RGS and therefore, the values are expected to
concord.

Compared to the result from KH AG (2005), who proposed values of 182 m®/s, 225 m3/s
and 260 m3/s next to Erlenbach, the values of the here presented study are lower. Down-
wards of the Chirel, the opposite holds: the values of this study are higher than the values
from KH AG (2005). Higher values could be due to the fact, that the extrapolation of the
HQ, values is only based on the RGS data in Latterbach, which is far away from the point
of interest.

The comparison with the study of Wehren (2010) for the upper part of the Kander showed
an interesting pattern. In the river section, the values of Wehren (2010) are similar to our
HQ3p but lower for the HQ19 and HQ3p9. Although Wehren (2010) had a similar approach
to the presented study, he used the RGS data next to Kandersteg and next to Frutigen and
could therefore proceed to an interpolation. This may explain these differences. At the RGS
next to Hondrich, the values of Wehren (2010) are higher, which is probably due to a shorter
period of data that Wehren (2010) was using for modelling.

Further downstream at the junction of the Simme and the Kander, the values of this master
thesis are comparable to the study of Wehren and Weingartner (2007). The HQ, evaluation
of the study of Wehren and Weingartner (2007) is based on extreme value statistics. Their
data input is the combined daily data of the RGS located at Hondrich and Latterbach, where
this study also retrieved data from. Depending on the percentage flow of each river, three
scenarios are developed by then. The range of the three scenarios for the HQ1 g lies between
535 and 671 m?/s. Our values fit within that broad range. They did not valuate the different
scenarios.

Regarding the Liitschine, a study of Naef and Lehmann (2012) pointed at the complexity
of this catchment. The run-off formation is influenced by many parameters. The spatial
distribution of precipitation is heterogeneous due to topography. Snow and glacial melting
magnify the discharge, and the storage capacity of some areas is rather high. Therefore,
the study of Naef and Lehmann (2012) presented higher HQ3, HQ199 and HQ3¢o values of
72 m3/s, 87 m3/s and 117 m3/s next to Grund. That study suggests that the extrapolated
values of our study may have been underestimated, because the RGS in Gsteig is located
downstream of the Schwarze Liitschine. It supports the assumption that for the Schwarze
Liitschine, this RGS data alone is insufficient for reliable extrapolation. This finding should
be kept in mind for the attribution of weak points.

Regarding the Weisse and Vereinte Liitschine, the results from Naef and Lehmann (2012)
correspond well to the results of this study. Naef and Lehmann (2012) found 48 m3/s, 72
m?/s and 82m?3/s for HQ39, HQ10o and HQs for Stechelberg along the Weisse Liitschine.
In Zweiliitschinen Naef and Lehmann (2012) found 195 m?3/s, 232 m?3/s and 251 m?3/s for
HQ3p, HQ100 and HQ3p along the Vereinte Liitschine. The HQ1qg of the Vereinte Liitschine
is an exception with rather different values, probably due to the integration of past flood
events.

In summary, the results of this thesis are in agreement with the mentioned technical reports,
where the approaches were mostly also based on an extrapolation. Differences in the out-
come could mostly be explained by the additional information considered in the analysis of
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other studies. The results of this study are not in agreement for the river Simme, where the
deviation for some sections is high. Along the Simme, no tendency for a global under-or
overestimation in relation to other studies was noticed . The advantage of this study is that
the HQ30 100,300 are calculated for each measured cross section along the rivers and not just
for section next to the communities, i.e. target of primary interest.

This approach is judged adequate, since it is in broad agreement with other studies. Further
it is less complex because it is only based on one variable: the catchment size. Moreover,
large areas can be cover quite quickly. All in all, this method proved to be satisfactory for
reaching the formulated aim.

3.4.2 Bank-full Discharge of the Cross Section

The results showed that each river has its own characteristics. The variability along the
cross sections and between the rivers can be backtracked to the geometry of the riverbed
and consequently, the differences in the heights of the bank sides. The results depicted that
all the rivers exhibited at least in some parts a low channel capacity relative to other values
of this river. This indicate the existence of weak points.

A further output of the results is that there were two forms of low channel capacity: on one
hand a conglomeration of multiple cross sections with low capacity, and on the other hand
single cross sections with a much lower capacity than the other cross sections nearby. The
patches can then again be subdivided in two groups, one with a high internal variability and
one with constant low values. Additionally, the results showed that the capacity increased
together with the flow kilometres as expected. Exceptions to the latter were the Aare next to
Bern and the second part of the Schwarze Liitschine.

Most of the time, the existence of one single low channel capacity, meaning a potential weak
point, could be related to the topographic conditions or a wrong definition of the bank-full
height (channel boundary). For example the Aare, next to kilometre 2 (Fig. exhibited
low channel capacity due to the topographic condition, while two of three low values along
the upper part of the Kander (Fig. were caused by a wrong definition of the bank-full
height.

Evidently, the magnitude of the bank-full discharge depends on the dimension of the rivers.
Therefore the Aare, Hasliaare and the lower part of the Kander had the highest channel ca-
pacity relative to the other rivers. The lowest channel capacity was modelled for the Simme,
the Weisse und Schwarze Liitschine relative to the other rivers.

The homogeneous bank side heights and the constant channel capacity of some parts of the
rivers are caused by the anthropogenic influence to correct the river and to protect against
flood. The affected rivers are the Hasliaare (Fig. along the whole river, the Aare Thun-
Bern for some parts mostly near Thun and Bern (Fig. and the Weisse Liitschine up-
stream of Lauterbrunnen and next to Zweiliitschinen (Fig. [3.23). The Schwarze Liitschine
was corrected in the upper part and near Zweiliitschinen (Fig. [3.24), and the Vereinte Liits-
chine after the projected area (Fig. [3.25). The Simme is regulated in the section after Lenk
and afterwards at single patches (Fig. [3.21), and the Kander (Fig. has corrected sections
along the whole river. The Kander and the Schwarze Liitschine showed also a rather high
variation of the bank-full discharge from cross section to cross section in the constructed
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section. Even tough the sections are corrected, the bank-full discharge was lower than in the
other parts of the river.

High channel capacity relative to the other cross sections in the Simme, the Kander after
the junction and the Weisse Liitschine after Lauterbrunnen caused by the gorge character of
those river sections. For the Aare, the high channel capacities instead are may be caused by
the inflow of the Chiese or the changing kst-coefficients next to the inflow.

In contrast to this study, all the technical reports considered predominantly populated areas,
such as communities along the river. Further they often used 2D model with inundation
areas considered. In contrast to the 1D simulation the water can go out of the river channel,
where the focus is on the capacity of each cross section.

According to the report of Hunzinger, Zarn, and Bezzola (2008), the bank-full discharge of
the Hasliaare for the first section from Meiringen to Brienzwiler is lower than 400 m?/s for
some cross sections.

For the part next to Brienzwiler, no comparison could be made. The low values found in
this study were probably caused by the definition of the bank-full height. In comparison to
the next cross section, the height of the left dam is much lower, but probably the measured
width was to short. During the field survey, it became evident that there is also a narrowing
of the river. The calculated values are plausible and this can be supported by the measured
kst-coefficient for Brienzwiler by Vischer (1983), which is between 30-34 (one value for the
whole channel).

Along the Aare, next to Bern the values were close to the values of EB AG et al. (2014), where
the simulation is based on the 1D model MORMO calibrated with the flood event of 2005. EB
AG et al. (2014) determined the channel capacity of the Aare as 420 m?/s next to Dahlhélzli
and Marzilibad. This study showed much lower values, too low to be plausible. Probably
the disagreement, is caused by the possibly wrong determined slope at the last cross section
in the Basement simulation of this study, which have also a influence on the calibration
process. Additionally, Aarewasser AG (2009) validated their model with the flood marks
of 2005 with an input of a HQ1p 550m 3/s. Cross sections with a low bank-full discharge
were identified two kilometres after the outflow of the lake of Thun (next to the RGS) and
in Jaberg. Those points were also identified in this study. However, the potential weak
points from Wichtrach to Miinsigen and the one in Muri Bad were not found in the here
presented model. A possible explanation for this could be the resolution of the measured
cross sections used in this study, because there is no cross section next to the Muri Bad, and
the distance between the cross sections is 200 m. Interestingly, after Miinsigen, next to the
Hunzigerbriicke, and between Belp and Muri, the potential weak points of the technical
report are not only identified here, but they also agree in the magnitude of the capacity.

The Simme river is the longest of the analysed rivers and probably the most complex. Other
studies examined only specific sections along the river including Lenk, St.Stephan, Boltigen
and Diemtigen. No study considered the whole course of the river as this thesis did.

GEOTEST AG (2012) simulated the section Lenk with the model HEC-RAS that is based
on cross sections of the risk prevention measurement campaign 2005. The estimation of
the bank-full discharge of GEOTEST AG (2012) was between 50 m?/s and 80 m?/s from
Sagisstrasse to Lischmatte, and up to the Schadaulibriicke, even lower. From Sagisstrasse
to Lischmatte, the results of this study are slightly higher. Further downstream, our values
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were lower, where GEOTEST AG (2012) predicted rising values. This is an interesting dif-
ference as both simulation were based on two kst-coefficients for the whole section. All in
all, the two studies agree that for the whole section the channel capacity is low.

The upper stream part of St. Stephan was analysed by KH AG and KZ AG (2008) with the
Software FLUMEN 2D. The overflowing occurs in Niderdorf on 75 m3 /s, similar to the re-
sult of this study. Further downstream, in the south of Matte, KH AG and KZ AG (2008)
concluded that the capacity slightly increases. This concords with the results of this study
(90 m?/s).

Downstream of St. Stephan, the potential weak points are located in the north of Ried with a
capacity between 120 m3/s and 140 m?3/s according to the simulation of Mosimann (2015a))
and KH AG and KZ AG (2008). The results are in a broader agreement with this study. At
the end of a sharp S-curve upstream of Blankenburg, the presented study showed much
lower values than Mosimann (2015a). The difference cannot be caused by the definition of
the channel boundary.

For the region of Zweisimmen, the simulation in Basement again showed lower bank-full
discharge values upstream and but higher values downstream of the kleine Simme inflow
in comparison to Mosimann (2015a). He detected inundation by input discharge of 70 m3/s
(50 m3/s in our study next to the RGS where we calibrated our model) for some points up-
stream, and downstream of 110 m3/s (compared to 120 m?3/s in our study). The deviation
of approximately 20 m?3/s at the upstream point in Zweisimmen is quite large. Because our
model was calibrated close to there, we would not have expected such a deviation. The
report of geo7 AG and KH AG (2004) calculated a deficit left side of the channel after the
Kleine Simme inflow, next to the camping and next to Galgenbiihl, for the first two by a
capacity of 120 m3/s and for the third of 150 m?3/s. These three points were modelled here,
too, but the capacity of the last point was lower than at the second point. The simulation
output of this study showed that the second cross section had its weak point on the right
side. This could be explained by the definition of the bank-full height. The potential weak
point next to the ARA in Grubenwald cannot be compared because there is no study con-
sidering this section.

For the section Weissenbach, the analysis of the EB AG (2008) report based on a simulation
in HEC-RAS concluded that the channel capacity is below 175 m?/s and that the capacity is
lower in Weissenbach than in Reidenbach (EB AG, 2008; Mosimann, |2015a)). These proposi-
tions were confirmed by this study. According to EB AG (2008), the river section in Boltigen
had at least a capacity of 200 m?3/s and after Boltigen the bank-full discharge is around 215
m3/s. The evaluated bank-full discharge for this study is lower with 160 m?/s in front of
Boltigen.

An analysis of the section between Boltigen and Erlenbach was not found in any of the
reports probably because of the gorge character of the section. The results of this study
showed low values. A reason for this could be that the foreland is not include in definition
of the bank-full height of this study.

For Erlenbach, Mosimann (2015a) and KH AG (2005) found lower capacity values around
the village. That outer part of the village, Blauweg, Au Allmi and Wilerau, exhibited a ca-
pacity of 180 m?/s, while in the center, a capacity of 220 m3/s was modelled. These potential
weak points were also identified in the analysis of this study, but the values were lower. The
lowest values were located in front of the barrier lake, in Au Allmi and Wilerau.

In Latterbach, the values of this study were lower than described in the report (KH AG,
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2005), especially close to the barrier lake. This may be due to the fact that the lake is not
considered in the simulations of this study.

To sum up, in terms of the Simme there is no clear trend of over- and underestimation of the
channel capacity of this study with regard to the literature values. Rather, it differs between
the section. Those differences may be caused by the division of the river for the calibration
and the evaluated kst-coefficients in this study. Along the section Boltigen und Diemtigen,
the agreement is higher. In conclusion, the 1D simulations did not lead to the same results
as literature. However, the whole river could be simulated.

For the Kander, a comparison was conducted with HZP AG and EB AG (2007). They applied
the REC-RAS 2D model over the course from Blausee to the outlet with a calibration as
well as a validation. Therefore the results should be reliable. The possible weak points
were located at Schwendi-Ey, Kien (approximately 170 m?3/s), where the values of this study
were 70 m3/s higher. Additionally, one in Kiene was only identified because the bank-full
height was wrong determined there. The higher values in this study could be caused by the
calibrated kst-coefficients downstream in Hondrich, which are high. Further downstream,
the potential weak points are located between Reichenbach and Miielenen and next to Bad
Heustrich, associated with values of 230 m?/s to 300 m?/s. These values are in similar range
as the results of this study. The Kander exhibited no more potential weak points after the
joining because it flows in a depression caused by the Kander tunnel (Mueller, 2009). In
this study potential weak points appeared. They were determined by the definition of the
bank-full height with no consideration about a potential of danger.

The course of the Schwarze Liitschine in the upper part next to Grund had a very low ca-
pacity along the whole part according to the technical report of MW AG (2014), which con-
ducted a 1D simulation with HEC-RAS. The calculated capacity was between 70 m?/s and
110 m3/s. To compare, the lowest value of this study were slightly higher than the lower
boundary of the technical report. As mentioned, no RGS data were available and the kst-
coefficients were transferred from the Vereinte Liitschine. They are still similar to the used
value (25) in the study of MW AG (2014). Downstream, only single potential weak points
were evaluated in this study. Most of the times, they were caused by the definition of the
bank-full height, without integrating the foreland. An exception of this is the one next to
Zweiltitschinen.

For the Weisse Liitschine around Lauterbrunnen GEOTEST AG and PORTA group (2014)
showed a very similar pattern. Their simulation was run with HEC-RAS (2D) and the input
discharge was 77 m?3/s. The inundation areas were found to be lie front of Loweli, the
camping side and Aschmad. This study showed slightly lower values for the three potential
weak points. According to FAN and KOHS (2015), a discharge of 48 m? /s cannot pass below
Matte and next to Lengwald. In this study, only the cross section below Matte showed a low
channel capacity.

For the upper part of Vereinte Liitschine, where the protected area is located, no literature
data was found. The potential weak points are probably again caused by the definition of
the bank-full height. In this part of the river, floods are even intended for the purpose of
nature preservation. IG Flussbau AG (2012) pointed out regions with low channel capacity
with bank-full discharge of 100 m?/s to 175 m3/s along the agricultural zone Eyli, of 125
m3/s to 150 m?3/s at the Gsteigwilerbriicke and along agricultural zone Flisou. This thesis
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evaluated values in a similar range for the Gsteigwilerbriicke but not for the upper Eyli.
Probably, due to the distribution of the cross sections along this river section, no cross sec-
tion was measured at the narrow point. In Wilderswi, IG Flussbau AG (2012) calculated a
capacity of around 300 m3/s, much higher than the values of this study. Probably, this is
again caused by the definition of the bank-full height. As the field survey indicated, high
constructions were built to protect against floods along the river in the village. Thereby;, it is
not possible to have low channel capacity there.

Downstream of Wilderswil, next to RUAG, the capacity was again lower compared to the
results of this thesis, with only 140 m?3/s to 190 m3/s as compared to 200 m?3/s to 250 m?/s.
Along the last part in Bonigen, the calculated capacity by IG Flussbau AG (2012) was be-
tween 150 m3/s and 220 m3/s. The results of this study showed rather similar values for
the upper part, and for the last part, the values are lower.

To sum up, the general pattern of the different rivers and their potential weak points could
be identified with the method here applied. For most of the rivers, the pattern along the
river was similar to what was found in literature. Mainly, along one river, small over- or
underestimation as compared with the literature data was noticed. An exception occurs in
the case of the Simme. It was rather intricate to detect a general pattern in the comparison
between this study and the other conducted studies.

As explained, possible general reasons for the deviations between the values of this study
and the others are: the definition of the bank-full height, the representativeness of the model
as also geographical resolution and the calibration, that is, kst-coefficients.

The bank-full height determination is often responsible for the appearance of single low
values.

The resolution of the river channel, depending on the number of measured cross sections
in the model, could hold as a reason for the absence of some potential weak points. This
possibly holds for the Vereinte Liitschine close to Eyli, the Muri Bad, the missing of the
swells along the Kander and the barrier lake in Erlenbach and Latterbach. That is, not all
important points (like a narrowing spot) along the rivers are represented in the model, and
therefore, it is not possible to compare locations at some points. As showed in table the
resolution is different from river to river. The highest average resolution was achieved for
the Kander and the Weisse Liitschine. As mentioned in section it is recommended to
keep the distance between the cross sections below 100 m. The average resolution of the
here conducted analysis of the river sections can fulfil this recommendation. The Hasliaare
with 220 m however poses an exception, but there the river bed is very homogeneous as
explained.

The representation of the channel probably caused the low channel capacity at the end of
most of the river sections as lakes are not included in the simulations. This is just a rough
guess and its explanation lies outside of the scope of this study. Therefore the results of
those cross sections have to be taken carefully.

Figure in section pointed at the difficulty to name the uncertainty of the cali-
brated kst-coefficient generally accepted for all the rivers. The effect of the kst-coefficients
depend on the geometry (width and depth) and on the slope of the rivers. The change of the
water level is different for each scaling up of the kst-coefficient (Fig. left side). It illus-
trates that the increase of the kst-coefficient by 5 had a large influence on the water level in
both cases (RGS Thun and RGS Zweiltitschinen). Comparing the calibrated kst-coefficients
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to other studies, they concorded rather well. The studies evaluated the following values:
Schwarze Liitschine M = 18-25 (MW AG, 2014)), Vereinte Liitschine M = 21.5-23.3 (measured
values)(Vischer, 1983) and Hasliaare M = 30-34 (Vischer, 1983). In the models for the Simme,
the used kst-coefficients for the Lenk were M = 25, 31, 25, and at St.Stephan, the coefficient
was set to M = 30.

For the Kander, HZP AG and EB AG (2007) found the kst-coefficient to be 32 in the channel
and 25-28 for the bank side. This values were also proposed to hold for the part of the Aare
between Wichtrach and Miinsigen. There, the calibrated values were probably the main
reason for the deviations. One has to kept in mind that the calibrated values in the first
place represent a kind of average condition along the river. The deviation of the values at
the Aare between Wichtrach and Miinsingen and the strongly deviating values along the
Kander could be explained by the latter averaging of the conditions. Because the section
Wichtrach-Miinsigen is already at some parts renaturated, it exhibits other condition than
those next to RGS Schénau or along the other parts (Fig. [3.41). All in all, the calibrated
values in Bern, Schonau have to be questioned because the kst-coefficients were too high.

Figure 3.41: Aare: Wichtrach-Miinsingen (left) and RGS Schonau (right)

The cross section where the calibration of the Kander was conducted is located in a complex
morphological environment. This may have posed some problems for the implementation
in Basement. There are three consecutive swells. This is difficult to represent in Basement
(Fig. left side). For a better representation, further cross sections were integrated. How-
ever, the river section of the site is heavily constructed not only at the bank side, but also
at the channel. Therefore, the values here obtained are probably too high to represent the
whole river (Fig. right side). Additionally, there are a lot of swells along the Kander
and mostly, they could not be represented in the model.
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Figure 3.42: Kander upstreams (left) and downstream (right)

Considering the methodological approach to apply the calibrated values over the whole
river or section, the results showed reasonable and plausible discharge values, except for
some parts along the Kander and Aare Thun-Bern in comparison to other studies. Further
the chosen kst-coefficients for the simulation were similar to the ones of other studies and
the determination in the field. The deviation caused by the kst-coefficients varies from river
to river and probably even from cross section to cross section. Therefore, deviation could
not be generally explained. All in all, the methodological approach is straightforward and
allows for large-scale analysis.

3.4.3 Weak Points

The results from the section and section are combined to yield the probability
of flooding at potential weak points along the rivers. Thereby, weak points are identified.
The results showed that most of the cross sections exhibiting lowest channel capacities were
attributed with low return periods. An exception to that were the Kander and the upper part
of the Liitschine, where the channel capacity was only at a few cross sections low enough to
be attributed with a high probability of occurrence.

The field survey helped to classify the weak points within a certain range in terms of mor-
phological conditions. Most of the cross sections with a low capacity are just at the edge of a
curve, a narrowing of the river or at a steeper slope, where the flow accelerates mostly near
bridges. Even though bridges can not be modelled in Basement, the effects at topography
can be observed, if a cross section was measured next to the bridge.

The Hasliaare appeared as a river with a lot of weak points in the simulated results, and the
probability of occurrence of the bank-full discharge was high for most of the cross sections.
The upper part of the Simme and the surroundings of Erlenbach exhibited a lot of weak
points with a high probability of occurrence even though both the parts of Hasliaare and
Simme were already protected against flood by construction measure. The technical reports
of these river sections do confirm the occurrence of those weak points.
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For the Hasliaare, the values of this study are probably not valid anymore, because new
constructions are under progress in the upper part. The results of the Simme have to be
interpreted carefully because (as mentioned in section and it was very difficult
to determine the bank-full discharge in comparison with the literature data. Upstream, the
HQ,. here modelled was lower than in the consulted literature and after the inflow of the
Chirel, it was higher. The lower values led to an attribution with higher return periods, that
is to a weaker estimation of danger, and vice versa. The position of weak points however
was in agreement with the other studies.

In section 3.4.2} it was concluded that the situation next to the calibration cross section was
difficult to represent for the Kander because of the swells. Consequently, the calibration
probably result in too high kst-coefficients and caused too high bank-full discharge values.
The bank-full discharge was higher then in the consulted literature, and the return period is
lower.

For the Schwarze Liitschine the calculated values for the HQ, were lower compared to
the estimated discharge value with the HQx_meso_CH tool and the results of Naef and
Lehmann (2012). Consequently, the calculated channel capacity along Grund was attributed
with an HQqgo according to Naef and Lehmann (2012). This differs from the analysis of this
study, which for this part of the river did not identify danger of floods.

Provided that the results of the technical report are generally valid, the Aare Thun-Bern
would exhibit more weak points than identified in this study, especially in the upper reaches
and the lower course next to Bern. An explanation could be the higher expected values for
the HQ1gp of Aarewasser AG (2009). However note that the discharge values in Bern after
Schonau in this study in contrast are to low.

It is remarkable that the protection aim of HQ(g along the populated areas is not hold along
the Weisse Liitschine, the Aare in Thun and Bern and at some parts of the Simme according
to the results of this study. However, the results showed that channel capacities with high
frequencies of occurrence are located along unpopulated areas.

Despite the explained exceptions, the proposed approach of the extrapolation and simu-
lations in Basement was able to produce results in agreement with other studies. It also
managed to represent weak points and their associated return period along the main rivers
of the Bernese Oberland in a broader agreement with the other studies.
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3.5 Conclusion

This study aimed at assessing the weak points for floods and their associated return peri-
ods along the main rivers (Hasliaare, Aare Thun-Bern, Simme, Kander and Liitschine) of
the Bernese Oberland. It was based on each single measured cross section. In contrast to
past studies in the field of flood assessments and hydrodynamic modelling in Switzerland,
focusing on small-scale catchments, this study applied a consistent approach to all the rivers
on a large scale. Thereby, a comparison between different rivers was made possible.

First, the HQs3, HQ100 and HQ30g were evaluated for each cross section based on the extrap-
olation or interpolation of the available HQ1, HQ3o, HQ50, HQ190 and HQ30o data next to a
RGS. The discharge rate at a station was calculated and multiplied with the catchment size of
the considered cross sections. Additionally, for the purpose of validation, the HQ3p, HQ10o
and HQ3op were calculated with the methods of HQx_meso_CH and the PREVAH_regHQ
for some chosen reference points.

Secondly, bank-full discharge representing the channel capacity was calculated by apply-
ing the 1D hydrodynamic model Basement to each river section. The advantage of using
Basement instead of calculating the channel capacity for every cross section individually is
that back water effects are included and different kst-coefficients are applicable to one cross
section. The bank-full discharge was determined as the height where the associated water
level reached the height of the manually pre-defined active range (channel boundary).The
calibration of the model was conducted on the kst-coefficients. It was calibrated at the cross
section next to the RGS, where the stage-discharge relation of a high discharge was avail-
able. The calibrated values were applied over the whole river. Lastly, the two parameter
were combined to create a map indicating the weak points and their associated return pe-
riod.

The results of the evaluation of the HQ,, for each cross section showed that the used method
of extrapolation provided results in agreement with the method of HQx_meso_CH and the
PREVAH_regHQ. The results of this method were more constant than the reference meth-
ods, since such a large study site was considered. The method is rather simple to apply
because it considers only one variable, the catchment size. The magnitude and direction of
the deviation of the approaches were different from river to river. One cause for these vari-
able deviation pattern could be the position and the number of RGS along a river (the higher
upstream and the higher in number, the better). Another cause could may ground in the lim-
itation of the HQx_meso_CH tools and its methods. The output was in a broad agreement
with other conducted studies, with some exceptions. Other studies mostly used an extrap-
olation and included additional information, but they were restricted to small study areas.
It has to be kept in mind that there is no single true approach to this problem and that there
are large uncertainties difficult to define.

For the determination of the bank-full discharges the variability along the cross sections and
between the rivers could be backtracked to the geometry of the riverbed, namely the differ-
ence in the height and width of the bank sides. But, the appearance of low channel capacity
is not only driven by the geometry but also by the resolution of the cross sections along the
river. The model of each river could achieve results in broader line with other studies. Rea-
sons for lower or higher values as compared to the literature may be the manually defined
bank-full height (channel boundary), the resolution along the rivers (some important points
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can be missing) and the calibration process. The disagreements between the here produced
results and the literature differed from river to river and could not be generalized.

The output map locates the weak points attributed with the associated return period for the
main rivers in the Bernese Oberland. Some already constructed areas are attributed with a
low return period, and some populated areas are not protected against floods with a return
period of 100 years.

The here chosen method might be of interest for the ongoing research. In contrast to current
practice, this study evaluated the HQ, along the whole river and not just along sections of
interest (such as populated areas). Further, it has shown that this approach is applicable to
whole watersheds and different rivers, something that was not practised in the studies here
consulted, as they were concerned with a specific section of one river only. The outcome
was a map of the Bernese Oberland showing the weak points of the whole area based on
one single approach. It is thus not a conjunction of methodologically different approaches,
but a study based on a universally applied method. One obvious advantage is that this
facilitates the comparison between different rivers. It can be regarded as an extension to
the today used approaches. In comparison to other approaches, here the whole river can
be seen at once. Protective construction measures against floods can be evaluated in terms
of newly occurring downstream weak points. In the herein used 1D simulation the water
is kept in the river channel and no water leaves the system. In a 2D simulation the water
leaves the system and inundates the surrounding, which means that the water overflows
at the first weak point and is missing further downstream. This would be the naturally
occurring phenomena that is not considered in this study. Therefore every potential weak
point along a river can be identified. The time saving 1D simulation and the provided data
by FOEN are advantages that allow for an easy application to other rivers. Thereby, a better
comparison between other rivers and other regions may be rendered possible. It allows to
start the analysis from large scale and than go in to detail based on the gained information
of the large scale analysis. Furthermore, the comparison with results from the literature
showed that the approach delivers reliable results.

However, the approach has a number of limitations that should be kept in mind when inter-
preting the results. First, HQ, estimations have a very high uncertainty range, which could
not be determined in this study. Secondly, the developed models in Basement were only
calibrated and not validated because this reached beyond the scope of this study. Here, the
comparison with results from literature had to serve as a plausibility test. Thirdly, the reso-
lution of the rivers depended on the measured data, that is, not every important change was
depicted, and the distances between the cross sections was variable. Further, the result are
valid only for for the time of measurement of the cross sections. Also, there is an inherent
weakness to the calibration itself, as no uncertainty range could be calculated. Lastly, the cal-
ibration over the whole river is an averaging of the morphological condition (kst-coefficient
condition) along the whole river.

Considering the above outlined results and limitations, it is recommended to further inves-
tigate into the validation of the model. This may be done with existing high flood marks
along some of the rivers in order to test the accuracy of the approach. In close relation to
the latter point, the different possible calibration approaches should be tested. Thereby, a
sensitivity analysis of the calibrations may be performed. An interesting topic to follow up
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would be to track back the changes in the riverbed over the years, as with the cross section
measurement campaign done iteratively over the years, historical data is available.
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Chapter 4

Final Conclusion

This study aimed at improving hydrological understanding of the water flow in the two
case study regions, Kenya and Switzerland, by applying hydrodynamic modeling to river
flow. For both case studies, the hydrodynamic model Basement was the central tool used to
satisfy both their specific aims. The Basechain model could be adapted to the peculiarities
of the two case study and thereby, the research goals for both case studies could achieved
despite of very different initial data requirements and initial knowledge of the hydrology of
the two regions.

The results of the case study in the lower Ewaso Ng’iro Basin in Kenya showed that hy-
drodynamic modelling with 1D simulations in Basement could establish stage-discharge
relations for the four river sites with a minimum of data collected during the field survey.
It thereby provided basic and useful knowledge that permits to analyse the converted dis-
charge from the measured water level and it permitted first calculation of the channel ca-
pacity based on the established rating curve functions. Fundamental question of hydrology,
as "how much water is approximately flowing and for how many days?” were in a first ap-
proach answered for the lower Ewaso Ng’iro Basin and its rivers. It may be an interesting
approach to follow up for other rivers. However, one should keep in mind the geometric un-
certainties caused by, in our case, the sandy river bed, which influence mainly the accuracy
of the low flow measurements.

The case study in the Bernese Oberland intended to apply a hydrodynamic approach to
evaluate the bank-full discharge for each measured cross section and to relate it to probabil-
ities of flood events. Further, with the approach chosen, the channel capacity along a whole
river could be taken into consideration, as opposed to analyses focussing on single sections.
The weak points were identified by, methodologically speaking, a synergy of hydrodynamic
modelling with hydrology knowledge. Basechain, a hydrodynamic model, could be applied
to such a large study site, as a RGS monitoring network already exists and the cross section
geometry along those rivers were already measured, that is because the hydrological con-
dition of the area of interest was already known. Looking at the quality of the herewith
produced results, it seems reasonable to aim at gaining knowledge of weak points along
rivers with a similar data availability by the here proposed approach.

This study supports the statement of the developer of the Software Vetsch et al. (2015b)
that it may be a useful tool for very different purposes. Some of the advantages Basement
provides are, first, that the influence of one cross section to the other can be considered (back
water effect), as compared to calculating the river flow individually for each cross section,
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and secondly, that it is easier to implement more than one friction coefficient along one cross
section.

The model for the second case study could be calibrated to a measured value of the dis-
charge, as the availability of data was high for the Bernese Oberland. In contrast to that,
for Kenya only a prediction of the river flow and channel capacity was possible. Even if the
inquiries differed in their methodological progress from prediction to calibration and, even-
tually, validation, the Kenya case study being located at the first, the Swiss case study at the
second grade, they could both make a first step into answering their respective questions.
For Kenya, if water flows, knowledge of how much is to be expected and an idea of how
high is the channel capacity is of great interest. Whilst for Switzerland, for high flows it is
interesting to know where the river is likely to leave its bed. The here proposed result may
be regarded as first steps in hydrodynamic modeling and understanding of the channel ca-
pacity of the river sites in the lower Ewaso Ng’iro Basin and as further steps towards more
comprehensive understanding of weak points in the Bernese Oberland.
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Appendix A

Field Survey

Field Sheet

Fieldsheet survey in the Ewaso Ng'rio Basin

[ site [ coordinate [ lattitude [ longitude [ Datum |
\ \ \ |
Collimeter method

Point horizontal Staff reading Elevation Remark
Aspect | distance

dumpy | tape | BS Height of FS Ini Adj Adj RL

Instrument RL

Datum

Figure A.1: Field sheet to apply the dumpy level method to the river sites
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Table to Determined Roughness Coefficients

Figure A.2: Strickler-Coefficient for applying the MSE according to Naud-
scher, 1987 (Uni Karlsruhe, [2016)
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Appendix B

Cross Section Information
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