D UNIVERSITÄT BERN

Variability of mesospheric water vapor above Bern in relation to the 27-day solar rotation cycle

Martin Lainer, Klemens Hocke and Niklaus Kämpfer Institute of Applied Physics University of Bern

1st Swiss SCOSTEP workshop, 4 - 5 October 2016, Bern, Switzerland

Motivation

- Sun rotation triggers Lyman-α (121.56 nm) oscillations with a mean synodical period of 27.28 days
- Linking mechanisms (e.g. photolysis) between variability of mesospheric water and solar radiation are of interest
- Signatures of 27-day solar variability were found in tropical middle atmospheric OH, H₂O (Shapiro et al., 2012, ACP) and zonally averaged CO (Ruzmaikin et al., 2014, ASR)
- Extra-tropical investigations including observations of middle atmospheric water vapor found less attention, motivating our study

Mid-latitudes: 27-day solar variability Effects on mesospheric water?

MIAWARA: <u>Mi</u>ddle <u>A</u>tmospheric <u>Wa</u>ter Vapor <u>Ra</u>diometer

.copetween. Changing Atmo

Located near Bern, Switzerland (46.88°N / 7.46°E)

NIVERSITÄT

Operational since 2002

Operating during day and night at all weather conditions except precipitation (rain, snow)

Measures the pressure broadened rotational transition line of H₂O at 22.235 GHz

Vertical H₂O profile retrieval by the Optimal Estimation Method (OEM)

Measurement Principle - Basics 1

UNIVERSITÄT BERN

Measurement Principle - Basics 2

OEM (Optimal Estimation Method)

D UNIVERSITÄT BERN

Minimize the cost function *c* based on measurements *y*, apriori knowledge x_a and a radiative transfer model *F*() to obtain the optimally estimated solution \hat{x} :

Comparison between MIAWARA & Aura/MLS (Monthly mean statistics 2007 – 2011 of H₂O profiles)

D UNIVERSITÄT BERN

(MIAWARA - MLS) / MLS [%]

MIAWARA H₂O time series & solar Lyman-α composite

UNIVERSITÄT BERN

- > MIAWARA H₂O time series (April 2007 until March 2015) between 50 and 80 km
- Composite Lyman-α time series from LISIRD (LASP Interactive Solar Irradiance Data Center)

27-day relative wave amplitudes

UNIVERSITÄT BERN

- > Non-recursive FIR band-pass filter with Hamming window
- > Central frequency $f_p = 1/27$ d; Cut-off frequency $f_c = f_p \pm 0.1 * f_p$
- > Oscillations higher or shorter than f_c are suppressed
- > Filter runs forward and backward along the data time series (zero phase lag)

UNIVERSITÄT Rern

Mean H₂O amplitude spectra (Bern)

> Derived from band-pass filtering at frequencies between 1/10 d and 1/50 d

Differences presumable due to horizontal inhomogeneity (limb vs. line of sight observation)

Mean zonal mean H₂O amplitude spectra

Aura/MLS (v4.2) measurements within the latitude belt 44°-50°N are processed

UNIVERSITÄT RERN

Enhanced amplitudes in the 27-day and 13.5-day period band in time period B (in comparison to period A)

Time lagged cross-correlation between 1 and 0.01 hPa

Negative cross-correlations up to -0.3 (upper mesosphere) Confidence \geq 99 % (filled contours) Phase lag: ~10 days Solar forcing leads the H₂O response ^b UNIVERSITÄT BERN

Cross-Wavelet Transform (XWT)

MIAWARA H₂O time series averaged between 64 and 80 km

Variable phase relationship

Solar superstorm 2012

Cross-correlation between MIAWARA H₂O and solar Lyman-α

0.4

0.3

0.2

0.1

-0.4

30

20

10

UNIVERSITÄT RERN

13

Cross-correlation

0

Time lag [days]

0.01

0.1

1

-30

-20

-10

Pressure [hPa]

Time series of Lyman- α and MIAWARA H₂O (deseasonalized, averaged between 64 and 80 km

Anti-correlation

Confidence \geq 95 % (filled contours)

Conclusions

^b UNIVERSITÄT BERN

- Enhanced H₂O wave activity above 0.1hPa in the 27-day band is present during the more active time of solar cycle 24 (period B from 2011-04-01 to 2015-03-31), not only locally for Bern but also at other places in the 44°-50°N latitude belt
- Cross-correlation coef. of about -0.3 between solar Lyman-α and MIAWARA H₂O (phase lag of around 10 days)
- Cross-Wavelet analysis: Significant (two sigma level) high common wavelet power in the 27-day band with variable phase lock behavior
- The competition between advective transport and photo-dissociation loss of mesospheric H₂O may explain the sometimes variable phase relationship between mesospheric H₂O and solar Lyman-α oscillations

Solar variability on the 27-day periodicity scale causes observable photochemical and dynamical processes in the mid-latitude mesosphere

The End

 $u^{\scriptscriptstyle b}$

Thank you for your attention!