The pivotal nature of merger and splitting in the cyclone life cycle

Sarah Kew¹, Rodrigo Caballero², John Hanley³, Masaru Inatsu⁴.

Piv-ot-al *adj.* [© HarperCollins Publishers 2003]

1. Of, involving, or acting as a pivot – e.g. an event causes a change in direction or intensity

2. Of crucial importance – e.g. significant role in storm life cycle

Wageningen University, 2. Stockholm University, 3. Munich Re,
Hokkaido University.

Motivation

- Method-based uncertainty in cyclone tracking?
- Physical causes of merger and splitting (MS) events
 - secondary cyclogensis
 - wave breaking
 - topographical obstacles
- Higher frequencies of MS events in intense mature storms [Hanley and Caballero, 2012]
 - impact lifecycle track of significant events

?	
How will ensemble of tracking methods react?	

Approach

- IMILAST ensemble dataset and thresholds
 - (ERA-Interim 1979-2008, DJF, 16 methods, >24h life)
- Merger and splitting IMILAST methods: M13, M14, M21
 - Compare event climatologies and composites
 - Use to select case study events for IMILAST ensemble (> 2 methods agree on time and location)
 - -4 merger cases, 4 splitting cases hand selected

Algorithms M13, M14, M21

MERGER

SPLITTING

MERGER

SPLITTING

MERGER

SPLITTING

CYCLONE DENSITY

SPLITTING

Dependence of MS frequency on intensity

Intensity decile bins defined for each method separately

Lifecycle composites of intensity

M13 - SLP 970r 1050r 975 1100 980 Merger SLP [hPa] 도 1150 65 87 1200 985 990 995 1250 1000 1300└── -12 1005 -12 -6 0 6 12 18 Time relative to event [hours] 24 (d) M13 Splitting 970r 1050₁

WAGENINGEN UR

For quality of life

M14 - Z850

95

Splitting

Merger

Merger: example 1

Ensemble division – size vs. position criterion

- Current position
- Genesis
- Lysis
- Merger location

AGENINGEN UR For quality of life

- Continued
- Terminated

Merger: example 2

Ensemble agreement – lysis points clustered

BEFORE

AFTER

ContinuedTerminated

• Genesis

Lysis

Merger: example 3

Merger leads to intensity increase

BEFORE

AFTER

Continued Terminated O Genesis

Splitting example 1

Ensemble agreement, end of Pacific storm track, cyclones have similar tracks

BEFORE

AFTER

Continued Terminated O Genesis

Lysis

Splitting: example 2

Ensemble division – A and B move apart in opposite directions

BEFORE

AFTER

Pivotal?

- Pivotal importance
- Divergence in track ensemble: -
 - intensity vs. location
- But, MS may locally increase ensemble agreement over lysis and genesis locations respectively

AGENINGEN UR

For quality of life

