

1

^b UNIVERSITÄT BERN

OESCHGER CENTRE CLIMATE CHANGE RESEARCH

Hailstorms evidence from smart-phone users:

Crowd-sourced hail size data over Switzerland

Noti Pascal A. Martynov, A. Hering , and O. Martius

Bern 21.04.2017

Motivation & Objectives

^b UNIVERSITÄT BERN

OESCHGER CENTRE CLIMATE CHANGE RESEARCH

- Is crowd-sourcing data reliable and usable for the verification of radar-based hail detection algorithms?
- Do the reported hailstone sizes from the crowd-sourcing and measurements from hail sensors correlate with radar-derived HS (at 5 minute resolution)?

June-August 2015 and April-August 2016

UNIVERSITÄT BERN

OESCHGER CENTRE CLIMATE CHANGE RESEARCH

Motivation & Objectives

Data & Methods

Results

D UNIVERSITÄT BERN

^D UNIVERSITÄT BERN

UNIVERSITÄT BERN

OESCHGER CENTRE CLIMATE CHANGE RESEARCH

Motivation & Objectives Data & Methods Results Conclusions Outlook

Motivation & Objectives Data & Methods Results Conclusions Outlook

Results

8

b

Results

UNIVERSITÄT BERN

OESCHGER CENTRE CLIMATE CHANGE RESEARCH

Motivation & Objectives Data & Methods Results **Outlook**

Motivation & Objectives

Data & Methods

0

Conclusions

^D UNIVERSITÄT BERN

OESCHGER CENTRE CLIMATE CHANGE RESEARCH

12

- > Matched hail reports 27 %
- > Many false reports
- > High spatial and temporal verification
- Small hail correlate with HS
- Medium sized hail correlate with MESHS

^D UNIVERSITÄT BERN

OESCHGER CENTRE CLIMATE CHANGE RESEARCH

- > Temporally longer dataset improves statistics
- Lists of trusted and unreliable users
- > More reportable sizes
- > Big potential for thunderstorm nowcasting, weather monitoring and for the assessement of insurance damage claims.

Thanks for your attention

pascal.noti@meteoswiss.ch

UNIVERSITÄT BERN

OESCHGER CENTRE

Betschart, M., and A. Hering (2012), Automatic hal detection at MeteoSwiss: Verification of the radar-based hail detection algorithms POH, MESHS and HAIL. Arbeitsbericht MeteoSchweiz Nr. 238, http://www.meteoschweiz.admin.ch

- Elmore, K. L., Z. Flamig, V. Lakshmanan, B. Kaney, V. Farmer, H. D. Reeves, and L. P. Rothfusz (2014). mPING: Crowd-sourcing wather reports for research, *Bulletin of the American Meteorological Society*, 95 (9), 1335-1342.
- > Howe, J. (2006), The rise of crowd-sourcing, *Wired Magazine*, *14* (6), 1-4.
- > Hyvärinen, O., and E. Saltikoff (2010), Social media as a source of meteorological observations, Monthly Weather Review, 138 (8), 3175-3184.
- Koole, M., and P. Siegmund (2016), Evaluating the quality and usability of crowd-sourced weahter data, in EGU General Assembly Conference Abstracts, vol. 18, 3959.
- Muller, C., L. Chapman, S. Johnston, C. Kidd, S. Illingworth, G. Foody, A. Overeem, and R. Leigh (2015), Crowdsourcing for climate and atmospheric science: Current status and future potential, *International Journal of Climatology*, 35 (11), 3185-3203.
- Nisi, L., O. Martius, A. Hering, M. Kunz, and U. Germann (2016), Spatial and temporal distribution of hailstorms in the alpine region: A long-term, high-resolution, radar-based analysis, *Quaterly Journal of the Royal Meteorological Society, 142* (697), 1590-1604.
- > Treloar, A. (1998), Vertically integrated radar reflectivity as an indicator of hail size in greater sidney region of Australia, *American Meteorological Society, 19th Conference on Severe Local Storms*, 48-51.
- > Waldvogel, A., B. Federer, and P. Grimm (1979), Criteria for the detection of hail cells, Journal of Applied Meteorology, 18 (12), 1521-1525.

^b UNIVERSITÄT BERN

 $u^{\scriptscriptstyle b}$

Figure 8: Number of users over time

UNIVERSITÄT BERN

UNIVERSITÄT BERN

OESCHGER CENTRE

> Probability Of Hail - POH [%]

Waldvogel et al. (1979)

- > $\Delta z = ET45 H0$
- > $\Delta z > 1.65 \ km \rightarrow 0\% \ POH$
- > $\Delta z > 5.5 \ km \rightarrow 100\% \ POH$
- Maximum Expected Severe Hail Size (MESHS) [mm] Treloar. (1998)

^d UNIVERSITÄT BERN

OESCHGER CENTRE CLIMATE CHANGE RESEARCH

Crowd-sourcing

- Crowdsourcing is the act of taking a job traditionally performed by a designed agent (usually an employee) and outsourcing it to an undefined, generally large group of people in the form of an open call» (Howe 2006)
- > UK Met Office:
 - Weather Observartion Website (Muller et al. 2015)
- > RNMI:
 - Weather Observartion Website (Koole and Siegmung 2016)
- > NSSL of NOAA:
 - mPING project (Elmore et al. 2014)

^D UNIVERSITÄT BERN

OESCHGER CENTRE CLIMATE CHANGE RESEARCH

Crowd-sourcing

- Verification studies:
 - Texts and photos in social media (Hyvärinen and Saltikoff 2010)
 - European Severe Weather Database (Betschart and Hering 2012)
- > Allocation process:
 - Time consuming
 - Costly
 - Low spatial and temporal coverage

UNIVERSITÄT Bern

OESCHGER CENTRE CLIMATE CHANGE RESEARCH

Weather Research an Forecasting model

- > Version 3.6.1
- Initial state from ECMWF analysis data
- > 1x1 km interpolation resolution from 2.12x1.35 km model resolution
- > 35 vertical levels
- > New Thompson scheme and Morrison double-moment scheme
- > Diagnostics HAILCAST-1D from the Air Force Weather Agency

User feedback to hail warnings

- Warning system based on TRT for warning regions
- > Volunteers
- > Receive warning SMS
- > (Reminding SMS)
- > Send confirmation

UNIVERSITÄT BERN

^D UNIVERSITÄT BERN

OESCHGER CENTRE CLIMATE CHANGE RESEARCH

POH verification

- Swiss communities with
 >= 30 % settlement area
- > daily resolution
- > Filtered reports: >=45 dBZ
- Filtered POH:
 07 UTC 19 UTC
 >= 80 %

UNIVERSITÄT BERN

D UNIVERSITÄT BERN

^b UNIVERSITÄT BERN

	Matches		Mismatches		Total	
	#	%	#	%	#	%
*	260	2.9 %	8'549	97.1 %	8'809	100 %
ØD	2'586	23.1 %	8'607	86.9 %	11'193	100 %
	1'045	26.4 %	2'909	73.6 %	3'954	100 %
5	161	16.8 %	798	83.2 %	959	100 %
(\bigcirc)	65	3.6 %	1'753	96.4 %	1'818	100 %
Total	4'117	15.4 %	22'616	84.6 %	26'733	100 %

^b UNIVERSITÄT BERN

	Matches		Mismatches		Total	
	#	%	#	%	#	%
*	979	11.2 %	7'767	88.8 %	8'746	100 %
ØD	4'511	40.6 %	6'583	59.4 %	11'094	100 %
	1'351	34.3 %	2'588	65.7 %	3'939	100 %
5	214	22.5 %	739	77.5 %	953	100 %
(\bigcirc)	125	3.6 %	1'677	93.1 %	1'802	100 %
Total	7'180	27.1 %	19'354	84.6 %	26'534	100 %