

A Probabilistic View on Winter Storm Damages

Uwe Ulbrich (1), Tobias Pardowitz (1,2), Robert Osinski (3)

- (1) Freie Universität Berlin
- (2) Hans-Ertel-Zentrum für Wetterforschung, Berlin, Germany
- (3) Centre National de Recherches Météorologiques

Introduction

- Operational forecasting using *Ensemble Prediction Systems* (EPS)
- Potential developments of storms and estimation of likelihoods of severities
- Downscaling provides higher resolution for individual simulation results

Deterministic loss model: Regionally trained wind-loss ratio relationship

Berlin

However, Grid-point wind – damage relation is **probabilistic !**

Deutsches Komitee Katastrophenvorsorge e.V. (DKKV)

German Committee for Disaster Reduction within the International Strategy for Disaster Reduction (ISDR)

Source: GDV

Jahresbericht 2006

A Probabilistic Model for Loss Occurrences

Relate normalized daily max. gusts at district center ...

A Probabilistic Model for Loss Occurrences

Normalized gust wind speed

Example – Storm Britta (2006-10-31)

Example – Storm Britta (2006-10-31)

Ensemble mean wind based

Brier Skill Score for different lead times

Result for Germany:

"Skillfull" forecasts for lead times up to 6 days

i.e.

better than forecasting the climatological probability for each day

Use ensemble mean wind speed, or ensemble mean loss probabilities?

"Wind averaging"

Apply transfer function to ensemble averaged wind speed

vs "Loss Probability averaging"

Applying transfer function, then calculating the ensemble average of resulting probabilities

Brier Skill Score for different lead times

Improved score for ensemble mean using loss probability averaging!

Underdispersion of downscaled EPS

Rank histogram (Talagrand diagram): Where is observation (analysis) wrt the value-ordered ensemble ranks

- Analyses ("observations") often outside of ensemble range
 - \rightarrow Underdispersion
- More frequently above all ensemble members

 \rightarrow Bias

Brier Skill Score with ensemble dressing

High loss threshold (rare events)

Summary

- Estimate relationship of (gridpoint) wind and likelihood of damage in excess of a threshold from observations
- Forecasts using the ensemble mean damage result in better skill wrt damage than forecasts using the wind damage
- Ensemble post processing ("dressing") yields further gain, up to 2 days

Thank you for your attention

