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Toward a seamlessly integrated  
       storm-scale ensemble prediction system:

The next generation of convective- or storm-scale forecasting aims to integrate 
nowcasting and NWP into a single framework to predict the formation and 
evolution of individual deep convective storms. 

On the NWP-side we have to used advanced data assimilation systems, like 
the local ensemble transform Kalman filter (LETKF) to assimilate remote-
sensing data (radar, VIS and IR satellite, lightning, GPS, etc.) 

The NWP model has to be improved, e.g., by going to 1 km grid spacing and 
using better physics, e.g., two-moment microphysics. 

Everything has to be integrated based on probabilistic forecasting products, 
because the predictability is very limited on the scale of individual deep 
convective storms. 

Similar efforts also at other centers, e.g., Warn-On-Forecast project at NSSL.
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Convective-scale NWP at DWD: Plans for 2020 
Storm-scale ICON-RUC-EPS: hourly 12h ensemble forecasts based on short 
data cut-off (< 20 min); assimilation of 3D radar data, satellite (IR and VIS), 
Mode-S, etc.; 40 members for ensemble data assimilation and ensemble 
prediction.  

Convective-scale ICON-LAM-EPS: every 3 hours ensemble forecasts up to 
48h

Model domain of ICON-RUC and ICON-
LAM; 2 km for the full domain and a 2-way 
nest with a grid spacing of 1 km for 
Germany.
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A prototype experiment with the COSMO model
COSMO model with 1 km grid spacing focusing on Southern Germany 
Two-moment microphysics with hail (Seifert and Beheng 2006, Blahak 2008)  
Data assimilation using LETKF with 3d radar reflectivity and radial velocity 
(Schraff et al. 2016, Bick et al. 2016). 
Assimilation with 40 ensemble members  
and 30 min cycling using 5 min radar data. 
Forecasts with 20 ensemble members  
for 6 hours.

Model domain of COSMO1-RUC with a grid 
spacing of 1 km on a 480 x480 grid.
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Figure 2. KENDA–LETKF system set-up; ‘o−fg’ denotes observation minus first
guess, ‘K’ the Kalman gain for the analysis mean.

The background-ensemble perturbations matrix Xb has been used
to transform the analysis problem into ensemble space for Eq.
(4) and is therefore used to transform the solution in ensemble
space (Eqs (6), (8)) back to physical space. The analysis ensemble
members are then given by

xa(i) = x̄b + Xb(wa + Wa(i)) , (9)

where Wa(i) is the ith column of Wa. Thus, each analysis ensemble
member is given by a linear combination of the background
ensemble members. The analysis mean in physical space does not
need to be computed explicitly in the LETKF data assimilation
cycle. It is given by Eq. (9) without the term Wa(i). Using this
and Eq. (6), the so-called Kalman gain K can be expressed for the
ensemble mean by K = XbP̃a(Yb)TR−1, where K is defined
to determine the analysis increments given the innovations
(yo − H(xb)).

The solution in ensemble space given by Eqs (6) and (8) can
be computed on a coarser resolution analysis grid. It is then
interpolated to the model grid before being used to compute
the solution in model space by Eq. (9). For more details of this
implementation, we refer to Hunt et al. (2007) and Szunyogh
et al. (2008).

It is important to note the following properties of the above
formulation of the LETKF. Firstly, if observations are available
and used not only at analysis time but over a certain period
up to the time of the next analysis step, then the LETKF is a
truly four-dimensional data assimilation scheme. This applies
not just in the sense that the innovations (yo − H(xb, to)) can be
computed at appropriate time (i.e. observation time to). Rather,
the 4D-LETKF is based on the four-dimensional background-
error covariances evaluated in observation space and projected on
to the ensemble subspace, (k − 1)1/2 Yb(Yb)T. (Yb takes a similar
role to HMB1/2 in 4D-Var, where H is the linearized observation
operator, M the tangent-linear forward model operator and B the
background-error covariance at analysis time.) In other words,
the ensemble forecast trajectories over the assimilation window
provide an estimate of the 4D background-error covariances
at the times and locations of the observations. In the KENDA
implementation, the 4D capabilities are obtained by applying
the observation operators H(xb(i), to) within the COSMO model
during its forward integration (see Figure 2). This allows for the
operators to be evaluated at the exact observation times to. For
the data types used commonly in the LETKF and the observation
nudging, the same operators are deployed for quality control and
also for the computation of those innovations that require the
forward operator. (In the nudging scheme, a retrieval operator is
applied for some observation types and levels, e.g. surface-level
data, for which the observation increment is required at the model
orography rather than at the station height.)

Secondly, as seen in Eqs (6)–(9), the formulation makes explicit
use of only the full nonlinear observation operator; the linearized

and adjoint operators are not required. This allows enhanced
freedom in the formulation of the observation operators. For
instance, the operator used by Schomburg et al. (2015) for the
assimilation of cloud-top height would be difficult to invert. (It
has to be seen how well such strongly nonlinear operators work
in practice, considering that an implicit linearization is imposed
by Eq. (5).)

Thirdly, as pointed out by Hunt et al. (2007), the choice to
derive the analysis ensemble perturbations by taking the square
root of the analysis-error covariance in Eq. (8) is the solution
that minimizes the (mean-square) distance between Wa and the
identity. Thus, in this metric, the analysis ensemble perturbations
are as close as possible to the background-ensemble perturbations
subject to the constraint on their sample covariance. It also
guarantees that Wa depends continuously on P̃a. This is crucial
when localization (see Houtekamer and Mitchell, 1998; Hamill
et al., 2001) is applied, because it ensures that at neighbouring
grid points with slightly different matrices P̃a, similar linear
combinations (wa + Wa(i)) are obtained to compute the analysis
ensemble members. Otherwise, the analysis members could be
very unbalanced after localization.

Localization is achieved by calculating the weight matrix wa in
Eq. (6) independently at each grid point of the analysis grid. This
grid can be the model grid itself, or a coarser grid from which
wa is interpolated to the model grid afterwards. At each analysis
grid point, the inverse observation-error covariance matrix R−1 is
scaled according to the distance of the observations from the grid
point. The scaling makes use of a Gaspari–Cohn function (which
is similar to a Gaussian but has compact support) with specified
horizontal and vertical localization length-scale (Gaspari and
Cohn, 1999). Prior to the scaling of R−1, observations outside the
area given by the compact support of the function are discarded.
In the experiments of this study, the vertical localization scale
increases with increasing height in the range 0.075–0.5 in terms of
the logarithm of pressure, while the horizontal scale is determined
adaptively (see section 3.5).

Finally, as an initial condition for a deterministic forecast, the
analysis ensemble mean could be deployed. However, in case
of non-Gaussian distributions of the ensemble members, their
mean will in general not be in balance. Cloud-related variables,
which are of particular interest for very short-range forecasts in
the convective scale, often have smoothed fields in the ensemble
mean. Therefore, a different approach is adopted in KENDA (see
Figure 2). The analysis xa for a deterministic data assimilation and
forecast cycle is determined by applying the Kalman gain matrix
for the ensemble mean K = XbP̃a(Yb)TR−1 to the innovations
of the unperturbed deterministic (or control) run:

xa = xb + LXbP̃a(Yb)TR−1(yo − H(xb)). (10)

It is clear from Eq. (10) that the deterministic run must use
exactly the same set of observations as the ensemble in the
LETKF. Optionally, the grid resolution can be higher than that
of the ensemble and, in this case, the analysis increments on the
ensemble grid finally have to be interpolated to the fine grid of
the deterministic run by an interpolation L.

The rationale of using the gain of the ensemble mean is that both
the ensemble mean and the deterministic analysis aim to provide
an unperturbed ‘best’ estimate of the true state. This allows the
deterministic analysis to take full advantage of the flow-dependent
ensemble background covariances. The deterministic analysis will
not be optimal if its background deviates significantly from the
background ensemble mean. This is because the background-
ensemble perturbations of the LETKF would not reflect the
background errors of the deterministic run in such a case.

Initializing the deterministic forecast with the analysis ensem-
ble mean would be an alternative approach (we call this ‘forecast
on mean’ hereafter). However, preliminary tests over two weeks
showed increased spin-up effects on precipitation during the first
2 h of these forecasts. Thereafter, their forecast quality in terms

c⃝ 2016 Royal Meteorological Society Q. J. R. Meteorol. Soc. 142: 1453–1472 (2016)

During the COSMO runs the 
model is compared with 
observations using a forward 
operator (o-fg). 
LETKF estimates new 3d 
fields of all model variables 
based on covariances in the 
ensemble members, e.g, how 
w and T correlate with dBZ. 

Caveats: 
Works only if observations are 
well covered by ensemble. 
Non-gaussian statistics are not 
well represented. 30 min 

‚cycling‘ 

5 min data
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Results of the assimilation experiment

The LETKF can assimilate individual deep convective storms like supercells. 

The pulsating behavior shows that model and LETKF provide slightly 
inconsistent solutions. This is unavoidable, because the LETKF is a purely 
statistical method that does not take into account the actual model equations. 

The model recovers quite quickly from the analysis increments and can built up 
reasonable storms. 

Some noise has to be accepted in this approach and some noise is actually 
necessary to retain ensemble spread. Difficult to distinguish good noise from 
bad noise!
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Can we hope for some explicit hail forecasts?

On 27 May several cm of (small) hail were reported near Wiesbaden.
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Reports in ESWD
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Results of the forecast experiment

Forecasting individual storms is difficult and further model improvements are 
necessary. 

The COSMO-LETKF systems has to potential to predict deep convection in 
more detail than the current nudging-based system. 

Forecasting hail is even more difficult. The two-moment scheme can predict hail, 
but biases are large and skill is low, so far. Needs more work and later on 
calibration of the probabilities.

Conclusions:
Explicit assimilation and forecasting of individual convective storm is possible, 
but very difficult. 

Forecasting on this scale makes most sense in terms of probabilistic products. 

Still a lot to do until 2020, when we want to go operational with such a system.


