Physikalisch-Meteorologisches Observatorium Davos World Radiation Center

Assessment of the reliability of TSI-reconstructions by comparing PREMOS/PICARD TSI values to other TSI data

Werner Schmutz PMOD/WRC

1st Swiss SCOSTEP workshop Bern 4./5. October 2016

Overview

- Motivation
- PREMOS in-flight calibration
- Towards a PREMOS calibration version 2 Ball et al. (JSWSC 6, A32, 2016):

Assessing the beginning to end-of-mission sensitivity change of the PREcision Monitor Sensor total solar irradiance radiometer (PREMOS/PICARD)

Schmutz et el. 2017 (in preparation) PREMOS/PICARD TSI data version 2

Comparing to TIM/SORCE and VIRGO/SOHO

Sun – climate correlation

The Sunspot minimum 1600-1700, the Maunder minimum,

coincides with a climate minimum, the so called little ice age

In 1658 king Karl X Gustav of Sweden marched his army over the ice of the belts to defeat Denmark

Reconstructions of solar irradiance

pmod wrc

There are Total Solar Irradiance in space observation since 1979

→ What are the amplitudes of TSI variations over centennial time scales?

Is there an observed TSI-trend?

Long term TSI trend

pmod wrc

Diverging TSI trends

Standard tool to correct for inflight degradation:

- \rightarrow two or more radiometers (PREMOS has 2):
- \mathcal{A} exposed operationally
- \mathcal{B} exposed rarely for calibration only

Hypothesis: \mathcal{B} has the same sensitivity change as \mathcal{A} as a function of the exposure time

Until 3. February 2014: \mathcal{A} total exposure:600 days \mathcal{B} total exposure:3.75 days

→ Sensitivity change is evaluated from the measured \mathcal{A} to \mathcal{B} ratio

Sensitivity change of ${\mathcal A}$ relative to ${\mathcal B}$

Ratios \mathcal{A} to \mathcal{B}

Ratios \mathcal{A} to \mathcal{B} compared to \mathcal{A} to DIARAD

Begin of operation in 2010

Ratios \mathcal{A} to \mathcal{B} compared to \mathcal{A} to DIARAD and \mathcal{A} to PMO6-V pmod wrc

Begin of operation in 2010

$\begin{array}{l} \textbf{PREMOS head } \mathcal{B} \\ \textbf{Feb-March 2014} \end{array}$

Ratios \mathcal{A} to \mathcal{B} compared to \mathcal{A} to DIARAD and \mathcal{A} to PMO6-V pmod wrc

+ ratio PREMOS-*B* to DIARAD 2014 Feb12 - March 4

PREMOS-*B* to DIARAD July 2010 to March 2014

4.10.16

18

Hypothesis is verified:

 \mathcal{B} (in 2014 starting at t_E =3.75 days) <u>had</u> the <u>same</u> sensitivity change as

 \mathcal{A} (in 2010) as a function of the <u>exposure time</u>

- → We can use the measured \mathcal{A} : \mathcal{B} ratios in 2010 to correct for the sensitivity change of head \mathcal{B} in 2014:
 - 1) Determine the accumulated exposure time t_E of head \mathcal{A} for the measured $\mathcal{A}:\mathcal{B}$ ratios 1, 2, ..., 6, ...
 - 2) Determine the dates of head \mathcal{B} when it has accumulated the corresponding dose
 - 3) Use "ratios of ratios", e.g. ratio-4/ratio-1, to correct for the sensitivity change of head \mathcal{B} in 2014 <u>relative</u> to the date when B had accumulated the same exposure time as A in 2010 for ratio-1

PREMOS/PICARD vs TIM and VIRGO pmod Wrc

Ball et al. (JSWSC 6, A32, 2016)

4.10.16

Ball et al. 2016 conclude

PREMOS \mathcal{B} sensitivity correction has an uncertainty October 2011 to February 2014 ratio: +-0.02 Wm⁻² (over 2.3 yr) \rightarrow 6 ppm per year

> PREMOS ℬ agrees with TIM (October 2011 to March 2014)
> → TIM stability confirmed to ≤ 6 ppm/yr

PREMOS ℬ disagrees with PMOD composite Difference: 0.12 Wm⁻² or 90 ppm after 2.3 years → PMOD-composite stability not better than ≥ 38 ppm/yr (not known: systematic or random ?)

Extrapolate \rightarrow TSI-composite <u>cycle-cycle minima uncertainty</u>: 11 x 38 ppm = 418 ppm \rightarrow 0.6 Wm⁻² !

Extrapolating the disagreement

Kopp (2016)

pmod wrc

Different approach – same conclusion

Fig. 7. Successive releases of VIRGO TSI data separated by 2 months each (lower plot) show significant trend differences (upper plot) due to variations in data-processing and estimates of instrument degradation with time.

Ongoing data evaluation ...

TIM and PMO6V minus PREMOS

4.10.16

Conclusions

- ➔ TSI-composite has a problem 2013/2014 at the transition from the VIRGO-ACRIM-III-TIM-PREMOS to the VIRGO-TIM-TCTE period
- New assessment of the relative calibration of PREMOS/PICARD supports the TSI record of TIM and disagrees with VIRGO
- Ongoing data evaluation disagrees with TIM and agrees better with PMO6V and DIARAD
- In any case: TSI trends <40ppm/yr cannot be reliably assessed with present-day instruments !
- ➔ The next TSI experiment will be CLARA/NORSAT-1 TRF end-to-end calibrated! launch end 2016/beginning 2017

Community support for TSI (and SSI) monitoring is still needed: <u>It is important to get multiple and overlapping</u>

irradiance data !

What TSI variations are important?

Our next TSI experiment: CLARA/NORSAT-1

CLARA calibration at TRF

04 05

		TRF Ground (532 nm laser, vacuum)						Space (solar spectrum, vacuum)									
	Characterization Item	Channel A		Chan	Channel B		Channel C		Channel A			Channel B			Channel C		
		Value	g (ppm)	Value	σ [ppm]	Value	σ [ppm]	Value	σ [ppm]	g [ppm] ¹	Value	σ [ppm]	σ [ppm] ²	Value	σ [ppm]	σ [ppm] ²	
Native Scale	Aperture area (1/ Capart) [mm ²]	19.6299	28	19.6242	28	19.6235	28	19.6299	28	-	19.6242	28	-	19.6235	28	-	
	Aperture Temperature	<u></u>	31	12	31	19	31		31	31	2 L	31	31		31	31	
	Absorptivity (Cabe)	1.002060	354	1.002202	378	1.002051	352	1.002192	375	21	1.002343	400	22	1.002183	372	20	
	Pointing	-	5 5	8 2			0 - 1 3		30	30		30	30	•	30	30	
	Diffraction (Cag)	1.000491	18	1.000491	18	1.000491	18	1.000867	31	13	1.000867	31	13	1.000867	31	13	
	Non-Equivalence (C _{ne})	1.000007	4	1.000007	4	1.000007	4	1.000830	65	65	1.000830	65	65	1.000830	65	65	
	Heater Voltage Measurement	-	3180	-	3180	-	3180	<u> </u>	3180	258	-	3180	258	-	3180	258	
	Shunt Voltage Measurement	-	3180	-	3180	-	3180	1	3180	258	-	3180	258	-	3180	258	
	Shunt Resistance Measurement		\$0		80	1.4	80	1.2	\$0	80	-	80	80	-	80	80	
	Lead heating (C _B)	1.000950	50	1.001084	50	1.001009	50	1.000950	50	-	1.001084	50	-	1.001009	50	144	
	Scattered Light (Carl)	0.999690	150	0.999690	150	0.999690	150	0.999690	150	-	0.999690	150	-	0.999690	150	- 24-2 	
	Calibration Factor	1.003200	4515	1.003477	4517	1.003251	4515	1.004536	4517	-	1.004822	4519	-	1.004586	4517	-	
Cryogenic Lab Scale	Repeatability	-	145		109) (4 -) (4 -)	179	1	-	145	-	1.44	109	-	14	179	
	TRF Comparison Factor	1.000650	285	1.000650	285	1.000650	285	1.003261	-	285	1.002595	-	285	1.004269	14	285	
	Calibration Factor	1.003261	4526	1.002595	4527	1.004269	4527	1.001271	-	498	1.002221		489	1.000316	-	509	

CALARA, to be flown on the Norwegian satellite NORSAT-1 launch soon 2016(?)