Summertime hailstorms over Switzerland in surrogate climate change simulations

Andrey Martynov (1), Luca Nisi (1,2), and Olivia Martius (1)

(1) Institute of Geography and Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland (2) Federal Office of Meteorology and Climatology MeteoSwiss, Locarno-Monti, Switzerland

Motivation and objectives
- Summer hailstorms over Switzerland cause considerable damage to the property, crops, real estate, etc.
- Future climate changes over Switzerland can be considerable (up to 5 °C surface warming towards 2100, RCP8.5).
- Climate change can potentially make summer hailstorms more harmful by enhancing their intensity, frequency, footprints. It is essential to be able to foresee possible changes for planning adaptation measures.
- Summer hailstorms over Switzerland can be simulated by using a mesoscale model at high resolution, e.g. WRF.
- Surrogate climate change approach - a convenient and simple method of imitating the climate change can be applied to these simulations. While oversimplified, it can help to reveal trends in hailstorm characteristics.

Simulation settings
- Domain settings:
 - 2 km horizontal resolution,
 - 414 x 375 latlon grid,
 - 2 km horizontal resolution,
 - 35 vertical levels, upper boundary: 50 hPa
- Forcing data: ECMWF analysis, 1/8", 6-hourly.
- No cumulus parameterization.
- Noah land-surface model.
 - Microphysics: Morrison double-moment scheme (with explicit hail)
- APWA-diagnostics package for WRF (Creighton et al. 2014)
 - HAILCAST-1D hail model
- Surrogate climate change simulations (Schär et al. 1996): adding artificial biases to air temperature and humidity for simulating changed climate conditions.
 - MPI-ESM-LR, MPI-ESM-MR: among the least biased models.
 - Mean RH decrease in lower troposphere up to 10-15% (last-saturation-temperature constraint, Sherwood et al. 2010)
- Simulations: Unbiased control run + 2 surrogate climate change cases with homogenous +5 °C temperature bias:
 - Mean freezing level increase, km
 - No cumulus parameterization.
- Strong warming in lower troposphere, stratospheric cooling.
 - Mean RH decrease in lower troposphere up to 10-15% (last-saturation-temperature constraint, Sherwood et al. 2010)
- Simulations: Unbiased control run + 2 surrogate climate change cases with homogenous +5 °C temperature bias:
 - "unbiased": unchanged air RH (following Clausius-Clapeyron), -10%RH case: 10% decrease of the RH.
- Changes in the mean daily maximum MU CAPE 0-180 mb, J/kg
- Changes in the atmospheric conditions

Changes in hailstorm characteristics
- Changes of hailstorm characteristics
- Summed hailstorms are much more frequent in the surrogate CC conditions. Main spatial patterns remain unchanged (“holes” - internal variability).

Summary
- Simple uniform air temperature and relative humidity biases were used to roughly simulate the future climate conditions.
- More frequent hailstorms, covering larger surfaces and producing larger hailstones were simulated in CC conditions (relative to an unbiased JJA2012 run).
- Future work: more realistic climate-change biases. Pseudo-Global Warming?