A new generation of Compact Lightweight Absolute Radiometers (CLARA) for space borne TSI observations

B. Walter, W. Finsterle, S. Koller,

P. Levesque, D. Pfiffner, W. Schmutz

MOTIVATION

pmod)wrc

→ Climate Research and Solar Physics

Continuous \rightarrow inexpensive (small / lightweight) instruments and satellites **Precise** \rightarrow 100 ppm (0.01%) absolute accuracy to detect long term trends

Electrical substitution principle

Solar irradiance [W/m²]

CLARA Absolute Radiometer

Norwegian micro satellite NORSAT-1

Soci

pmod

WrC

* Payloads: - AIS ship tracker

 CLARA TSI radiometer
 Langmuir probes

 * Launch scheduled for 22nd of December 2016

 * Polar low earth orbit (~600 km)
 * 3-year nominal mission

CLARA Design

CLARA Design

CLARA Design

pmodwrc

- 1. Aperture area
- 2. Cavity reflectance
- 3. Lead heating effect
- 4. Non-equivalence
- 5. Diffraction / scattered light
- 6. Readout electronics

- 1. Aperture area (50 ppm)
- 2. Cavity reflectance
- 3. Lead heating effect
- 4. Non-equivalence
- 5. Diffraction
- 6. Readout electronics

Solar irradiance [W/m²]

Uncertainty of aperture area measurement = 50 ppm

- 1. Aperture area (50 ppm)
- 2. Cavity reflectance
- 3. Lead heating effect
- 4. Non-equivalence
- 5. Diffraction
- 6. Readout electronics

- 1. Aperture area (50 ppm)
- 2. Cavity reflectance
- 3. Lead heating effect
- 4. Non-equivalence
- 5. Diffraction
- 6. Readout electronics

- 1. Aperture area (50 ppm)
- 2. Cavity reflectance
- 3. Lead heating effect
- 4. Non-equivalence
- 5. Diffraction
- 6. Readout electronics

- 1. Aperture area (50 ppm)
- 2. Cavity reflectance (400 ppm)
- 3. Lead heating effect
- 4. Non-equivalence
- 5. Diffraction
- 6. Readout electronics

CLARA reflectance map:

- 1. Aperture area (50 ppm)
- 2. Cavity reflectance (400 ppm)
- 3. Lead heating effect (50 ppm)
- 4. Non-equivalence
- 5. Diffraction
- 6. Readout electronics

Parasitic heat flow from the cavities to the heatsink through the heater wires which is different for the open and the closed phase.

- 1. Aperture area (50 ppm)
- 2. Cavity reflectance (400 ppm)
- 3. Lead heating effect (50 ppm)
- 4. Non-equivalence (5 ppm)
- 5. Diffraction
- 6. Readout electronics

Different temperature distribution within the cavity between radiative and electrical heating

- 1. Aperture area (50 ppm)
- 2. Cavity reflectance (400 ppm)
- 3. Lead heating effect (50 ppm)
- 4. Non-equivalence (5 ppm)
- 5. Diffraction (30 ppm)
- 6. Readout electronics

Ligth diffracted at aperture edge

- 1. Aperture area (50 ppm)
- 2. Cavity reflectance (400 ppm)
- 3. Lead heating effect (50 ppm)
- 4. Non-equivalence (5 ppm)
- 5. Diffraction (30 ppm)

6. Readout electronics (500 ppm)

Temperature dependence of voltage measurement:

- 1. Aperture area (50 ppm)
- 2. Cavity reflectance (400 ppm)
- 3. Lead heating effect (50 ppm)
- 4. Non-equivalence (5 ppm)
- 5. Diffraction (30 ppm)
- 6. Readout electronics (500 ppm)

Total uncertainty of component level characterization (RSS):

Calibration at TSI Radiometer Facility (TRF)

SUMMARY

NEW RADIOMETER DESIGN NOVELTIES:

- 1. Three cavity design for degradation tracking and redundancy
- 2. Digital controller loop \rightarrow 30 s measurement frequency
- 3. Inverted aperture geometry to eliminate internal stray light
- 4. New cavity and heatsink design to minimize size and weight

CLARA uncertainties:

Currently: $\approx 400 \text{ ppm}$ (TRF calibrated) Possible: $\approx 300 \text{ ppm}$ (if recalibration of readout electronics)

NORSAT-1 launch scheduled for 22nd December 2016

CLARA on NORSAT-1

CLARA

THANK YOU FOR YOUR ATTENTION!

