The life-cycle of hail storms: lightning, radar reflectivity and rotation characteristics

Kathrin Wapler (DWD)
Objectives

What is the typical life cycle of hail storms?

Which signatures are visible in …

… radar data?

… lightning data?
Hail storm near Main river: 20 June 2013

2D-radar reflectivity and lateral view
Hail storm near Main river: 20 June 2013

chronological sequence of lightning strokes

• lightning strokes
Δ ESWD hail

10km
Hail storm near Main river: 20 June 2013

- KONRAD
- O Overshooting top

Lightning jumps indicate severe weather.

number of strokes (<15km)

0 50 100 150 200 250 300
Hail storm near Main river: 20 June 2013

- Lightning jumps indicate severe weather.
- Overshooting tops indicate severe weather.

number of strokes (<15km)

0 50 100 150 200 250 300
Hail storm near Stuttgart: 28 July 2013

28.7.2013
00-24 UTC

lightning jumps

ESWD hail reports

strokes per km²

0 4 8 12 16 20
Hail storm in Allgäu: 03 May 2013

Mai 03 2013
Fr 14:25 UTC

number of strokes (<15km)

0 25 50 75 100 125 150

● KONRAD

Radar Fr 03.05.13 14:25 UTC 1.5° Sweep [m/s] - 1°x1km, 5 minütig <BUFR>
Hail storm in Allgäu: 03 May 2013

Mai 03 2013
Fr 14:30 UTC

number of strokes (<15km)

0 25 50 75 100 125 150

KONRAD

Radar
Fr 03.05.13 14:30 UTC 1.5° Sweep [m/s] - 1°x1km, 5 minütig <BUFR>
Hail storm in Allgäu: 03 May 2013
Hail storm in Allgäu: 03 May 2013

Mesocyclones (supercells) can be detected in radar data.
Data basis

- April to September 2008 to 2015
- ESWD hail events with QC1 or QC2

- **821 hail events:**
 - in 94% of the cases KONRAD cell (15 km² ≥46 dBZ in 2D reflectivity)

- filtering:
 - hail reports > 10min apart
 - For life cycle study: track >15min

- 600 events on 172 days

hailstorm tracks with 2D radar reflectivity, mesocyclone and lightning information
Tracks synchronised relative to time of hail.
Life-cycle analysis

High reflectivity:
- $12 \text{ km}^2 \geq 55\text{dBZ}$ or
- $1 \text{ km}^2 \geq 60\text{dBZ}$

Mesocyclone: detected in radar radial wind data
Hailflag 2 – lead time

![Histogram showing lead time distribution](image)

- Frequency on the y-axis.
- Leadtime (min) on the x-axis.
Mesocyclone – lead time
Lightning Jump - definition

Lightning Jump Intensity:
Function of lightning rate and its tendency

Lightning rate change relative to standard deviation

Lightning rate change relative to standard deviation

strokes within 15km and 5min

LJ intensity
Lightning Jump - leadtime

![Bar chart showing frequency of leadtime in minutes]

- The x-axis represents leadtime in minutes, ranging from -180 to 60.
- The y-axis represents frequency.
- The chart uses different colors for different leadtime intervals: 0.1, 0.3, 0.5, 0.7.

2nd European Hail Workshop 2017, Bern - Kathrin Wapler (DWD)
Satellite signatures like *overshooting tops* indicate severe weather.
Hail cells have high reflectivities.
Nearly 3/4 of all hail events associated with mesocyclone.
Hail cells have high lightning densities.
Half of the analysed hailstorms have pulsating lightning activity (not shown).
Lightning jumps precede many hail events.

Summary

Interested in more information?